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Abstract: Increasing and improving the critical transition temperature (TC), current density (JC)
and the Meissner effect (HC) of conventional superconductors are the most important problems in
superconductivity research, but progress has been slow for many years. In this study, by introducing
the p-n junction nanostructured electroluminescent inhomogeneous phase with a red wavelength
to realize energy injection, we found the improved property of smart meta-superconductors MgB2,
the critical transition temperature TC increases by 0.8 K, the current density JC increases by 37%,
and the diamagnetism of the Meissner effect HC also significantly improved, compared with pure
MgB2. Compared with the previous yttrium oxide inhomogeneous phase, the p-n junction has
a higher luminescence intensity, a longer stable life and simpler external field requirements. The
coupling between superconducting electrons and surface plasmon polaritons may be explained
by this phenomenon. The realization of smart meta-superconductor by the electroluminescent
inhomogeneous phase provides a new way to improve the performance of superconductors.

Keywords: smart meta-superconductor; p-n junction nanostructured inhomogeneous phase;
electroluminescent; injecting energy; electron-surface plasmon polaritons coupling; smart superconductivity

1. Introduction

Superconductivity has greatly promoted the progress of industrial technology since its
discovery, and has also expanded people’s understanding of condensed matter physics [1].
The superconducting materials have a wide range of applications, such as electric grids [2],
and quantum computing devices [3,4]. The pursuit of superconducting materials with a high
critical temperature TC has been promoting the research. The high-temperature superconduc-
tor [5,6], iron-based superconductor [7,8], high-pressure superconductor [9–12] and photoin-
duced superconductor [13,14] have been gradually studied and discovered. Superconductors
have zero resistance characteristics and complete diamagnetism (the Meissner effect) [15–17].
Therefore, the transition from a superconducting state to a non-superconducting state has
characteristic parameters: critical transition temperature (TC), critical current density (JC) and
critical magnetic field (HC) [15,18]. In recent years, it has been found that the superconductiv-
ity of the sulfur hydride system is 203 K at 155 GPa [9], and the carbonized sulfur hydride
system is 287.7 K at 267 GPa [12]. Although this method can achieve higher superconducting
transition temperatures and even room temperature superconductivity, the extremely high
pressure and small sample size limit its further applications.

The discovery of the MgB2 superconductor [19] has aroused great interest in the
scientific community due to its excellent superconductivity and simple preparation process,
especially its high TC. In order to improve the superconductivity of MgB2, various methods
have been adopted [20–24], which can not only improve the practical application of MgB2,
but also further clarify its superconductivity mechanism. Chemical doping is often used
to study superconductivity. Unfortunately, many experimental results have confirmed
that this approach reduces the TC of MgB2 [25–28]. So far, there is no effective strategy
to improve the TC of MgB2. Chemical doping is the simplest method to change the JC
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of the superconductor. Doping graphene in MgB2 [29], and Al2O3 [30] and MgO [31]
in BiSrCaCuO will reduce JC under a zero magnetic field. At the same time, adding
anthracene into MgB2 [32] and Cr2O3 into BiSrCaCuO [33] will increase the JC under a zero
magnetic field. Under a zero magnetic field, chemical doping increases or decreases JC of
the superconductor, but correspondingly decreases TC. There is no particularly effective
method to increase TC and JC at the same time.

Metamaterials with artificial structures have supernormal physical properties [34,35].
With the development of metamaterials, researchers proposed that a metamaterial super-
conductor can exhibit a higher TC [36–38]. In 2007, we proposed to introduce inorganic ZnO
electroluminescent (EL) material into a Bi(Pb)SrCaCuO superconductor at a high tempera-
ture in order to affect its superconducting transition temperature [39,40]. In recent years,
MgB2 and Bi(Pb)SrCaCuO smart meta-superconductors (SMSCs) have been constructed.
We doped Y2O3:Eu3+ and Y2O3:Eu3++Ag EL materials in conventional MgB2 and high tem-
perature Bi(Pb)SrCaCuO superconductors to form a smart meta-superconductor [39–47].
When the TC of SMSCs is measured by the four-probe method, the external electric field
can stimulate the inhomogeneous phase to produce EL, which can achieve the purpose
of strengthening the Cooper pair and lead to the macroscopic change of TC. SMSCs is a
material that can adjust and improve TC through external field stimulation, which is a
new property that cannot be achieved by traditional second phase doping [44–46]. We
believe that this is because superconducting particles acting as microelectrodes excite the
inhomogeneous phase EL under the action of an applied electric field, and the energy injec-
tion promotes the formation of electron pairs. Recently, JC and the Meissner effects of the
MgB2 and Bi(Pb)SrCaCuO smart meta-superconductors have been investigated [47]. The
addition of Y2O3:Eu3+ and Y2O3:Eu3++Ag increased the JC of MgB2 and Bi(Pb)SrCaCuO,
and indicating the Meissner effect at higher temperatures. It has been confirmed that
the rare earth oxide inhomogeneous phase can improve the TC, JC, and Meissner effect
of conventional and high temperature oxide superconductors. However, it is very diffi-
cult to improve the electroluminescence intensity, short luminescence life, large applied
electric field and other factors of rare earth oxides, which limits the improvement of its
superconducting performance.

In this paper, the smart superconductivity of MgB2 was studied by introducing the
p-n junction electroluminescence inhomogeneous phase to realize energy injection and
improve electron pairing. Studies show that the high luminescence intensity and long
life of the p-n junction nanostructure can ensure the stability of material properties. In
addition, the p-n junction nanostructure excitation is easier, with only a few volts of
excitation required rather than hundreds or even thousands of volts. Thus, the electric
field applied by the four-point method for measuring superconductivity can be satisfied.
Because the p-n junction nanostructured inhomogeneous phase exhibits good behavior
under field excitation, the optimum amount of the inhomogeneous phase increased from
0.5 wt.% to 1.0 wt.% compared to oxide. Therefore, the critical temperature TC, current
density JC and the Meissner effect of superconducting transition are higher than those of
the oxide inhomogeneous phase. In particular, the performance stability of the material has
been greatly improved, and can be stable for more than several hundred hours. We hold
the opinion that the photons generated by the inhomogeneous phase of the p-n junction
nanostructure interact with some superconducting electrons to generate surface plasmon
polaritons (SPPs) and promote electron pair transport.

2. Model

Figure 1 shows the MgB2 SMSCs model constructed with polycrystalline MgB2 as
raw material. The gray polyhedrons are polycrystalline MgB2 particles, Φ is the particle
size of MgB2 particle, which will be described in detail in the experimental part. The red
particles are p-n junction particles with red light wavelengths, which are dispersed among
MgB2 particles as the inhomogeneous phase. The introduction of the inhomogeneous phase
inevitably reduces the TC of MgB2, mainly because the doped inhomogeneous phase is
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not a superconductor, which is detrimental to the superconductivity of MgB2, such as the
MgO impurity phase in MgB2. For convenience, the reduction of TC after the introduction
of the inhomogeneous phases is called the impurity effect [39–41]. The incorporation
of inhomogeneous phases has been proved to be an effective method to improve TC in
MgB2 and Bi(Pb)SrCaCuO systems. For example, the introduction of electroluminescence
Y2O3:Eu3+ and Y2O3:Eu3++Ag can produce an electroluminescence effect and increase
TC [42–46]. There is obvious competition between the impurity effect and the EL excitation
effect of the inhomogeneous phase. When the EL excitation effect is dominant, TC is
improved (∆TC > 0). Otherwise, the inhomogeneous phase is introduced to reduce TC
(∆TC < 0). Therefore, the impurity effect should be reduced as much as possible and
the EL excitation effect should be enhanced in order to obtain high TC samples. The
superconductivity of a smart meta-superconductor can be improved and adjusted by
adding the EL inhomogeneous phase [45,46]. It has been known that variations in TC
are often related to variations in electron density [48,49]. However, under the current
preparation conditions, the inhomogeneous phase only exists between MgB2 particles
and does not react with MgB2. Moreover, the diffusion between the inhomogeneous
phase and MgB2 particles is difficult, and the electron density cannot be significantly
changed. Therefore, electron density is not a key tuning parameter affecting TC variation.
During the measurement process, the applied electric field forms a local electric field in
the superconductor and excites the inhomogeneous phase to generate EL excited photon
injection energy, which is beneficial to the enhancement of the Cooper pair and the change
of TC. However, given that photons may destroy the Cooper pair, the mechanism for the
occurrence of TC changes needs to be further explored. Later, according to the experimental
results, we will explain this phenomenon by the inhomogeneous phase EL.
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3. Experiment
3.1. Preparation of p-n Junction Luminescent Particles

We purchased commercial red LED epitaxial chip, its luminous composition is the
AlGaInP composite structure, and luminous wavelength is 623 nm. The compound AlGaInP
is produced by Shandong Huaguang Optoelectronics Co., Ltd., Jinan, China. It uses
trimethylgallium, trimethylindium, trimethylaluminum and phosphorane as raw materials
and as reactants, which are brought into the vacuum furnace by hydrogen for reaction
growth on the substrate. The melting point of the product AlGaInP is between 1200 and
1400 ◦C. We stripped compounds off the substrate, ground them to obtain particles of
about 4 µm × 4 µm × 1.7 µm. The particles consisted of three-layer nanostructures: a
p-type semiconductor layer (250 nm thick), an active layer (250 nm thick), and an n-type
semiconductor layer (1200 nm thick). The electroluminescence test method is the same as
that of rare earth luminescent particles, and the measurement conditions were given in
the text. The applied voltage < 10 V, current < 10 mA, test luminescence curve is shown
in Figure 2. The luminescence curves of the electroluminescent rare earth oxide particles
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in the figure were obtained from the samples prepared by our group [50,51]. It can be
seen that the luminescence intensity of the p-n junction particles is much higher than
that of electroluminescent rare earth oxide particles. After more than 2000 h of work,
the luminescence intensity almost did not decay, and the luminescence behavior did not
change after 100 days. The characteristics of high strength and long life of the p-n junction
provided a solid foundation for improving smart meta-superconductors.
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3.2. Preparation of MgB2 Superconductor and Inhomogeneous Phase Samples

Magnesium diboride (MgB2) was purchased from Alfa Aesar with a purity of 99% and
a particle size of 100 mesh (150 µm). A certain amount of MgB2 basic powder raw material
was put into a 500 mesh (30 µm) stainless steel standard sieve, and the large sized particles
were removed by screening to get the basic uniform size of MgB2 particles, with a diameter
of Φ ≤ 30 µm. Figure 3a,b show the SEM image of MgB2 and the p-n junction particles.
Figure 3c show the XRD test curves of pure MgB2, AlGaInP and MgB2 + 1.2 wt.% AlGaInP
samples. Figure 3d is a partial enlarged drawing of Figure 3c, where the vertical dotted
line corresponds to the diffraction peak of AlGaInP. The comparison results show that
in addition to the MgB2 phase, there is an independent AlGaInP phase in the doped
sample, indicating that there is no chemical reaction between the two. A certain amount
of MgB2 powder raw materials and corresponding inhomogeneous phase p-n particles
with different mass fractions were weighed and put into two beakers, respectively, to
make an alcohol solution and then ultrasonic was used for 20 min. The two solutions
were placed on a magnetic stirrer for stirring, and the inhomogeneous phase solution
was added to the MgB2 solution drop by drop during stirring. After the dripping, the
mixed solution was stirred for 10 min and ultrasonic was used for 20 min. Then, it was
transferred to petri dishes and dried in a vacuum drying oven at 60 ◦C for 4 h to obtain a
black powder. The powder was fully ground and pressed into a wafer with a diameter of
11 mm and a thickness of 1.2 mm. The pressure and holding time were 14 MPa and 10 min,
respectively. The wafer was then placed in a small box made of tantalum, and the box was
then placed in an alumina porcelain boat, which was finally transferred to a vacuum tube
furnace. In the high pure Ar atmosphere, the samples were slowly heated to 840 ◦C in the
vacuum tube furnace for 10 min, then cooled to a 650 ◦C temperature calcination for 1h,
and then slowly cooled to room temperature to obtain the corresponding samples [43,46].
Pure MgB2 samples (represented by S0) and the p-n junction doped MgB2 samples were
prepared, with the concentration of dopant corresponding to each sample as shown in
Table 1. In the experiment, the influence of the inhomogeneous phase of luminescence
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on the superconducting transition temperature of the MgB2-based superconductor was
studied by changing the content of the inhomogeneous phase.
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Table 1. MgB2 doped inhoumgenous phase with different concentrations.

Sample S0 S1 S2 S3 S4 S5 S6

Inhomogeneous phase p-n junction concentration (wt.%) 0 0.5 0.8 0.9 1.0 1.2 1.5

Figure 4a shows the SEM image of the MgB2 + 0.9 wt.% p-n junction after sintering.
Figure 4b–d show the EDS mapping for elements Mg, Al, and Ga listed in the top right cor-
ner of each figure. The distribution of elements in Figure 4 shows the discrete distribution
of the Al and Ga elements and the aggregation distribution of the AlGaInP inhomogeneous
phase. Due to the uneven size and distribution of the AlGaInP particles, as well as the
distribution of Al and Ga elements in the particles during the p-n junction, preparation by
vapor deposition may lead to the change of their positions and concentrations.

3.3. Critical Transition Temperature Measurement

A four-lead method was used to measure the R-T curve of the sample at a low tem-
perature, with a distance of 1 mm between the four probes to determine the supercon-
ducting transition temperature TC of the sample. The closed-cycle cryostat manufactured
by Advanced Research Systems provides a low temperature environment (the minimum
temperature is 10 K); the test current (1–100 mA) is provided by the high temperature
superconducting material characteristic test device, produced by the Shanghai Qianfeng
Electronic Instrument Co., Ltd., Shanghai, China, Voltages were measured using a Keithley
nanovolt meter; we adjusted the test temperature with a Lake Shore cryogenic temperature
controller. The whole testing process was carried out in a vacuum environment [41,46].
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3.4. Measurement of Critical Current Density and Meissner Effect

The sample was placed in a low-temperature medium and the current-voltage (I-V)
characteristic curve was measured by a four-probe method under a zero magnetic field.
A certain amount of direct current was connected to the prepared sample by two leads,
and the other two leads were used to measure the voltage of the prepared sample by
a Keithley digital nanovoltmeter. We used indium wire to connect the sample to the
lead, and the distance between the two voltage leads for all samples is 1 mm. When the
current I passing through the sample exceeds a certain value, the superconducting state
is destroyed and changes to the normal state. This current is called the critical transport
current of the superconductor. Typically in superconducting systems, the transport critical
current density (JC) is determined by I-V measurements at different temperatures (below
the initial transition temperature TC,on), with a voltage criterion of 1 µV/cm [47,52–54].
The shape and size of all samples and the distance between the current and voltage leads
were kept the same during the test. Subsequently, the prepared samples were tested
for DC magnetization [47,55]. The samples were cooled slowly in a magnetic field of
1.8 mT parallel to the plane, and data were collected during heating. All samples showed
complete diamagnetism.

4. Results and Discussion

Figure 5 is the normalized resistivity curve of the doped x wt.% luminescent inho-
mogeneous phase p-n junction (x = 0, 0.5, 0.8, 0.9, 1.0, 1.2, 1.5) prepared with MgB2 raw
material. x is the doping concentration, where x = 0 is the pure sample MgB2. The black
curve in Figure 5a is the normalized R-T curve of the pure MgB2 sample, and the results
show that the TC of the pure MgB2 sample is 37.4–38.2 K. The other six curves correspond
to the R-T curve of MgB2 sample doped with the p-n junction, and the results show that
the TC corresponding to these six doped samples are 36.8–38 K, 37.4–38.4 K, 37.6–39 K,
37.8–38.8 K, 38–38.7 K and 37.2–38.4 K, respectively. The test results show that at low
dopant concentrations, such as 0.5 wt.%, the inhomogeneous phases reduce the TC of
the MgB2 samples (∆TC < 0) [56,57]. However, when the dopant concentration reaches
a certain value, such as 0.8 wt.%, the inhomogeneous phase enhancement effect occurs,
and TC exceeds the pure sample (∆TC >0). When the dopant concentration is 0.9 wt.%, ∆T
reaches an increased maximum value of 0.8 K and continues to increase the content of the
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inhomogeneous phase, while ∆T decreases instead. The characteristics are the same as
those of the previous oxide inhomogeneous phase doping results [43,46].
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maximum variation of ∆TC produced by pure MgB2 and oxide electroluminescence inhomogeneous
phase [46], p-n junction inhomogeneous phase.

Figure 6 shows the relationship between JC and the temperature of the pure MgB2 and
p-n junction with different doping concentrations, which is determined by I-V measurement.
It can be seen from Figure 6a that JC of pure MgB2 and the doped samples decreases with the
increase of temperature, which is consistent with the results in literature [34,58,59]. JC of pure
MgB2 is 8.5× 104 A/cm2 at 20 K, which is comparable to literature [60,61]. At this time, the JC
of the 0.9 wt.% luminescent inhomogeneous phase doped sample is 8.83 × 104 A/cm2. When
the temperature is low, JC decreases slowly, and with the increase of temperature, the speed
accelerates. The doping of the electroluminescence inhomogeneous phase increases JC, when
T = 36 K, JC of samples with doping concentration of 0.9 wt.% is 37% higher than that of pure
MgB2. When the inhomogeneous phase concentration is 0.5 wt.%, JC of the sample decreases
to a minimum value faster than pure MgB2; and the samples with higher inhomogeneous
phase concentration can have JC at a higher temperature. For example, JC of pure MgB2 was
reduced to a minimum at 38.2 K, JC of the 0.9 wt.% doped sample was reduced to a minimum
at 39 K, and JC of the 1.2 wt.% doped sample was reduced to a minimum at 38.7 K.

Figure 7 shows the DC magnetization data of pure MgB2 and MgB2 mixed with the
inhomogeneous phase. The vertical axis shows the complete diamagnetism change of the
material, and the Meissner effect of all samples can be observed through the DC magnetization
data. With the increase of temperature, complete diamagnetism, or the Meissner effect
weakens and eventually disappears, which is consistent with literature [62–64]. The Meissner
effect of pure MgB2 samples disappeared at 37.4 K, and that of the 0.5 wt.% inhomogeneous
phase MgB2 samples disappeared at 36.8 K. The Meissner effect of 0.9 wt.%, 1.0 wt.% and
1.2 wt.% MgB2 samples disappeared when the temperature was higher than 37.6 K, 37.8 K and
38 K, respectively. It can be seen that the diamagnetic property of the inhomogeneous phase
samples with higher concentration is greatly improved compared with that of pure MgB2. For
example, the Meissner effect of the 0.9 wt.% and 1.2 wt.% of the inhomogeneous phase doped
MgB2 samples was increased, compared with that of pure MgB2. The superconductivity of
MgB2 doped with 1.5 wt.%, 0.9 wt.%, 1.0 wt.%, 1.2 wt.% AlGaInP were similar. Because the
superconductivity of samples with the concentrations of 1.5 wt.% and 0.8 wt.% are very close,
they are not marked here.
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It can be seen that the p-n junction inhomogeneous phase can produce exactly the
same effect as the rare earth oxide inhomogeneous phase. Figure 5b critical transition
temperature and Figure 6c,d critical current intensity indicate that the p-n junction inhomo-
geneous phase’s behavior is further improved compared with that of the rare earth oxide
inhomogeneous phase. The main reasons may be:
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(1) The advantages of the inhomogeneous phase of the p-n junction nanostructure

Compared with the previous yttrium oxide inhomogeneous phase, the luminescence
intensity and long life of the p-n junction nanostructure are far more than those of the
previous electro-induced rare earth luminescence materials (Figure 2), which can ensure
the stability of material properties. In addition, the p-n junction nanostructure excitation is
easier, with only a few volts of excitation required, not hundreds or even thousands of volts.
Thus, the electric field applied by the four-point method for measuring superconductivity
can meet the requirement. Recently, the mechanism for increasing TC has been further
explored. Figure 8 shows the Raman spectra for pure MgB2 and MgB2 doped with 0.5 wt.%
Y2O3, 1.2 wt.% AlGaInP, 1.0 wt.% AlGaInP, and 0.9 wt.% AlGaInP. Y2O3 is a control dopant
with no electroluminescent effect. The black scattered points are the measured data, which
can be fitted by the Gaussian equation [65] and the results are shown as the red solid
lines. Figure 8a show that the Raman shift (ω) of the main peak in the Raman spectrum of
pure MgB2 is 579.2 cm−1, which corresponds to the E2g phonon mode in MgB2, and the
linewidth (γ) is 199.1 cm−1. The measurements are consistent with the results reported in
other literature [66–69]. After doping with 0.5 wt.% Y2O3, the ω and γ of the E2g phonon
mode are 583.7 cm−1 and 175.4 cm−1 as shown in Figure 8b. The results show that the
doping of Y2O3 leads to the hardening of the E2g phonon mode [70–72], which weakens
the electron-phonon coupling in the MgB2 and decreases the TC to 37.6 K. In contrast, the
doping of AlGaInP leads to a decrease of ω and an increase of γ. Such a phenomenon
of softening of the E2g phonon mode indicates an enhancement of the electron-phonon
coupling in the sample [66,73,74], which is beneficial to the improvement of TC. The ω(γ)
for MgB2 doped with 1.2 wt.%, 1.0 wt.%, and 0.9 wt.% AlGaInP are 557.3 cm−1 (234.1 cm−1),
554.6 cm−1 (236.5 cm−1), and 552.4 cm−1 (245.2 cm−1), and the corresponding TC are 38.7 K,
38.8 K, and 39.0 K. TC increases with the enhancement of the softening effect. These results
suggest that the softening of the E2g phonon mode in MgB2 doped with AlGaInP may be
the main reason for the enhancement of TC. Meanwhile, there are still some problems to be
solved, such as how to obtain AlGaInP with a uniform particle size and how to distribute
the AlGaInP particles evenly in the sample. We will do further research on these issues and
study the mechanism in more detail in the follow-up work.
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(2) Performance improvement of smart meta-superconductor

Because the p-n junction inhomogeneous phase exhibits good behavior under external
field excitation, the optimal amount of the dopable inhomogeneous phase increases from
0.5 wt.% to 1 wt.% compared with oxide. Thus, the critical temperature TC, current
density JC and the Meissner effect of superconductor can be improved compared with
the oxide inhomogeneous phase, which provides a wider range for the adjustment of
material properties. In particular, the performance stability of the material has been greatly
improved, and can be stable for more than several hundred hours. The doping of AlGaInP
with too large or too small particle sizes even decreased the TC of MgB2. Therefore, selecting
AlGaInP with a suitable particle size is also an important factor to improve the TC. However,
AlGaInP particles with a uniform size cannot be obtained by the current preparing process.
Improving the preparation process to obtain AlGaInP particles with a uniform size is a
focus in our follow-up work.

(3) The origin of smart superconductivity

In order to explain the above experimental results, we propose an explanatory view of
smart superconductivity. Figure 9 shows the schematic diagram of smart superconductivity.
By introducing the p-n junction electroluminescent inhomogeneous phase, the photon
generated by the inhomogeneous phase in the external field interacts with some super-
conducting electrons to produce surface plasmon polaritons. The generated evanescent
wave can transmit a large number of superconducting electrons with the same energy
unimpeded, resulting in the surface plasma system to promote the intense interaction of
electrons. The energy injection improves the electron pairing state, promote the supercon-
ductivity behavior of the material, increases the critical transition temperature, and forms
smart superconductivity.
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Figure 9. Schematic diagram of smart superconductivity generation. (a) Free electrons are uniformly
distributed in the superconductor before the measurement field is applied. (b) After the measurement
electric field is applied, the p-n junction particles in red light wavelength glow and generate a large
number of photons. The interaction between photons and some conduction electrons occurs at the
particle interface, forming plasmons. (c) These surface plasmons propagate as evanescent waves and
can transport superconducting electrons. Due to the unimpeded transmission of evanescent wave,
the superconductivity of system electrons at higher temperature is promoted.

The conventional superconductor MgB2 is a standard electroacoustic interaction to
form a superconducting transition. It can be seen that before reaching the critical tempera-
ture TC, the current density JC (Figure 6) and the diamagnetism HC corresponding to the
Meissner effect (Figure 7) of the smart meta-superconductor MgB2 are both higher than
that of pure MgB2, it is due to the superposition of the electro-acoustic interaction and the
SPPs interaction with superconducting electrons. In the experiment, we used two methods
of heating and cooling to test. In the heating method, the temperature of the system is
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reduced to about 10 K first, and then the heating begins. When the temperature exceeds
the critical transition temperature of the pure sample, the electro-acoustic interaction fails,
but the interaction between the surface plasmas of the smart meta-superconductor and the
superconducting electron still exists. Therefore, the critical transition temperature of the
smart meta-superconductor MgB2 is higher than that of the pure MgB2 superconductor
(Figure 5). In the state where JC of the pure MgB2 superconductor is zero and diamagnetism
disappears, JC of the smart meta-superconductor MgB2 is still non-zero (Figure 6b,d) and
diamagnetism still exists (Figure 7). In the cooling method, the system drops from room
temperature to 39.1 K, and the initial transition occurs as the temperature continues to drop.
The temperature has not reached the critical transition temperature of pure samples of
38.2 K, and the electro-acoustic effect has not yet taken place, but the superconducting tran-
sition phenomenon appears, and JC of the smart meta-superconductor MgB2 also appears.
These phenomena confirm that electron-plasmon coupling has been formed, supercon-
ducting phase transition has occurred, and smart superconductivity has been achieved.
It should be noted that, due to the presence of material resistance, when the temperature
reaches a certain point, the interaction between the surface plasmas and the superconduct-
ing electrons cannot counteract the effect of material resistance, and superconductivity
disappears. However, it is possible to raise the critical transition temperature further by
improving the ability of the inhomogeneous phase. Since evanescent waves can exist and
transmit at relatively high temperatures, the coupling of superconducting electrons with
surface plasmons may promote smart superconductivity at higher temperatures.

Here, we find that the conventional superconductor MgB2 exhibits smart supercon-
ductivity. In fact, in previous studies, we have studied the high-temperature oxide super-
conductor, and the smart meta-superconductor can also be formed by doping the rare earth
oxide inhomogeneous phase [44,45,47]. Therefore, it can be concluded that they can also
show smart superconductivity by the p-n junction nanostructured inhomogeneous phase,
and we will provide the research results in the future.

5. Conclusions

In this study, by introducing the p-n junction nanostructured electroluminescent
inhomogeneous phase with red wavelength to realize energy injection, the critical transition
temperature TC, the current density JC and the diamagnetism of the Meissner effect HC of
the smart meta-superconductor MgB2 are studied. The conclusions are as follows:

(1) The smart meta-superconductor compared with pure MgB2, the critical transition
temperature TC is increased by 0.8 K, the current density JC is increased by 37%, and the
diamagnetism of the Meissner effect HC are also significantly improved.

(2) The p-n junction nanostructured inhomogeneous phase has high luminescence
intensity, a long stable life and simpler external field requirements. This p-n junction
nanostructured inhomogeneous phase SMSCs produces more significant performance
changes than the previous yttrium oxide inhomogeneous phase. Under the same conditions,
the critical transition temperature ∆T increases by nearly 1 time, and the current density JC
increases significantly.

The coupling between superconducting electrons and SPPs is regarded as an explana-
tion for this phenomenon. The smart meta-superconductor generated by the inhomoge-
neous phase opens up a new way to improve the performance of superconductors.
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