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Abstract

Summary: Here, we propose Fourier ring correlation-based quality estimation (FRC-QE) as a new metric for automated
image quality estimation in 3D fluorescence microscopy acquisitions of cleared organoids that yields comparable
measurements across experimental replicates, clearing protocols and works for different microscopy modalities.

Availability and implementation: FRC-QE is written in ImgLib2/Java and provided as an easy-to-use and
macro-scriptable plugin for Fiji. Code, documentation, sample images and further information can be found under
https://github.com/PreibischLab/FRC-QE.

Contact: philipp.mergenthaler@charite.de or stephan.preibisch@mdc-berlin.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Three-dimensional (3D) organoids are a powerful tool for studying
cellular processes in tissue-like structures, enabling in vitro experi-
ments in an organ-specific context (Schutgens and Clevers, 2020).
However, although it is essential for interpreting experiments, it
remains challenging to capture cellular structures of entire organoids
using 3D fluorescence microscopy due to the organoid’s dense struc-
ture and opacity. Optical clearing methods (Spalteholz 1914; Ueda
et al., 2020) provide a solution for fixed organoids. Nevertheless,
optimizing clearing protocols for a given sample type and staining is
challenging due to the plethora of available clearing and staining
protocols. Importantly, quantitative measures for assessing image
quality across cleared fluorescent samples are missing, making the
process of identifying the best-suited protocol laborious and biased
to the human observer. To fill this gap, we propose Fourier ring cor-
relation quality estimation (FRC-QE) that provides a robust readout
of image quality for 3D fluorescent microscopy samples (Fig. 1a).

2 Method and implementation

Fourier ring correlation (FRC) relies on two independent realiza-
tions of the same signal to measure image resolution in frequency

space and was used for both electron (Heel, 1987; Saxton and
Baumeister, 1982) and superresolution fluorescence microscopy
(Banterle et al., 2013; Koho et al., 2019; Nieuwenhuizen et al.,
2013). We previously extended FRC to standard 3D fluorescence
microscopy (Hörl et al., 2019) by approximating the necessary inde-
pendent observations from subsequent slices in the image stack of
the same object combined with normalization to more distant slices
to suppress artifacts, which was used for qualitative visualization of
image quality. Here, we show that it can be used as a quantitative
measurement across experiments by further adjusting (see
Supplementary Materials and Methods and Supplementary Fig. S1)
and validating this concept as a non-machine learning based method
for no-reference image quality assessment (NR-IQA), which we call
FRC-QE. Importantly, FRC-QE is designed specifically for 3D
fluorescence microscopy and its score depends on the area and block
size in which it is computed, the z-spacing, type of image content
(e.g. nuclear stain) and the point spread function (PSF). These
parameters should therefore be held constant during a series of
comparisons. It is also important to note that the FRC-QE score
represents arbitrary numbers that do not directly relate to an actual
measurement of image resolution, but only allow for a relative com-
parison. FRC-QE is implemented in ImgLib2 (Pietzsch et al., 2012)
and the core algorithm scales to terabyte-sized datasets (Hörl et al.,
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2019), while we also make it available to users as a macro-scriptable
Fiji (Schindelin et al., 2012) plugin.

3 Validation and results

To validate FRC-QE, we generated human induced pluripotent
stem-cell (hiPSC)-derived cerebral organoids of a defined size
(�600mm) that were stained with the nuclear dye Draq5 and
subsequently chemically fixed. We chose three straight-forward to
implement clearing methods (Dekkers et al., 2019; Hama et al.,
2011; Kuwajima et al., 2013) as proof of concept and applied them
to our samples (Supplementary Fig. S2). Cleared organoids were
imaged by multi-view light-sheet microscopy (Huisken et al., 2004)
from opposite acquisition angles (0� and 180�) with dual-illumination
(left and right sided light-sheet illumination) and reconstructed compu-
tationally (Hörl et al., 2019) to significantly increase the volume of the
sample imaged with high quality (Preibisch et al., 2010; Swoger et al.,
2007). Due to the multi-view acquisition, image quality at the edges is
expected to be higher than in the center of the organoid.

We first compared FRC-QE to the NR-IQA method DCT
Shannon entropy, which was previously used in the context of auto-
mated microscopy (He and Huisken, 2020; Royer et al., 2016), and
to plain image intensity that is commonly used to assess clearing
quality (Kim et al., 2018; Matryba et al., 2019; Wan et al., 2018).
FRC-QE and DCT Shannon recapitulate image quality throughout
an organoid sample, while image intensity actually increases as
quality decreases (Fig. 1b and Supplementary Figs S3–S5).

We further validated FRC-QE for different microscopy modal-
ities comparing Fructose-Glycerol-cleared organoids to uncleared
organoids using a spinning-disk confocal microscope, where FRC-
QE recapitulated differences in image quality across image stacks
and protocols (Supplemental Fig. S6).

Next, we used FRC-QE to identify the clearing protocol yielding
the best image quality. Across all protocols nuclear structures can be
easily visually identified at the surface of organoids. However,
image quality differs at the center, with ClearT2 and ScaleA2 proto-
cols resulting in blurred objects compared to the Fructose-Glycerol
protocol (Fig. 1c,d and Supplementary Fig. S7), indicating differen-
ces in clearing efficiency between protocols as we performed them.
While DCT Shannon entropy faithfully captured relative differences
in clearing efficiency in one organoid (Fig. 1b), it is not suited for
comparison between samples since it does not recapitulate the

visually apparent differences in clearing efficiency that we observe in
between protocols. In contrast, FRC-QE accurately recapitulates
these differences (Fig. 1c,d and Supplementary Fig. S7) and shows
that only Fructose-Glycerol-cleared samples retain constant quality
throughout entire volumes of cleared organoids.

We additionally compared FRC-QE to the established machine
learning based NR-IQA algorithm BRISQUE (Supplementary Fig.
S8). However, machine learning algorithms have a training phase in
which they learn important characteristics about the images. These
data are usually not available for biological images that differ sub-
stantially depending on the sample and staining used. Therefore,
new training data needs to be created for a new type of experiment,
which is often infeasible, or training is performed on natural images
instead. Overall, for our data a pre-trained BRISQUE performed
similarly to FRC-QE, but locally shows unexpected behavior for cer-
tain images presumably due to training on a different type of sample
image. In summary, an engineered metric like FRC-QE is expected
to perform more predictably in previously unseen samples and is, we
believe, well-suited for biological images.

4 Conclusion

We introduce FRC-QE, implemented in ImgLib2 (Pietzsch et al.,
2012) and provided as Fiji (Schindelin et al., 2012) plugin, as a new
non-machine learning based NR-IQA metric to automatically assess
clearing efficiency from 3D fluorescence microscopy images. FRC-
QE can be applied to image data from different microscopy modal-
ities, is comparable across protocols, and can therefore be used to
identify the most suitable clearing protocol, which is often the one
that achieves the necessary image quality to gain a certain insight
given the lowest effort and cost. Overall, we believe that image qual-
ity estimation using FRC-QE will facilitate and significantly ease the
process of choosing the right clearing protocol for a given biological
sample. Furthermore, FRC-QE represents a promising approach for
other automated image quality tasks in fluorescence microscopy.
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