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1  |  INTRODUC TION

Light-level geolocators (GLS) revolutionised the study of animal 
behaviour. Thanks to their relatively low cost, geolocators were 
first deployed in the 90s on marine species and integrated with 
depth and temperature sensors (hereafter TDR for time-depth re-
corder) to study diving behaviour in species as diverse as whales 
(Hooker & Baird, 1999), seabirds (Naito et al., 1990), seals (Burns & 

Castellini, 1998), turtles (Witt et al., 2010) and fish (Musyl et al., 2003; 
West & Stevens, 2001). Further miniaturisation of GLS technology 
in the last 20 years led to the method rapidly becoming popular for 
the analysis of small migratory birds (Egevang et al., 2010; Lisovski 
& Hahn,  2012), with species as small as 10  g now tagged (Bridge 
et al.,  2011). Further miniaturisations of accelerometers and mag-
netometers in the last decade have led to their integration into 
GLS tags in addition to barometers and thermometers—creating a 
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Abstract
1.	 Light-level geolocators have revolutionised the study of animal behaviour. 

However, lacking spatial precision, their usage has been primary targeted to-
wards the analysis of large-scale movements. Recent technological develop-
ments have allowed the integration of magnetometers and accelerometers into 
geolocator tags in addition to barometers and thermometers, offering new be-
havioural insights.

2.	 Here, we introduce an R toolbox for identifying behavioural patterns from 
multisensor geolocator tags, with functions specifically designed for data visu-
alisation, calibration, classification and error estimation. More specifically, the 
package allows for the flexible analysis of any combination of sensor data using 
k-means clustering, expectation maximisation binary clustering, hidden Markov 
models and changepoint analyses. Furthermore, the package integrates tailored 
algorithms for identifying periods of prolonged high activity (most commonly 
used for identifying migratory flapping flight), and pressure changes (most com-
monly used for identifying dive or flight events).

3.	 Finally, we highlight some of the limitations, implications and opportunities of 
using these methods.
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long-lived (~1 year), lightweight (~0.5–1.5 g) and cheap (~$100) mul-
tisensor tag (hereafter PAM logger for Pressure, Accelerometer 
and Magnetometer). These PAM loggers have opened up new 
opportunities for analysing animal behaviour, particularly during 
flight (Bäckman, Andersson, Alerstam, et al., 2017; Dhanjal-Adams 
et al., 2018; Liechti et al., 2013, 2018; Meier et al., 2018; Sjöberg 
et al., 2018, 2021) and have become increasingly popular over the 
last 5 years.

Although an important reason behind the development of PAM 
loggers was to improve the accuracy of the geolocation estimates 
(Lisovski et al.,  2020), these additional sensors have opened the 
door to a wide range of behavioural analyses beyond migration, and 
have allowed a wider range of species to be tagged. In particular, 
additional sensors allow nocturnal species be tagged such as mice, 
lemurs and bats (pers. obs.). Indeed, barometers allow us to explore 
behaviour in the third dimension—height and depth—and can in-
form on diving, climbing, flying, flocking and foraging behaviours 
(Dhanjal-Adams et al., 2018; Dreelin et al., 2018; Meier et al., 2018; 
Sjöberg et al.,  2018). Accelerometers can be used to understand 
resting behaviour, migration timing, and how long animals remain 
active, airborne or foraging (Liechti et al., 2018; Sjöberg et al., 2018). 
Thermometers can inform on habitat usage (Edwards et al.,  2016; 
Shaffer et al., 2005), fitness level and infection status, and magne-
tometers can be used to understand bearing and direction (Bidder 
et al., 2015). Light can also be used to estimate geographic location 
(Frisius, 1544; Lisovski & Hahn, 2012; Shaffer et al., 2005), but im-
portantly to understand diving, flying and nesting behaviour (Bulla 
et al., 2016).

Although all of these sensors have previously been integrated 
into GPS tags with an increasing number of methods available for 
identifying behavioural states using such sensors, these analyses 
rely heavily on (a) movement data and precise location estimates 
to infer behaviour from turning angles (e.g. Garriga et al.,  2016; 
Munden et al., 2019; Potts et al., 2018; Seidel et al., 2018; Williams 
et al.,  2020), (b) multi-second tri-axial acceleration and bear-
ing (Bidder et al.,  2015; Hernández-Pliego et al.,  2017; Willener 
et al., 2016; Williams et al., 2017) and/or (c) validation datasets for 
supervised machine learning (Leos-Barajas et al.,  2017; Resheff 
et al.,  2014). PAM loggers, however, (a) cannot provide spatial in-
formation to infer turning angles. Furthermore, due to the weight 
restrictions of using them on smaller species, they (b) can only col-
lect data over minutes or hours (not milliseconds) and data are often 
summarised to save space and reduce tag weight. Finally, (c) they 
are most commonly deployed on flying or diving animals that are 
physically impossible to follow, making training datasets impossible 
to collect for supervised machine learning.

Behavioural analyses of multisensor data therefore differ con-
ceptually from any previously developed behavioural classification 
methods for movement data, because behaviour must be identi-
fied independent of location. Here, we introduce pamlr, a toolbox 
for identifying behavioural patterns from Pressure, Acceleration, 
temperature, Magnetic or Light data in R (R Core Team, 2019). The 

package combines functions (Figure 1) for importing data from mul-
tisensor geolocator tags (from any or all of these combinations of 
sensors), functions for calculating and plotting data, and wrappers 
for different classification algorithms (changepoint, clustering and 
hidden Markov models) to infer behaviour. We also introduce func-
tions specifically developed for identifying endurance activities, 
sustained pressure changes, and for collecting summary statistics. 
Finally, pamlr includes functions for comparing the agreement be-
tween different model outputs. Fully worked and up-to-date ex-
ample data and analyses of the code presented in this paper can 
accessed at https://kiran​lda.github.io/PAMLr​Manua​l/.

F I G U R E  1  Example of a typical workflow in pamlr with available 
functions for each step to the analyses

2.Correct the data1. Import the data
Example dataset:

Own dataset:

Remove unwanted 
data:

Correct clock drift:

Interactive timeseries: 
Static timeseries: 

Sensor images: 

5.Perform classification
Endurance classification:
Pressure classification:

Merge or interpolate all data to specific time 
resolution: 

Derive timeseries statistics using a rolling 
window: 

Derive summary statistics for specific patterns: 

4.Format data

General classification function:

Changepoint classification:

6.Evaluate classification
Confusion matrix:

Point by point agreement between classifications:

3.Visualise data to look for patterns

3d scatterplot: 
Spherical plot: 

https://kiranlda.github.io/PAMLrManual/
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2  |  FROM SENSOR RE ADINGS TO 
BEHAVIOUR AL PAT TERNS

For all loggers, data intervals and sensors are logger dependent 
and customisable, requiring trade-offs between logging frequency, 
weight and battery life. As technology progresses data are likely 
to increase in resolution, but we present here some of the most 
common sensors and their uses, and how they can be used within 
pamlr.

2.1  |  Pressure

Pressure is available on a wide range of tags (Table 1) and can be 
informative because it changes throughout the day and across the 
globe in response the weather changes. Of particular interest to 
behavioural analyses is that pressure also decreases with height 
(International Organization for Standardization, 1975). Attaching a 
barometer to an animal therefore allows us to use peaks in pres-
sure to quantify diving behaviour (such as depth and duration), 
while dips in pressure can be used to quantify flight or climbing be-
haviour (such as height and duration; Liechti et al., 2018; Tremblay 
et al., 2009). Indeed, standard calculations exist to estimate altitude, 
saltwater depth and freshwater depth from pressure recordings 
(International Organization for Standardization, 1975). These stand-
ard calculations are included as functions calculate_altitude 
and calculate_depth within pamlr. The precision of the height 
estimate from a barometer can range from 1.4 to 85.29 m assum-
ing pressure was 1,000 Pa greater than sea level pressure (Dreelin 
et al., 2018; Shipley et al., 2018). It is therefore advisable to calibrate 
pressure on the tag before or after deployment in a known location 
with a known altitude and atmospheric pressure for terrestrial uses, 
and known depth and water pressure for aquatic uses. Finally, pres-
sure is also useful for refining geolocation estimates by correlating 
pressure data from the animal to weather data (Lisovski et al., 2020).

2.2  |  Temperature

Many tags also record temperature. One primary advantage of using 
temperature in an analysis is that it is available on most geolocator 
tags including some of the smaller ones (<0.5 g) which do not record 
pressure (lightweight Intigeo and Lotek MK). Indeed, temperature 
fluctuates daily and regionally, and with height and depth similarly 
to pressure. However, temperature does not decrease as much as 
pressure with altitude making it much harder to analyse. In addition, 
body heat and feathers can bias measurements because the sensor 
is recording a mix of ambient temperature and the animal's tempera-
ture. To minimise this bias, some tags include two sensors, one under 
and another on top of the device, to capture the temperature of the 
animal and the temperature of the atmosphere. Another alterna-
tive is to attach the logger to an area that is not likely to be covered 
in fur or feathers. For instance, TDR loggers are often attached to 

seabird legs to record sea surface temperature. Furthermore, tem-
perature readings can be used to refine location estimates (Halpin 
et al., 2021).

2.3  |  Activity

Accelerometers are rapidly developing and changing the face of 
animal behavioural research. Many methods are now available for 
analysing ultra-high-resolution tri-axial acceleration data and/or 
supervised machine learning methods (Leos-Barajas et al.,  2017; 
Resheff et al., 2014; Wang et al., 2015; Williams et al., 2017; Wilson 
et al.,  2018). Although state-of-the-art, such methods perform 
poorly with low-resolution accelerometer data because they rely on 
fine-scale patterns for classification, and the use of metrics such as 
vectorial dynamic body acceleration (VeDBA; Qasem et al., 2012). 
Such data are not collected by lightweight PAM loggers. Indeed, PAM 
loggers have on-board algorithms which calculate summary statis-
tics such as activity and pitch, allowing the tag to record for a full 
year or more at 5 min to 1 hr intervals (for full details see Bäckman, 
Andersson, Alerstam, et al., 2017; Bäckman, Andersson, Pedersen, 
et al., 2017; Liechti et al., 2013, 2018). Currently two on-board al-
gorithms exist for estimating dynamic acceleration or ‘activity’, one 
where 50 values are sampled every 5  min with 100 Hz frequency 
and used to determine whether the species was active or not yield-
ing a 0 or 1 score for the 5 min period, all 5 min scores are summed 
to yield an hourly activity value between 0 (inactive) and 12 (active 
for 60 min; Bäckman, Andersson, Alerstam, et al., 2017; Bäckman, 
Andersson, Pedersen, et al.,  2017). The other method samples 32 
values every 5 min with 10 Hz frequency to estimate representing 
the relative position of the body axis with respect to the horizontal 
plane (pitch) and uses the sum of the absolute differences between 
consecutive points along the z-axis to estimate a 5 min ‘activity’ 
value (Liechti et al., 2013, 2018). In some rare cases, raw tri-axial ac-
celerometer is stored on PAM loggers, in which case pamlr integrates 
the function calculate_triaxial_accelerometer to calcu-
late roll, pitch and yaw from this tri-axial data (Bidder et al., 2015). 
However, the best data resolution currently available is every 4 hr, 
making such data of limited use, although there is potential for ex-
ploiting this capability in coming years as tags improve.

2.4  |  Magnetic field

Magnetic field data are only recorded on devices which also have an 
accelerometer. Magnetometers can be used for estimating an ani-
mal's body posture and heading (Bidder et al., 2015). Furthermore, 
magnetic field changes across the globe, and can also be used to 
refine location estimates from light (Lisovski et al., 2020). Currently, 
tri-axial magnetic data are only recorded every 4 hr on the best of 
tags, limiting their usefulness for behavioural analyses until PAM 
loggers increase in data storage capacity. To this end, pamlr inte-
grates a function calculate_triaxial_magnetic following 
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calibration methods of Bidder et al.  (2015). Indeed, magnetic data 
recording can be distorted by the presence of ferrous materials or 
magnetism near the sensor.

2.5  |  Light

Beyond geolocation and the estimation of large-scale foraging or 
migratory movements (Frisius, 1544; Lisovski & Hahn, 2012; Shaffer 
et al., 2005), light sensors have also proven useful for monitoring 

incubation behaviour and nest success (Bulla et al., 2016), and can 
generally be used to understand the behaviour of any species that 
enters and exits a burrow, nest box or cave during daylight hours. In 
the context of aquatic species, light decreases with depth and can 
be used to better understand diving behaviour and visibility (van 
Dam & Diez,  1997). One of the primary advantages when using 
light for analyses, is that these tags are manufactured by many 
companies, are lightweight and cheap, and are well-established 
with a wide range of available analysis methods (Table 1; Lisovski 
et al., 2020).
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In the case of the hoopoe, daytime has a different colour than night-time for most sensors (except pressure), 
creating what looks a little like a column in the centre of each sensor image. Birds appear to become active, 
around the same time each day, but patterns change in September-October 2016 and March 2017, due to 
southward and northward migration respectively. Indeed, hoopoes are in different time zones at different 
times of year, and experience differences in sunrise and sunset time depending on where they are located 
(principle of geolocation). This is why they become active later and later during southward migration, and 
earlier and earlier during northward migration. These plots also highlight that during the migratory season, 
most spikes in high activity, low pressure, low temperature and altered pitch occur late at night, highlighting 
how the species is a nocturnal migrant. 
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3  |  ANALYSING MULTISENSOR DATA

Note that we do not describe the analysis of time-depth recorders 
(TDRs) in much detail as these loggers have well developed software 
and packages available (Luque & Fried,  2011; Tremblay et al.,  2003) 
although their data can be analysed in pamlr using the function con-
vert_tdr. Here, we instead focus on PAM loggers that contain many 
shared sensors with TDR (light, pressure and temperature) but also con-
tain accelerometer and magnetometer sensors used to derive activity 
and pitch. Throughout the manuscript, we illustrate the use of pamlr 
using an example of a Hoopoe (Upupa Epops) with a SOI-GDL3pam log-
ger tagged in Switzerland in August 2016 in the Valais region (exact lo-
cation not given for conservation purposes) and tagged over the course 
of a year. We outline with this example (a) how to import the data, (b) 
how to visualise, plot and explore the data, (c) what approaches can be 
taken to format the data for analyses, (d) describe available analysis 
methods and finally and (e) how these methods can be compared.

3.1  |  Step 1: Data import

Currently pamlr is set-up to read files with the following extensions: 
‘.pressure’, ‘.glf’, ‘.gle’, ‘.acceleration’, ‘.temperature’, ‘AirTemperature’, 
‘BodyTemperature’ and ‘.magnetic’, where each file contains a data-
frame with date and time in one column and in the other column the 
associated sensor measurements. Additionally, the first six lines of 
the file describe the Geolocator ID, Starttime RTC, StoptimeRTC, 
Stoptime reference and Terminal version. For users with data that 
do not follow this format, it is possible to either format and save data 
following this format before import into R, or import data and format 
it within R. Indeed, the create_import function inputs the folder 
path of all the sensor files and returns a nested list containing all 
the measurements (Box 1). Users can access example datasets. We 
encourage anyone using logger data which cannot be read by pamlr 
to contact us through https://github.com/Kiran​LDA/PAMLr/​issues 
so that we may accommodate different data inputs.

3.2  |  Step 2: Visualisation the data using 
plot_... functions

For complete and up-to-date code and examples on how to visual-
ise data in pamlr, users can access https://kiran​lda.github.io/PAMLr​
Manua​l/datav​iz.html

3.2.1  |  Time series

Time series are a commonly used method of plotting biolog-
ging data (Figure 2a) and can be implemented in pamlr using the 

F I G U R E  2  Different visualisations of magnetic field data for 
alpine swift Tachymarptis melba. To gain an initial impression of the 
(a) raw data, it can first be plotted as an interactive time series. 
However, a great deal of insight can also be gleaned from plotting 
the data as (b) a sensor image. These suggest that resting periods 
should be easy to distinguish from others using mY as confirmed by 
(c) histograms and (d) 3D plots. Data can also be visualised without 
distortions with (e) an m-sphere

Fr
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y

(a)  Raw timeseries data

(b)  Sensor images

(d)  3D scatterplot
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(e) m-sphere

https://github.com/KiranLDA/PAMLr/issues
https://kiranlda.github.io/PAMLrManual/dataviz.html
https://kiranlda.github.io/PAMLrManual/dataviz.html
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function plot_timeseries. This function is useful for a rapid 
view of the data. However, such plots can become noisy with large 
datasets, and pamlr therefore also offers interactive time-series 
plotting using the function plot_interactive_timeseries. 
This function exploits the dygpaph R package (Vanderkam 
et al., 2018) to create interactive plots that allow the user to zoom 
into the data by right clicking and highlighting certain regions. A 
double click can be used to zoom out. The plots for different sen-
sors are all synched to the same time period, so that the user can 
view the same time period over multiple sensors. A timeline at the 
bottom can be used to increase or decrease the time over which 
the data are observed.

3.2.2  |  Sensor images

Actograms are often used to plot activity over time at different 
hours of the day (Bäckman, Andersson, Pedersen, et al.,  2017; 
Barras et al., 2021; Briedis et al., 2020; Evens et al., 2020). However, 
the same approach can be used to plot any sensor data, not just 
activity. For simplicity, we name these ‘sensor images’ (Figure 2b). 
Sensor images are a good place to start when thinking about analys-
ing data, as they can give a rapid overview of the dataset. Plotting 

all sensors side by side is an important step for visualising data and 
developing an understanding of data patterns, and to start thinking 
about the behaviours that may be driving the observed patterns. 
This can be done using the function plot_sensorimage. In these 
plots, the data are summarised for each day over a 24 hr period on 
each row (x-axis). The next day is on the row below, therefore all the 
days that the organism was tagged are stacked on top of each other 
for a year (y-axis). This allows us to see how sensor measurements 
change throughout the day and whether these patterns are consist-
ent from day to day, and throughout the year.

3.2.3  |  Histograms and 3D plots

Histograms and 3D plots can also help with data interpretation by 
visualising data clusters. Indeed differences in sensor data may be 
due to different behaviours, and clustered data will be easier to clas-
sify using a clustering algorithm. The functions plot_histogram 
and plot_interactive_3d respectively allow the user to visual-
ise the data (Figure 2c,d). Finally, tri-axial magnetic bearing and ac-
celeration can be plotted onto an m-sphere (Williams et al., 2017) or 
g-sphere (Wilson et al., 2016), using the function plot_interac-
tive_sphere (Figure 2e).

Box 4: Es�ma�ng agreement between classifica�ons 
Once all the classifica�ons have been forma�ed to the same �me resolu�on (can be done manually or using 

()) into a the dataframe  where the class 0 represents 
not migra�ng  and class 1 represents migra�ng, it is also possible to plot them using a sensor image:
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3.3  |  Step 3: Data formatting using 
create_... functions

Once data are plotted and the user is informed on the data pat-
terns that are present, pamlr combines a suite of functions for 
formatting the data in a meaningful way. For instance, data from 
different sensors are often collected at different temporal reso-
lutions, and create_custom_interpolation formats data to 
the same time intervals as a specified variable (e.g. pressure). 
The function also has options to summarise finer resolution data 
(median, sum or snapshot) and interpolating (if desired) lower 
resolution data. This can be helpful for plotting. However, in-
terpolation is not advisable, particularly in the context of data 
analyses when there are a large numbers of missing data points, 
as it can create artefacts in the data and lead to false analyses 
and interpretation. A better alternative for formatting data for 
analysis when all datasets are at different resolutions is to use 
a rolling window with create_rolling_window, which pro-
gresses across all the time series and creates summary statistics 
for the data contained within that window of a certain time-
frame. These include standard deviation, cumulative sum, mini-
mum, maximum, range and sum of absolute differences. Indeed, 
these variables come in handy during the classification process 
(Sakamoto et al., 2009).

To this end, the function create_summary_statistics ex-
tracts specific patterns from the data into events. These behavioural 
patterns include (a) continuous high activity which can be extracted 
from the data using the method “flap”, (b) sustained activity (low 
and high) using “endurance”, (c) a pressure change greater than 
the background pressure changes due to weather using “pres-
sure”, (d) a period of continuous light using “light”, (e) a period of 
darkness using “darkness” and finally (f) periods of resting using 
“rest”. These functions also calculate summary statistics for each 
event. These include, but are not limited to, how much the animal 
changed height during the event, how active it was during that event, 
whether it was night or day during that event, how long the event 
lasted, how many other similar events occurred during the same day, 
how often these events lasted overall that day and whether pressure 
at the start of the event was different from pressure at the end. For a 
full list of summary statistics, please refer to https://kiran​lda.github.
io/PAMLr​Manua​l/datap​rep.html.

3.4  |  Step 4: Classifying behaviour using 
classify_... functions

One of the complexities of classifying PAM data into behavioural 
states is that these data are often (but not exclusively) collected by 
archival tags on small species that are released and recaptured. In 
such cases, the user is unable to observe the species while it is div-
ing, flying or migrating—making it impossible to validate behavioural 
classifications. PAM data analyses must therefore be taken with 
care.

There are two main approaches that can be taken. The first is 
to develop a hierarchical decision-based algorithm. This approach is 
more subjective and relies on an understanding of the specie's ecol-
ogy and behaviour, and on exploiting this knowledge in the classi-
fication. The user can develop algorithms that extract patterns of 
interest using a series of meaningful decision rules (e.g. Chakravarty 
et al., 2019; Liechti et al., 2018). pamlr already integrates two such 
algorithms (see Sections 3.4.1 and 3.4.2) for classifying high endur-
ance activities and sustained pressure changes.

The second approach relies on the machine performing the clas-
sification unsupervised. This approach is considered more objective, 
yet still requires some understanding of the species ecology and be-
haviour when deciding what data are classified, and how. Care must 
be taken in the process, otherwise the machine can output results 
that are difficult to interpret due to the ‘black box’ effect. To this end 
create_summary_statistics and create_rolling_window 
become useful for generating commonly used statistical summaries 
for data classification (Sakamoto et al., 2009).

3.4.1  |  Classification of endurance activity

pamlr integrates an algorithm for identifying periods of endurance 
high activity. This is one of the most common and useful applications 
of pamlr, as it can be used to identify periods of migratory flapping 
flight in passerines (Barras et al., 2021; Briedis et al., 2020; Evens 
et al.,  2020). This functionality is included in the function clas-
sify_flap (Figure 3). The function differentiates between inactive 
and active periods, whereby the active periods are grouped into low 
and high activity using either k-means clustering or hidden Markov 
models and finally periods of sustained high activity are identified 
and formatted into a timetable, with the start, stop and duration 
of each endurance event. This is similar to outputs from the func-
tion changeLight in the GeoLight package (Lisovski et al., 2020; 
Lisovski & Hahn,  2012). However, changeLight uses variations 
in daylight hours to calculate migration, while pamlr uses the ac-
tivity. The estimated migratory timetable is therefore much more 
precise (within 5 min) than that estimated from light alone (resolu-
tion of 1 day; Bäckman, Andersson, Alerstam, et al.,  2017; Liechti 
et al., 2018; Sjöberg et al., 2018).

3.4.2  |  Classification of pressure changes

Any variations in pressure that are greater than expected from 
weather can reliably be classified as diving (Luque & Fried,  2011) 
or flying behaviour (Dhanjal-Adams et al.,  2018). pamlr therefore 
integrates the function classify_pressurechange aimed 
at identifying such periods. Indeed, although activity can be a 
good classification parameter for some species, for species that 
travel large distances without exerting much energy (e.g. Williams 
et al.,  2020) pressure can be a useful alternative for identifying 
flight or dive events through changes in height (Dreelin et al., 2018; 

https://kiranlda.github.io/PAMLrManual/dataprep.html
https://kiranlda.github.io/PAMLrManual/dataprep.html
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Shipley et al., 2018). This function simply finds periods where pres-
sure change is greater than pressure fluctuations expected by 
weather, and also outputs a timetable with the start, stop and dura-
tion of the event.

3.4.3  |  Unsupervised classification methods: 
classify_... functions

Although PAM loggers have primarily been developed for migra-
tory passerines (Bäckman, Andersson, Alerstam, et al., 2017; Briedis 
et al., 2020; Dhanjal-Adams et al., 2018; Evens et al., 2020; Liechti 
et al., 2018; Sander et al., 2021; Sjöberg et al., 2018), they can be 
used with any species whose behaviour is likely to be detected by 
sensors. In such cases, it is possible for the user to develop their 
own classification using the classify_changepoint and clas-
sify_summary_statistics functions described in the following 
sections. For examples of how this can done, illustrated code are 
available online for classifying flap-gliding and for soar-gliding flight 
at https://kiran​lda.github.io/PAMLr​Manua​l/swift.html and https://
kiran​lda.github.io/PAMLr​Manua​l/soar.html respectively.

Changepoint analysis
Changepoint analyses are implemented in pamlr using the function 
classify_changepoint. They are used to find the point in a time 
series when there has been a change in the mean and/or variance of 
the data. By default, the function is parameterised to find change-
points in pressure data because these can be used to identify the 
start and end of migration periods in birds. However, the clas-
sify_changepoint function is simply a wrapper for the R package 

changepoint (Killick & Eckley, 2014) and can flexibly be used to 
find changepoints in any time series. The user can therefore cus-
tomise the function to fit their needs by modifying whether they are 
looking for a change in mean, (cpt.method = “mean”), variance 
(cpt.method = “variance”) or both (cpt.method = “mean-
var”) for any sensor or combination of sensors. Note that this func-
tion returns points in time, and that the number of changepoints to 
be identified in the data can either be automatic or user-defined. For 
full details please refer to the changepoint R package manual (see 
Killick et al., 2016).

Cluster analysis
In contrast to finding a point in time where the data have changed, 
clustering algorithms aim to group points together and assign 
them to different groups or clusters. These clusters can be used 
to separate different behaviours, for example, classifying rapid 
and slow changes in altitude into clusters. Indeed, clustering al-
gorithms find points that are more similar to each other based 
on a specified criteria. However, there are a number of clustering 
methods for assigning these criteria and sorting data points into 
clusters. These clustering algorithms can be accessed through the 
function classify_summary_statistics using the parameter 
method.

One of the most established clustering methods is k-means clus-
tering, which minimises the within-cluster sum of squares of the 
points (Hartigan & Wong, 1979) and which can be implemented in 
pamlr by using the method “kmeans” in classify_summary_sta-
tistics. In this case, pamlr is a wrapper for the function kmeans 
from the base R package stats. Note that the user must define the 
number of clusters.

F I G U R E  3  Schematic representation of the classify_flap algorithm for classifying flapping migratory behaviour. Activity (a) is first 
divided into inactive and active. Active data are then clustered to define a threshold (thld) between low and high activity. For each high 
activity event, its duration durA is calculated. If this duration is greater than a user-defined time t (set to 1 hr by default) then the hoopoe is 
assumed to be performing migration

https://kiranlda.github.io/PAMLrManual/swift.html
https://kiranlda.github.io/PAMLrManual/soar.html
https://kiranlda.github.io/PAMLrManual/soar.html
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More recently, expectation–minimisation binary clustering (EMbC) 
has been used for high-resolution behavioural data analysis (Garriga 
et al.,  2016). The method uses the maximum likelihood estimation 
of a Gaussian mixture model to assign the data into clusters (Garriga 
et al., 2016). More specifically binary delimiters are used to segregate 
the data along an axis, forcing centroids to lie within these binary re-
gions. In short, the method clusters data points based on geometry 
(Garriga et al.,  2016). Analysis can be undertaken in pamlr using the 
method “embc”. Indeed, pamlr is using a wrapper for the function 
embc from the R package EMbC and the user can refer to the manual for 
more information (Garriga et al., 2016). Note that the method also es-
timates the number of clusters and that these cannot be user-defined.

Hidden Markov models
Hidden Markov models (HMMs) also allocate classes to time-series 
data. However, they are stochastic time-series models (see Visser 
& Speekenbrink, 2010; Zucchini et al., 2017) that assume that the 
observed time series (such as the measured acceleration, tempera-
ture or pressure) is driven by an unobservable state process (such as 
diving, flying, walking or resting behaviour). The unobserved states 
are allocated in a way that captures as much as possible of the mar-
ginal distribution of the observations, while also accounting for the 
correlation structure of the data. Thus, the probability of the system 
being in a state at time t depends on the state at the previous time 
step t − 1, but is otherwise independent of any previous state. HMMs 
are therefore powerful tools for the analysis of behavioural data, and 
can be implemented in pamlr using method = “hmm”. In this case, 
pamlr is wrapping the depmix, posterior and fit functions from 
the depmixS4 package whereby users can refer to the user manual 
to better understand how the package works and customise it for 
their application (see Visser & Speekenbrink, 2010). Note that users 
must define the number of behavioural states to find in the data.

3.5  |  Step 5: Measuring classification accuracy with 
compare_... functions

As seen in Box 3, classification can agree in some regions and disa-
gree in others. pamlr offers a function compare_classifica-
tion which takes multiple classification outputs and summarises 
the agreement between all, as seen in Box 4. For instances where 
the user is unsure which approach will work best for classifying 
their data, we recommend they employ an ‘ensemble’ approach 
and use all classification methods and look for the overlap in all the 
methods.The function compare_confusion_matrix also popu-
lates a confusion matrix using predicted and reference points. If 
no reference data are available, the agreement between the two 
different classifications can instead be compared following stand-
ard confusion matrix metrics (Congalton & Green, 2008). Indeed, 
Errors in Commission provide a measure of false negatives, that is, 
the number of points that were predicted to be part of a class that 
they were not (probability something was incorrectly predicted 
FN/[TP + FN]). Errors in Omission provide a measure of false 

positives that were predicted to be in a different class from their 
actual class (probability that something was missed FP/(FP + TP). 
Producer Accuracy or Precision provides a measure of how likely 
something was missed by the classification (probability that some-
thing was not missed TP/[TP + FP]). User Accuracy or Recall rep-
resents the probability that a class was correctly predicted TP/
(TP + FN). Overall Accuracy represents the probability that all 
classes were correctly predicted (TP + TN)/(TP + TN + FP + FN). 
Finally, kappa coefficient measures the agreement between 
the classification and the truth ((TN + FP) (TN + FN) + (FN + TP) 
(FP + TP))/(TP + FP + TN + FN)2. 

4  |  FOOD FOR THOUGHT

4.1  |  Is it really necessary to tag the animal?

Tagging is not only resource and time intense for scientists, it also 
comes at a cost to the animal that is being tagged. Many tags are 
archival meaning the animal must be caught both when attaching 
and when removing the tag, raising ethical concerns around the 
stress caused to the animal, and the potential for increased likeli-
hood of death. Indeed, there are cases where tags can compro-
mise a species camouflage, reduce its aero- or hydro-dynamism, 
cause entanglement in nets, cause stress during breeding, or for 
them to abandon migration or die of exhaustion from carrying the 
additional weight. It is therefore the user's responsibility to ensure 
the research is meaningful and that the tag is being fitted safely 
and ethically (Brlík et al., 2020; McGowan et al., 2016; Mcmahon 
et al., 2011).

4.2  |  When did the logger stop recording?

Loggers can record data even when they are not attached to an 
animal. Often the logger is taken off, stored in a backpack, driven 
home or posted to a laboratory for download. Users should always 
ensure the analysis starts and stops when the logger was mounted 
on the study species, and that the behaviour being classified is not, 
for example, someone hiking to the field site. The function create_
crop is specifically set-up for getting rid of these unwanted periods. 
Additionally, because animals can modify their behaviour just after 
tag attachment (see Section 4.1) these data should be treated with 
care or removed from the analysis.

4.3  |  Clock drift

As the battery runs out throughout the year, the clock on a log-
ger can gradually become slower and slower. There are a number 
of methods for correcting for this. The bird/animal will always be 
caught at a known location. It is best therefore to find the sunset and 
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sunrise times for the location where the logger was fitted, and that 
of where it was removed, and to see by how many minutes the sun-
rise and sunset estimated from the light sensor differ from the true 
sunrise and sunset. It is then possible to linearly interpolate the time 
series by the known number of minutes. This can be implemented in 
using the function calculate_clockdrift.

4.4  |  How can I be sure I am classifying biologically 
meaningful behaviours and not weather patterns?

Pressure, temperature, magnetic field and light can all change as a 
result of weather, geographic region and animal behaviour. To en-
sure one is not classifying weather patterns instead of behavioural 
patterns, it is advised to use a calibration period (as one would with 
classic geolocation) where the tag is at a known location to measure 
tag accuracy, and to measure the natural variation of weather pat-
terns as detected by the sensor.

4.5  |  Where was the logger attached?

If an animal is wearing the tag on its back (e.g. bat; Voigt et al., 2020), 
its neck (e.g. meerkat; Chakravarty et al., 2019) or its leg (e.g. sea-
bird; Halpin et al., 2021) there will be different implications for the 
data interpretations. For instance, vocalisations can cause vibration 
on accelerometers when worn on the neck (pers. obs.). Pitch, yaw 
and roll calculations can be impacted by the location where the tag 
is attached. Furthermore, even when attached at the same location 
on the same species, each logger will vary a little in how it is posi-
tioned on each animal leading to differences in sensor readings due 
to how tightly it was attached to the animal. Therefore, classifica-
tions developed on one individual are not necessarily transferable to 
another individual, and can be problematic when going from unsu-
pervised to supervised learning techniques.

4.6  |  What do I do if I encounter a bug in the code?

Any problems with the code or the package can be logged at https://
github.com/Kiran​LDA/PAMLr/​issues.

5  |  OUTLOOK

Here, we present functions adapted to the analysis of multisen-
sor geolocator tags using an example of a migratory passerine, the 
hoopoe (Upupa Epops). However, many of the functions in pamlr are 
set-up to be flexible and applicable to any species tagged with any 
combination of light, pressure, temperature, activity or magnetic 
field sensors and provide important information on the natural his-
tory, behaviour and physiology of any species. Furthermore, many 
multisensor geolocator tags are now customisable and purpose-built 

by the manufacturer. Thus, the temporal data resolution of, for in-
stance, tri-axial accelerometer and magnetometer recordings has the 
potential to be increased with a shorter battery life, allowing more 
detailed and complex behavioural classifications to be performed 
over smaller time-scales. Thus, methods such as dead reckoning can 
be used to reconstruct tracks (Bidder et al.,  2015) and infer turn-
ing angles. This would also allow methods previously developed 
for finer resolution datasets to be applied (e.g. Bidder et al., 2015; 
Garriga et al., 2016; Potts et al., 2018). The collection of observation 
data would also allow for the development of supervised machine 
learning methods (Valletta et al., 2017). Multisensor geolocator tags 
therefore provide exciting new opportunities for analysing otherwise 
unseen behaviours in animals that were previously impossible to tag.
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