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The clinical and pathological progression of Alzheimer’s disease often proceeds rapidly,

but little is understood about its structural characteristics over short intervals. This study

evaluated the short temporal characteristics of the brain structure in Alzheimer’s disease

through the application of cytoarchitectonic probabilistic brainmapping tomeasurements

of gray matter density, a technique which may provide advantages over standard

volumetric MRI techniques. Gray matter density was calculated using voxel-based

morphometry of T1-weighted MRI obtained from Alzheimer’s disease patients and

healthy controls evaluated at intervals of 0.5, 1.5, 3.5, 6.5, 9.5, 12, 18, and 24 months

by the MIRIAD study. The Alzheimer’s disease patients had 19.1% less gray matter at 1st

MRI, and this declined 81.6% faster than in healthy controls. Atrophy in the hippocampus,

amygdala, and basal forebrain distinguished the Alzheimer’s disease patients. Notably,

the CA2 of the hippocampus was found to have atrophied significantly within 1 month.

Gray matter density measurements were reliable, with intraclass correlation coefficients

exceeding 0.8. Comparative atrophy in the Alzheimer’s disease group agreed with

manual tracing MRI studies of Alzheimer’s disease while identifying atrophy on a shorter

time scale than has previously been reported. Cytoarchitectonic mapping of gray matter

density is reliable and sensitive to small-scale neurodegeneration, indicating its use in the

future study of Alzheimer’s disease.

Keywords: Alzheimer’s disease, magnetic resonance imaging, gray matter, atrophy, voxel-based morphometry,

atrophy

INTRODUCTION

Understanding alterations to brain structure in vivo, which result from neurodegenerative diseases
such as Alzheimer’s disease (AD), depends on the reliable mapping of the human brain based
on the structural distribution of the brain regions (1). To monitor AD in vivo, a number of
methods to extract regional gray matter features from magnetic resonance images (MRI) through
region-of-interest (ROI) analyses exist. These MRI-based methods range from fully automated
to “hands-on” manual tracing based on structural landmarks (2). Though automated, the atlas-
based methods have improved the interpretation of the results by enabling the standardization
of measurements across groups of subjects (3); both automated and manual tracing studies
suffer from the frequent use of macroanatomical landmarks which do not correspond directly to
cytoarchitectonic borders (2, 4–6).
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Early automated ROI analyses were conducted with MRI
atlases which were created from a single brain and defined
regions based upon gross morphology (7, 8), resulting in
susceptibility to inter-individual variability in the physical
distribution of the brain regions (7, 9). More recent ROI
approaches have addressed brain variability through the ability
to assign a probability with which a brain region may be found
in stereotaxic space (5, 7, 10, 11). Probabilistic atlases have been
created according to region-labeled volumetric MRI, diffusion
MRI, functional MRI, MR angiography, or a combination of
these modalities (12), but these MRI-based maps often remain
susceptible to discordance between macroanatomical landmarks
and cytoarchitecture (13). Recent probabilistic maps based on the
cytoarchitecture of post-mortem tissue enable the definition of
ROIs without a reliance on macroanatomic landmarks (2).

Cytoarchitectonic probabilistic maps are created from non-
diseased post-mortem brains which are stained and labeled
according to their cell architecture and reconstructed in 3D
(10, 14, 15). Each labeled subject map is registered to standard
MRI brain space to create a group map representing the
relative frequency with which the brain regions are present
at individual voxels (7, 16). The microscopic nature of the
cytoarchitectonic maps allows for the measurement of regions
which are difficult to define macroscropically due to ill-defined
boundaries, limited resolution of MRI, or high inter-subject
variability (2). Cytoarchitectonic probabilisitic maps have been
applied to measurements of brain morphometry in Alzheimer’s
disease (17), Parkinson’s disease (18–20), and healthy aging
controls (21–23).

Though calculation of regional volume by manual tracing
has been the standard by which AD atrophy is evaluated
(24), voxel-based morphometry [VBM; (25)], a technique which
automatically calculates gray matter density (GMD) in a voxel-
wise manner, has been used extensively to model brain atrophy
related to a neurodegenerative disease (26–29). The integration of
cytoarchitectonic probabilistic maps and VBM-generated signal
intensity allows for the in vivo measurement of MRI signal from
ROIs which capture interindividual variability in an observer-
independent fashion (2). In AD specifically, this technique has
been used to demonstrate that basal forebrain degeneration
precedes and predicts entorhinal cortex degeneration (17), but
usage in AD has been limited relative to studies of Parkinson’s
disease and normal aging. Due to the promise of this tool for
monitoring AD and other neurodegenerative processes, there is
a need to understand the reliability and reproducibility of this
automated process in both AD patients and controls.

This study applies regional GMD defined by cytoarchitectonic
probabilistic maps to AD patients and healthy control (HC)
subjects from the Minimal Interval Resonance Imaging in
Alzheimer’s Disease (MIRIAD) dataset (30). MIRIAD is a
publicly available dataset of AD patients and HC subjects which
were (1) collected at short intervals and (2) scanned multiple
times per session. The reliability and the repeatability of the
atrophy measurement techniques have been assessed in this
dataset previously, notably in the MIRIAD atrophy challenge,
but the probabilistic cytoarchitectonic definition of ROIs was not
evaluated (31, 32). Here we hypothesize the reproduction of past

structural MRI findings in AD by identifying neurodegeneration
in the hippocampal/amygdalar complex (29, 33–35) and basal
forebrain (36, 37) and that this method will identify AD-related
neurodegeneration on a shorter timescale than has previously
been reported. Regional GMD obtained through this method
is expected to be reliable and reproducible when obtained over
short intervals of time.

MATERIALS AND METHODS

Subjects
Healthy Controls
A total of 23 HC subjects were obtained from the MIRIAD
database. Briefly, MIRIAD is a single-site longitudinal MRI study
of AD conducted at the Dementia Research Center, Institute
of Neurology, University College London, UK. MIRIAD was
designed to establish the minimal interval with which it would
be feasible to conduct clinical trials of AD which used MRI
atrophy as an outcome measure (30). HC subjects were included
in MIRIAD if they were older than 55 years of age, had a mini-
mental state evaluation (MMSE) score of >26/30, and had no
history of cognitive impairment, head injury, major psychiatric
disease, or stroke. The subjects were excluded from MIRIAD if
they had any history of neurodegenerative disease or were unable
to tolerate MRI. The HC subjects were scanned at intervals of 0.5,
1.5, 3.5, 6.5, 9.5, 12, 18, and 24 months from baseline. At 0, 1.5,
and 9.5 months, two scans were acquired in the same scanning
session. Two HC subjects were excluded from analysis in this
study due to image quality according to the method discussed
below for a final total of 21 subjects included for analysis. Ethical
approval for the study was received from the research ethics
committee at University College London, and written consent
was obtained from all participants.

Alzheimer’s Disease
A total of 46 patients with a diagnosis of mild-moderate probable
AD were obtained from the MIRIAD database. The diagnosis of
AD was based on the NINCDS-ADRDA criteria (38). The AD
patients were included in MIRIAD if they were over 55 years of
age and had a MMSE score between 12 and 26/30. The patients
were excluded if they had a history of any neurodegenerative
disease besides AD. The AD patients were scanned according to
the same longitudinal protocol described for the healthy control
subjects. Two AD patients were excluded from the longitudinal
analysis due to image quality, for a final total of 44 patients in the
longitudinal analysis. Five additional AD patients were excluded
from the test–retest analysis in this study due to image quality
according to the method discussed below, for a final total of 39
AD patients in the test–retest analysis.

MRI Acquisition and Quality Control
All MRI images were acquired on the same 1.5-T Signa MRI
scanner (GEMedical systems, Milwaukee, WI, USA) by the same
MRI radiographer. 3D T1-weighted images were acquired with
an inversion recovery prepared fast-spoiled gradient recalled
sequence, field of view 24 cm, 256 × 256 matrix, 124 1.5mm
coronal partitions, TR 15ms, TE 5.4ms, flip angle 15◦, and
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TI 650ms. All images analyzed in this study were processed
through the automated quality control function contained within
the CAT12 toolbox (version r933; http://dbm.neuro.uni-jena.de/
cat/) in MATLAB. This tool considers noise, inhomogeneities,
and image resolution to create a composite score on a scale of A to
E, with A corresponding to the best quality and E corresponding
to the worst quality. Only images receiving a composite score of B
or higher, corresponding to “good” image quality, were included
for a final analysis in this study.

Image Processing and Region
Density Calculation
Regional gray matter density was calculated from AD and HC
images according to previously published methods (2). As a
note, the use of gray matter “density” or “volume” to describe
outputs of voxel-based morphometry is somewhat a source for
debate. Here we use the term “gray matter density” to refer
to the signal intensity-based output of the method utilized in
this study; this choice reflects an attempt to remain consistent
with other publications using this specific method. Processing
took place in two main steps: (1) preprocessing via voxel-
based morphometry and (2) application of cytoarchitectonic
probabilities to process gray matter density volumes. Voxel-
based morphometry (25, 39) was applied to all images from the
MIRIAD database using the CAT12 toolbox (http://www.neuro.
uni-jena.de/cat/) within SPM12 (Well-come Department of
Imaging Neuroscience Group, London, UK; http://www.fil.ion.
ucl.ac.uk/spm). The VBM analysis pipeline has been described at
length previously (26, 40). Briefly, before processing, the origin of
each image was manually reoriented to the anterior commissure
in SPM12. Within the CAT12 toolbox, the images were denoised
according to spatial-adaptive non-local means denoising (41) and
Markov random field (42) approaches. The images were bias-
corrected, spatially normalized to standard stereotactic space
with an affine registration, and a local intensity transformation
was performed. The normalized images were segmented into gray
matter, white matter, and cerebrospinal fluid according to the
adaptive maximum a posterior (AMAP) technique (42). Lorio
et al.’s (43) tissue priors were used for spatial normalization,
skull stripping, and initial segmentation estimate within the
AMAP segmentation. Partial volume estimation (44) estimated
partial volume fractions to account for voxels which may
contain more than one tissue type. The Diffeomorphic Anatomic
Registration Through Exponentiated Lie (45) algorithm as well
as Geodesic Shooting (46) was used to register segmented images
into standard MNI space. Finally, the segmented images were
modulated by the amount of volume changes from the spatial
registration to preserve the total amount of gray matter.

Region-specific GMD was measured according to the
cytoarchitectonic probabilistic maps for the reference MNI
single-subject brain that was derived from the 3D reconstruction
of histological sections from post-mortem brains (Figure 1). To
apply cytoarchitectonic probabilities to preprocessed gray matter
maps, a custom MATLAB script multiplied the value for each
voxel in the gray matter map by the weighting contained within
the probabilistic map. The weighted GMD values were summed

bilaterally and then standardized by dividing each image by the
sum of the weighting contained within each probabilistic mask.
All cytoarchitectonic probabilistic tissue maps were obtained
from the Anatomy Toolbox Version 2.2b and adjusted to correct
for normalization into standard MNI space with an affine
translation along the y and z axes of 4 and 5mm (7). The output
from this method represents a standardized value for the density
of gray matter in a brain region which reflects the likelihood that
each voxel in a given brain region will belong to that brain region
in a yet untested subject.

In comparing the cytoarchitectonically defined regions
available in the Anatomy Toolbox with brain regions implicated
in AD by priorMRI studies, 13 subcortical regions and 14 cortical
regions were selected. To maintain methodological consistency,
only those brain regions for which a cytoarchitectonic brain
map had been generated from post-mortem tissue were included
for analysis in this study. The available subcortical regions
were cholinergic nucleus 4 of the basal forebrain [Ch4; (47)],
cholinergic nuclei 1, 2, and 3 of the basal forebrain [Ch1–3; (47)],
centromedial amygdala [CM; (15)], laterobasal amygdala [LB;
(15)], superficial amygdala [SF; (15)], hippocampal-amygdala
transition area [HATA; (15)], amygdala-striatal transition area
[ASTR; (15)], entorhinal cortex [EC; (15)], hippocampus
area CA1 [CA1; (15)], hippocampus area CA2 [CA2; (15)],
hippocampus area CA3 [CA3; (15)], subiculum [SUBC; (15)],
and dentate gyrus [DG; (15)]. At the time of analysis, the
Anatomy Toolbox contained a list of more than 50 possible
neocortical regions to consider. To limit the number of statistical
comparisons, we chose a group of 14 neocortical regions: primary
motor cortex area 4a [PMC 4a; (48)], primary motor cortex area
4p [PMC 4p; (48)], primary auditory cortex area TE1.0 [TE 1.0;
(49)], primary auditory cortex area TE1.1 [TE 1.1; (49)], primary
auditory cortex area TE1.2 [TE 1.2; (49)], secondary auditory
cortex area TE 3 [TE 3; (50)], primary somatosensory cortex
area 1 [PSC 1; (51)], primary somatosensory cortex area 2 [PSC
2; (51)], primary somatosensory cortex area 3a [PSC 3a; (51)],
primary somatosensory cortex area 3b [PSC 3b; (51)], Broca’s
area 44 [BA 44; (52)], Broca’s area 45 [BA 45; (52)], occipital
cortex area V1 [V1; (53)], and occipital cortex area V2 [V2; (53)].
(Table 1) presents a list of the 27 brain regions measured in
this study.

Statistical Analyses
Four sets of analyses were conducted which examined the (1)
test–retest reliability of cytoarchitectonic probability mapping,
(2) differences in baseline GMD between AD patients and HC
subjects, (3) rate of change in GMD from 1st MRI between AD
patients and HC subjects, and (4) average time from 1st MRI to
when regional reductions in GMDof 0.5% can be detected among
AD patients.

Test–Retest Reliability of Cytoarchitectonic

Probabilistic Mapping
Test–retest reliability of cytoachitectonic probabilistic mapping
was evaluated by estimating the mean % change in GMD
between the 1st and 2nd scans which were conducted within
the same scanning session at months 0, 2.5, and 9.5 and
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FIGURE 1 | Visual depiction of cytoarchitectonic probabilistic maps. Ch4, nucleus Ch4 of the basal forebrain; CA1, region CA1 of the hippocampus; SF, superficial

nucleus of the amygdala. The left and the middle images depict a cytoarchitectonic map superimposed on MNI reference brain. The right images depict

cytoarchitectonic maps as 3D mesh inside the MNI reference brain. The color bar corresponds to probability values (0–100%) that a voxel is contained within the

cytoarchitectonic map.

by estimating the intraclass correlation (ICC) between all
aforementioned within session scans. ICC is a measure of how
strongly a set of quantitative measurements acquired from the
same entity resemble each other compared to how strongly
a set of quantitative measurements acquired from separate
entities resemble each other. Values of ICC close to 1 indicate
that the measurements acquired from the same entity are
highly similar, while values of ICC close to 0 indicated that
the measurements acquired from the same entity are highly
dissimilar. A global estimate for the average intra-brain-region
measurement test–retest reliability of the 1st and the 2nd
within-session scans among all brain regions was obtained
via the image intra-class correlation coefficient I2C2 (54). The
I2C2 coefficient is an extension of the aforementioned ICC
from the bivariate setting (i.e., test–retest reliability for one
brain region) to the multivariate setting (i.e., average test–
retest reliability among multiple brain regions). Like the ICC,
the I2C2 correlation coefficient has a numeric range: −1
to 1.

A comparison of the mean within-session % change in GMD
between the 1st and the 2nd within-session scans between
AD patients and HC subjects was conducted by a linear
mixed model (LMM) in which the LMM specification was
restricted to an intercept parameter that quantitatively estimated
the mean % change in GMD between the 1st and the 2nd

within-session scans for HC subjects and a parameter that
quantitatively estimated the difference between AD patients and
HC subjects. One set of hypotheses tested the null hypothesis
that the mean % change in GMD between the 1st and the
2nd within-session scans is equal to zero, while the second set
of null hypotheses tested that the mean % change in GMD
between the 1st and the 2nd within-session scans is the same
for AD patients and HC subjects. For both sets of hypothesis
tests, the Benjamini and Hochberg false discovery error rate
control procedure was used to restrict the false discovery
error rate for the entire set of 27 null hypothesis tests to be
no >0.05.

With regard to analyzing the degree of homogeneity between
the GMD measurements of the 1st and the 2nd within-session
scans, the ICC served as the quantitative measure of within-
session GMDmeasurement homogeneity. An ICC was estimated
per study group (AD andHC) and brain region combination, and
the 95% confidence interval for ICC was derived based on the
exact method of Searle. A global estimate for the average intra-
brain-region measurement test–retest reliability of the 1st and
the 2nd within-session scans among all brain regions was also
obtain per study group via the I2C2 correlation coefficient, and
the 95% confidence interval for the I2C2 was derived by way
of the bootstrap resampling procedure of the I2C2 package of
R (55).
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TABLE 1 | Complete list of the brain regions included for analysis in this study.

Brain region Reference

Ch4 basal forebrain (47)

Ch1-3 basal forebrain (47)

Centromedial amygdala (15)

Laterobasal amygdala (15)

Superficial amygdala (15)

Amygdala-striatal transition area (15)

CA1 hippocampus (15)

CA2 hippocampus (15)

CA3 hippocampus (15)

Dentate gyrus (15)

Subiculum (15)

Entorhinal cortex (15)

Hippocampal-amygdala transition area (15)

4a primary motor cortex (48)

4p primary motor cortex (48)

TE 1.0 primary auditory cortex (49)

TE 1.1 primary auditory cortex (49)

TE 1.2 primary auditory cortex (49)

TE3 secondary auditory cortex (50)

1 primary somatosensory cortex (51)

2 primary somatosensory cortex (51)

3a primary somatosensory cortex (51)

3b primary somatosensory cortex (51)

V1 occipital cortex (53)

V2 occipital cortex (53)

44 Broca’s area (52)

45 Broca’s area (52)

Random Coefficient Regression
Between-group differences in baseline GMD and between-group
differences in the rate of change in GMD were examined via
random coefficient regression (RCR). RCR was selected as the
analytical method because the mathematical underpinnings of
the RCR model are uniquely suited to modeling correlated
repeated-measures-generated response curves as in the current
setting (56).

Between-Group Differences in Baseline Gray

Matter Density
Age- and gender-adjusted comparisons of GMD at baseline were
derived by comparing the intercept parameter estimates of a RCR
model in which GMDwasmodeled as a function of time since the
1st MRI (i.e., months), study group (AD and HC), age at 1st MRI,
and gender. The RCR model intercept parameter quantitatively
estimated the age at 1st MRI and the gender-adjustedmean GMD
at the 1st MRI of the HC study population, and the RCR model
parameter associated with study group quantitatively estimated
the age at 1st MRI and gender-adjusted difference in mean GMD
at the 1st MRI between the AD and HC study populations. A
simple test of the null hypothesis that the RCR model parameter
associated with study group is equal to zero was conducted to

compare the mean GMD at the 1st MRI between the AD and
the HC study populations. Since this null hypothesis was tested
for 27 different brain regions, the Benjamini and Hochberg false
discovery error rate procedure was used to restrict the overall
false discovery error rate of the entire set of 27 null hypothesis
tests to be no >0.05.

Between-Group Differences in the Rate of Change in

Gray Matter Density
Age- and gender-adjusted comparisons of the rate of change in
GMD from the 1st MRI were derived by comparing the slope
parameter estimates of the aforementioned random coefficient
regression RCR model. The RCR model parameter associated
with time since the 1st MRI quantitatively estimated the age at
1st MRI and gender-adjusted mean rate of change in GMD from
the 1st MRI for the HC study population, and the RCR model
parameter associated with study group by time since the 1st MRI
interaction quantitatively estimated the difference between the
AD and the HC study populations. A simple test of the null
hypothesis that the RCR model parameter associated with study
group by time since the 1st MRI interaction is equal to zero was
conducted to compare the mean rates of change in GMD from
the 1st MRI between the AD and the HC study populations. The
Benjamini andHochberg false discovery error rate procedure was
again used to restrict the overall false discovery error rate of the
entire set of 27 null hypothesis tests to be no >0.05.

Time From the 1st MRI to Detectable Reductions in

Gray Matter Density Among Alzheimer’s

Disease Patients
The average time from the 1st MRI to when regional reductions
in GMD of 0.5% can be detected among AD patients was
estimated by way of a LMM. The LMM specification included
an intercept parameter (β0) that quantitatively estimated the
mean GMD at the 1st MRI and a slope parameter (β1) that
quantitatively estimated the expected rate of change in GMD per
month of follow-up after the 1st MRI. To estimate the average
time required for GMD to be reduced by 0.5% of GMD at
the 1st MRI, a 95% confidence interval was constructed for the
quantity: 0.005 × β0 + β1 × [follow-up time (months)]. Using
a 0.5 incremental series of follow-up times ranging from 0.5 to
24 months, the average time from the 1st MRI to when a 0.5%
reduction in GMD at the 1st MRI is predicted to occur was
identified by finding the minimum follow-up time since the 1st
MRI such that the 95% confidence interval upper limit for 0.005
× β0 + β1 × [follow-up time (months)] was <0.

Change in Mini-Mental State Evaluation From the

1st MRI
The relationship between MMSE and evaluation time (months)
after the 1st MRI was evaluated by RCR, where MMSE served
as the dependent variable and the evaluation time after the 1st
MRI served as an independent variable along with “study group”
(i.e., AD and HC). The AD and HC RCR intercept and slope
parameters were compared by way of F-tests, and an F-test was
also used to test the null hypothesis that the RCR slope parameter
is equal to zero.
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Change in Mini-Mental State Evaluation as a Function

of Change in Gray Matter Density
The relationship between the longitudinal change in MMSE
and the longitudinal change in GMD was evaluated by RCR,
where the longitudinal change in MMSE served the dependent
variable and the longitudinal change in MMSE served as an
independent variable along with “study group” (i.e., AD andHC).
The null hypothesis that the true underlying slope parameter of
the RCRmodel is equal to zero was tested via an F-test separately
for each study group. The slope parameters were compared
between the AD and the HC patient groups. The Benjamini and
Hochberg false discovery error rate procedure was used to restrict
the within-study-group and between-study-group overall false
discovery error rates of the entire set of 27 null hypothesis tests to
be no >0.05.

RESULTS

GMD measurements from 41 mild–moderate probable AD (24
female, 17 male) and 21 HC (10 female, 11 male) subjects were
included for analysis in this study. The age distribution in the
AD group was essentially the same [mean = 69.1 years, SD =

6.7 years, range= (55.9, 85.9 years)] as the age distribution in the
HC group [mean = 69.3 years, SD = 6.8 years, range = (58.4,
86.0 years)].

TABLE 2 | Time in months until a.5% decline in gray matter density is detected in

each region for the Alzheimer’s disease subjects.

Brain

Region

All AD Subjects

(months)

Hippo CA2 1.0

Ch4 1.5

Amygdala Astr 1.5

Amygdala SF 1.5

Auditory Te3 1.5

Amygdala CM 2.0

Hippo EC 2.0

Hippo HATA 2.0

Ch123 2.5

Hippo CA1 2.5

Hippo CA3 2.5

Broca BA44 2.5

Broca BA45 2.5

hOC2 2.5

Auditory Te1 2 3.0

Auditory Te1 0 3.5

Amygdala LB 4.0

Auditory Te1 1 4.0

hOC1 4.5

PSC 1 5.0

PSC 3a 6.5

Hippo Subc 7.5

PSC 2 10.0

Test–Retest Reliability of Cytoarchitectonic
Probabilistic Mapping
For each brain region tested, the mean % change in GMD
between all 1st and 2nd within-session scans was calculated
for AD patients and HC subjects. Additionally, the difference
between mean % change in GMD for within-session scans
was compared between AD and HC. No significant differences
between same-session scans were detected for AD patients
(Table 3) or HC subjects (Table 4). Intra-class correlation
coefficients, calculated to examine the similarity between within-
session scans, were above >0.8 in each brain region for AD
patients and >0.85 in each brain region for HC subjects (Table 5;
Figure 2).

A global estimate for the average intra-brain-region
measurement test–retest reliability of the 1st and the 2nd
within-session scans among all brain regions was obtained via
the image intra-class correlation coefficient I2C2: AD [0.976,
95%CI (0.969, 0.982)], HC [0.973, 95%CI (0.967, 0.978)], and

TABLE 3 | Estimates for the mean % change in the within-session 1st and 2nd

standardized gray matter density measurements {i.e., [(2nd − 1st )/1st]*100%} for

Alzheimer’s disease patients.

Alzheimer’s Disease Patients

Brain region Mean %

change

Lower

95% CI

Upper

95% CI

P-value B&H

threshold

Reject

Auditory Te1 1 −1.15 −1.92 −0.38 0.004 0.00192 No

TE1.0 −1.01 −1.74 −0.27 0.008 0.002 No

TE1.2 −0.95 −1.84 −0.05 0.038 0.00263 No

CA2 −0.81 −1.35 −0.27 0.004 0.00185 No

BA45 −0.76 −1.36 −0.16 0.014 0.00208 No

SUBC −0.68 −1.33 −0.03 0.042 0.00278 No

DG −0.67 −1.29 −0.05 0.035 0.00238 No

TE3.0 −0.62 −1.2 −0.05 0.035 0.00227 No

V1 −0.56 −1.19 0.06 0.077 0.00294 No

BA44 −0.56 −1.28 0.16 0.124 0.00333 No

LB −0.55 −1.7 0.6 0.339 0.00455 No

V1 −0.52 −1.01 −0.03 0.037 0.0025 No

CA1 −0.51 −1.48 0.46 0.298 0.00417 No

PSC 3a −0.48 −1.28 0.33 0.243 0.00385 No

CA3 −0.46 −0.85 −0.07 0.02 0.00217 No

EC −0.34 −1.33 0.64 0.486 0.00556 No

HATA −0.29 −0.9 0.33 0.355 0.005 No

SF −0.13 −1.27 1.01 0.82 0.01 No

PSC 3b −0.02 −0.75 0.7 0.947 0.01667 No

PSC 2 0.01 −0.81 0.83 0.987 0.05 No

CM 0.01 −0.5 0.52 0.962 0.025 No

PSC 1 0.03 −0.67 0.73 0.93 0.0125 No

Motor 4P 0.2 −0.57 0.97 0.607 0.00625 No

Ch4 0.27 −1.06 1.6 0.688 0.00833 No

ASTR 0.33 −1.22 1.88 0.673 0.00714 No

Motor 4A 0.67 −0.1 1.44 0.087 0.00313 No

Ch123 1.24 −0.35 2.83 0.125 0.00357 No
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TABLE 4 | Estimates for the mean % change in the within-session 1st and 2nd

standardized gray matter density measurements {i.e. [(2nd – 1st)/1st]*100%} for

the healthy control subjects.

Healthy Controls

Brain region Mean %

change

Lower

95% CI

Upper

95% CI

P-value B&H

threshold

Reject

TE1.2 −1.15 −1.97 −0.33 0.007 0.00192 No

TE1.0 −0.76 −1.36 −0.15 0.016 0.00208 No

TE1. 1 −0.53 −1.14 0.07 0.084 0.00278 No

TE3.0 −0.45 −0.78 −0.12 0.009 0.002 No

Ch123 −0.44 −1.86 0.99 0.538 0.00556 No

BA45 −0.36 −0.96 0.24 0.228 0.00357 No

BA44 −0.35 −1 0.29 0.276 0.00385 No

SF −0.33 −0.71 0.05 0.083 0.00263 No

HATA −0.21 −0.85 0.44 0.519 0.005 No

SUBC −0.14 −0.63 0.36 0.579 0.00625 No

V1 −0.13 −0.65 0.39 0.616 0.01 No

V2 −0.11 −0.53 0.31 0.603 0.00833 No

EC −0.1 −0.73 0.52 0.739 0.01667 No

CA3 −0.06 −0.34 0.21 0.636 0.0125 No

CA2 −0.05 −0.4 0.29 0.748 0.025 No

LB 0.05 −0.81 0.91 0.906 0.05 No

PSC 3a 0.17 −0.46 0.8 0.596 0.00714 No

DG 0.2 −0.13 0.53 0.227 0.00333 No

CM 0.31 −0.1 0.71 0.133 0.00294 No

PSC 1 0.38 −0.4 1.17 0.332 0.00417 No

ASTR 0.4 −0.64 1.45 0.438 0.00455 No

PSC 2 0.43 −0.2 1.05 0.176 0.00313 No

CA1 0.54 0.04 1.03 0.034 0.00227 No

PSC 3b 0.67 −0.02 1.36 0.057 0.00238 No

Motor 4P 0.95 −0.08 1.98 0.071 0.0025 No

Motor 4A 1.05 0.35 1.75 0.004 0.00185 No

Ch4 1.35 0.17 2.53 0.026 0.00217 No

combined AD and HC [0.988, 95%CI (0.986, 0.990)]. The IC2C
estimate values all exceeded 0.95.

To further test the measurement agreement of the 1st and the
2nd within-scan session, a Bland–Altman analysis was conducted
with the output expressed as a ratio of the 2nd scan measurement
to the 1st scanmeasurement of GMD (Supplementary Figure 1).
The geometric mean ratios for AD patients fell between 0.986
and 1.012 units and did not differ significantly from the null
hypothesis. The geometric mean ratios for HC subjects fell
between 0.985 and 1.015 units and did not differ significantly
from the null hypothesis.

Between-Group Baseline Differences in
Gray Matter Density
For each brain region tested, age- and gender-adjusted mean
GMD was compared between AD and HC groups at baseline
(Figure 3). The age- and gender-adjusted mean GMD differed
between AD and HC for 25 of the 27 regions; only Broca’s area
45 and occipital cortex area V1 were not different between the

TABLE 5 | Intra-class correlation coefficients examining the similarity between

replicate standardized gray matter density measurements for the Alzheimer’s

disease patients and for the healthy control subjects.

Alzheimer’s disease patients Healthy controls

Brain region ICC Lower

95% CI

Upper

95% CI

ICC Lower

95% CI

Upper

95% CI

Ch4 0.93 0.9 0.95 0.91 0.85 0.94

Ch123 0.81 0.73 0.87 0.88 0.8 0.92

ASTR 0.96 0.94 0.97 0.92 0.87 0.95

CM 0.99 0.99 1 0.98 0.97 0.99

LB 0.97 0.95 0.98 0.93 0.89 0.96

SF 0.99 0.98 0.99 0.99 0.98 0.99

CA1 0.95 0.92 0.96 0.98 0.96 0.99

CA2 0.99 0.99 0.99 0.99 0.99 1

CA3 0.99 0.99 1 0.99 0.99 1

DG 0.98 0.97 0.99 0.99 0.98 0.99

EC 0.97 0.96 0.98 0.97 0.96 0.98

HATA 0.98 0.97 0.99 0.98 0.97 0.99

SUBC 0.97 0.96 0.98 0.97 0.96 0.98

TE3.0 0.99 0.98 0.99 0.99 0.98 0.99

TE1.0 0.98 0.97 0.98 0.99 0.98 0.99

TE1.1 0.97 0.96 0.98 0.99 0.98 0.99

TE1.2 0.95 0.93 0.97 0.98 0.96 0.99

BA44 0.97 0.96 0.98 0.97 0.95 0.98

BA45 0.97 0.96 0.98 0.98 0.97 0.99

Motor 4A 0.95 0.93 0.97 0.94 0.9 0.96

Motor 4P 0.95 0.93 0.97 0.96 0.94 0.98

PSC 1 0.98 0.98 0.99 0.97 0.96 0.98

PSC 2 0.99 0.98 0.99 0.97 0.96 0.98

PSC 3a 0.97 0.96 0.98 0.97 0.96 0.98

PSC 3b 0.98 0.97 0.99 0.97 0.96 0.98

V1 0.98 0.97 0.99 0.98 0.96 0.99

V2 0.99 0.98 0.99 0.98 0.97 0.99

groups. The three regions with the largest difference between AD
and HC were the centromedial amygdala (23.5% less GMD for
AD thanHC), superficial amygdala (22.6% less GMD for AD than
HC), and the hippocampal-amygdala transition area (20.4% less
GMD for AD than HC).

Between-Group Differences in Gray Matter
Density Rate of Change
For each brain region, age- and gender-adjusted cohort
comparisons of the predicted slope for the monthly change in
GMD from the 1st MRI were calculated (Figure 4). The age- and
gender-adjusted slopes were significantly different between AD
and HC for 19 of the 27 selected regions. The three regions with
the largest difference between AD and HC were hippocampus
area CA2 (85% faster for AD than HC), centromedial amygdala
(declined 91.6% faster for AD thanHC), and superficial amygdala
(declined 91.6% faster for AD than HC).
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FIGURE 2 | Intraclass correlation coefficients for gray matter density values between two MRI scans within the same scanning session for Alzheimer’s disease

patients and healthy control subjects. The cytoarchitectonic brain regions are depicted from right to left in order of increasing intraclass correlation value.

Minimum Interval to Detect
Regional Change
For AD patients, the estimated time required to detect a 0.5%
reduction in GMD from the 1st MRI (baseline) was calculated
(Table 2). A reduction in GMD >0.5% from baseline was
detected in 23 of the 27 tested regions. Only the dentate
gyrus, primary somatosensory cortex area 3b, and primary
motor cortex areas 4a and 4p did not lose 0.5% of baseline
GMD over the first 24 months of follow-up. The regions
for which GMD declined by 0.5% from baseline during the
study period were area CA2 of the hippocampus (1.0 month),
cholinergic nucleus 4 (1.5 months), amygdala-striatal transition
area (1.5 months), superficial amygdala (1.5 months), secondary
auditory cortex area TE3 (1.5 months), centromedial amygdala
(2.0 months), entorhinal cortex (2.0 months), hippocampal-
amygdala transition area (2.0 months), cholinergic nucleus 1–
3 (2.5 months), area CA1 of the hippocampus (2.5 months),
area CA3 of the hippocampus (2.5 months), Broca’s area 44
(2.5 months), Broca’s area 45 (2.5 months), occipital cortex
area V2 (2.5 months), area TE 1.2 of the auditory cortex (3.0
months), area TE 1.0 of the auditory cortex (3.5 months),
laterobasal amygdala (4.0 months), area TE 1.1 of the auditory
cortex (4.0 months), occipital cortex area V1 (4.5 months), area
1 of the primary somatosensory cortex (5.0 months), area 3a
of the primary somatosensory cortex (6.5 months), subiculum

(7.5 months), and area 2 of the primary somatosensory cortex
(10.0 months).

Change in Mini-Mental State Evaluation From the

1st MRI
The relationship between MMSE and months after the 1st
MRI was evaluated by random coefficient regression. Months
after the 1st MRI predicted MMSE in the Alzheimer’s disease
patients [−0.23, 95%CI (−0.29, −0.17), p <.001] but not in the
healthy control subjects [0.00, 95%CI (−0.08, 0.8), p = 1.00]
(Supplementary Table 2).

Change in Mini-Mental State Evaluation as a Function

of Change in Gray Matter Density
The relationship between the longitudinal change in MMSE
and the longitudinal change in GMD was evaluated by random
coefficient regression. In Alzheimer’s disease patients, MMSE
was associated with the longitudinal change in GMD in
15 of the 27 brain regions tested (Supplementary Table 1,
Supplementary Figure 2). In healthy control subjects, MMSE
was not associated with longitudinal change in GMD in any
brain region tested (Supplementary Table 1). The between-
group differences between AD patients and HC subjects were
non-significant (Supplementary Table 1).
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FIGURE 3 | Differences in gray matter density (GMD) between Alzheimer’s disease (AD) patients and healthy control (HC) subjects at baseline. Age- and

gender-adjusted GMD values at first MRI are depicted from left to right in order of increasing decline in GMD per month for the AD subjects. Asterisks denote the age-

and gender-adjusted GMD at first MRI that is significantly different between AD and HC at p < 0.05 corrected by Benjamini and Hochberg false discovery rate

correction.

DISCUSSION

The cytoarchitectonic probabilistic mapping of GMD allows for
the evaluation of brain structures affected by a neurodegenerative
disease. For both AD patients and HC subjects, the regional
GMD measurements obtained with this method are stable—
in both the cortical and the subcortical structures—across
repeated measurements in a single MRI scanning session. This
result indicates that the method produces very reproducible
measurements in an idealized MRI scanning scenario. In
baseline data from the same cohorts, widespread regional GMD
differences separated the AD and the HC groups, particularly
in the subcortical structures (e.g., hippocampus, amygdala,
and cholinergic nuclei of the basal forebrain). A longitudinal
analysis over the 2-year study period supports a complementary
narrative. In the HC group, the regional GMD measurements
remained relatively stable over 2 years, allowing that some
degree of neurodegeneration happens during “healthy” aging.
In contrast, the AD patients showed a widespread longitudinal
decline in regional GMDwith a preferentially subcortical pattern
resembling the group differences at baseline. Multiple brain
regions showed measurable changes in 3 months or less. These
findings aggregately suggest that the cytoarchitectonic mapping

of GMD can measure short-interval changes in regional GMD
that are not occurring in healthy aging controls.

A number of studies have investigated the reliability of
tools that measure brain volume and morphometry such as
Freesurfer and FSL (31, 32, 57–59). To date, the reliability of
cytoarchitectonic probabilistic mapping of GMD has not been
evaluated. The ICC values reported here, all >0.9 with the
exception of the cholinergic nuclei of the basal forebrain—which
exceed.8—are in agreement with past studies of Freesurfer’s
cortical and subcortical parcellations (57, 59). The Freesurfer
automated pipelines, which have been well validated and are
widely accepted for use in the study of neurodegenerative diseases
(60), represent a benchmark by which to measure reliability.
Prior studies of Freesurfer’s subcortical parcellation identified
the hippocampal-amygdala transition area as a region of lower
reliability, which is supported by work identifying the HATA as
an area of high inter-subject variability (15, 57). Here we report
ICC values>0.95 for HATA in both ADpatients andHC subjects,
indicating the resilience of this tool for high-variability brain
regions. Though Figure 2 appears to demonstrate a difference in
variability between HC subjects and AD patients such that HC
measurements are less reliable, this is likely due to the limited
number of HCs rather than a feature of this technique.
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FIGURE 4 | Longitudinal change in gray matter density (GMD) in Alzheimer’s disease (AD) patients and healthy control (HC) subjects. Age- and gender-adjusted slope

parameter estimates for the change in GMD per month are depicted from left to right in order of worsening decline in GMD per month for the AD subjects. The

asterisk denotes the change in GMD per month that is significantly different between AD and HC at p < 0.05, FDR corrected.

Morphometric MRI studies of AD are extensive in the
literature, with results demonstrating a consistent pattern of
atrophy localized to the hippocampus (61, 62), amygdala (63, 64),
basal forebrain (37, 65), thalamus (66), and neocortex (67, 68).
Despite differences in the analysis technique, findings from
this study largely support prior morphometric and volumetric
studies of AD. In the hippocampal formation specifically, density
was 20.6% lower in AD than in HC (95%CI: 17.0, 26.1%),
closely mirroring manual tracing studies that place the difference
between mild AD and HC between 15 and 30% (35). The
entorhinal cortex showed the largest difference between the
groups at baseline, a finding supported by its status as a site of
early infiltration for tau pathology in the Braak model (69).

This study reports that the rates of decline as measured by
the change in GMD per month agree with the baseline cross-
sectional findings—that is, regions which are most different
between AD patients and HC subjects at baseline also decline
more quickly over time. The hippocampus, amygdala, and basal
forebrain declined more quickly in AD patients than in HC
subjects, and the subcortical regions declined more quickly than
the neocortical brain regions. These findings are supported by the
Braak model, which suggests that mature neocortical neurons are

not affected by pathology until later in the disease process (69).
Interestingly, we report that the amygdala declined 11.6% faster
than the hippocampus (95%CI 9.9, 13.0%) in AD patients in this
study. The amygdala volume has been strongly implicated in AD
(70), but studies concerning the rate of decline relative to the
hippocampus have been inconsistent, with the amygdala showing
lower levels of atrophy (71, 72), equal levels of atrophy (73), and
greater levels of atrophy as shown in this study (74). A recent
multisite lifespan study of AD identified the amygdala as an area
of divergence from controls as early as age 40, highlighting its
key role in the development of AD (75). Taken together, these
findings suggest the amygdala as an area of future study in AD.

A novel finding of this study is the short interval at which
the cytoarchitectonic mapping of GMD was able to detect AD-
related change. In the CA2 of the hippocampus, we detected a.5%
decrease in GMD in only 1 month post-baseline, a finding which
disagrees with a prior longitudinal study of the MIRIAD dataset
(57). A previous work failed to detect any significant changes in
hippocampal volume over a 6-week period, and though it did
identify significant atrophy to the whole hippocampus over a 2-
year period, it did not identify atrophy specific to the CA2 (57).
This discrepancy is likely related to the difference in analysis
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technique; Worker et al. extracted hippocampal volumes from
the Freesurfer hippocampal subfield pipeline, which uses an atlas
based on high-resolution MRI (76) rather than cytoarchitectonic
maps. The key involvement of the CA2 identified in this study
is supported by Braak, which implicates the CA2 early in the
staging model of AD alongside the CA1 and ahead of the other
subregions of the hippocampus (69). Future work will explore the
potential of the CA2 as a longitudinal marker of AD.

One remaining question from these results is why the orderly
progression of AD in the hippocampus was not observed. Braak
and Braak (77) previously noted an organized progression of
neurofibrillary tangles beginning in the CA1 and later emerging
in the subiculum, CA2, CA3, and CA4. Additionally, decreased
functional connectivity in the CA1 and the CA2 has been noted
in patients with mild cognitive impairment (78). Here we noted
the degeneration of the CA2 and the subregions of the amygdala
at much faster rates than the CA1 and subiculum. We believe
that this finding is due to the heterogeneous nature of the
subjects collected as part of the MIRIAD study. Subjects were
included in MIRIAD if they were over the age of 55 years,
had a diagnosis of mild–moderate probable AD, and had a
MMSE between 12 and 26/30 (30). These criteria likely led to
the inclusion of some “early” and some “more advanced” AD
patients, making visualization of orderly progression difficult.
The method outlined in this study is capable of measuring rapid
change in GMD, and a different cohort of MCI or “early” AD
patients may return findings which more closely adhere to those
hippocampal subfields noted by Braak and Braak (77).

Though considered as strength of the MIRIAD dataset, the
homogenous collection of images on the same 1.5-T scanner
by the same MRI technologist limited our ability to make a
wider inference about the reliability of this technique in other
longitudinal MRI datasets. It is known that factors such as field
strength (79), acquisition parameters (80), and individual MRI
scanner (81) all influence the accuracy and the reliability of VBM.
Though large neuroimaging databases such as the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and the Parkinson’s
Progression Markers Initiative seek to standardize their imaging
protocols, the same participant may be scanned in multiple
MRI scanners by different radiographers and sometimes with
variable acquisition parameters over time. It is probable that the
reliability of this technique would be lower for less homogenous
longitudinal studies due to the increased variability in factors
that influence the VBM outcomes. Ideally, we would have
integrated additional datasets, such as ADNI, to demonstrate
this point. However, the significantly longer interval at which
ADNI and other longitudinalMRI datasets collect data precluded
this possibility. Through a multi-site study, future work could
explore the influence of scanner and technologist variability on
the short-interval reliability of this technique.

CONCLUSION

The current study provides evidence for the cytoarchitectonic
mapping of gray matter density as an important tool for
the analysis of neurodegenerative diseases. Average intraclass

correlation coefficients >0.9 for both AD patients and HC
subjects coupled with sensitivity for AD-related atrophy on a
shorter timescale than has previously been reported underscore
the power of histologically defined brain maps for the in vivo
evaluation of AD and other diseases. Ongoing research efforts
will apply this technique to additional disease processes for the
detection of sub-regional atrophy.
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