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Abstract 

In computer-assisted synthesis planning (CASP) programs, providing as many chemical synthetic routes as possible is 
essential for considering optimal and alternative routes in a chemical reaction network. As the majority of CASP pro-
grams have been designed to provide one or a few optimal routes, it is likely that the desired one will not be included. 
To avoid this, an exact algorithm that lists possible synthetic routes within the chemical reaction network is required, 
alongside a recommendation of synthetic routes that meet specified criteria based on the chemist’s objectives. 
Herein, we propose a chemical-reaction-network-based synthetic route recommendation framework called “Com-
pRet” with a mathematically guaranteed enumeration algorithm. In a preliminary experiment, CompRet was shown 
to successfully provide alternative routes for a known antihistaminic drug, cetirizine. CompRet is expected to promote 
desirable enumeration-based chemical synthesis searches and aid the development of an interactive CASP framework 
for chemists.
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Introduction
Since the 1960s, several researchers have proposed 
computer-assisted chemical synthetic route designs. 
Various computer-assisted synthesis planning (CASP) 
programs have been developed to assist synthetic organic 
chemists in their work [1–3]. While expert systems and 
knowledge-based programs were the primary focus 
of CASP during the early stages [4–8], recent break-
throughs in the field of deep learning and widespread 

availability of reaction datasets have accelerated its devel-
opment [9–17]. In particular, data-driven approaches 
have received attention across research fields [18–21]. 
These approaches for multi-step synthesis planning have 
shown outstanding performance at every stage, and more 
recently, they have provided realistic and preferable syn-
thetic routes.

The pioneers of CASP, Corey and Wipke, stated the 
following requirements related to the above strategy in 
their paper [2]: the program needs to provide as many 
useful routes as possible, chemists can decide the depth 
of search or analysis of the synthetic route, and the given 
routes are evaluated by the chemists. As discussed above, 
several CASP approaches have been developed; however, 
the majority of them have aimed to directly obtain the 
optimal chemical synthetic route rather than attempting 

Open Access

Journal of Cheminformatics

*Correspondence:  terayama@yokohama‑cu.ac.jp; tsuda@k.u‑tokyo.ac.jp
†Ryosuke Shibukawa and Shoichi Ishida Contributed equally
7 Graduate School of Medical Life Science, Yokohama City University, 
Kanagawa, Japan
8 Research and Services Division of Materials Data and Integrated System, 
National Institute for Materials Science, Kyoto, Japan
Full list of author information is available at the end of the article

https://orcid.org/0000-0003-1173-3157
https://orcid.org/0000-0002-5638-3579
https://orcid.org/0000-0002-1798-7919
https://orcid.org/0000-0003-3596-4208
http://orcid.org/0000-0003-3914-248X
https://orcid.org/0000-0002-4288-1606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-020-00452-5&domain=pdf


Page 2 of 14Shibukawa et al. J Cheminform           (2020) 12:52 

to provide multiple route candidates. According to Corey 
[2], examining as many useful chemical synthetic routes 
as possible is an essential part of retrosynthetic analysis. 
It is well known that evaluation criteria used for the pre-
sented synthetic routes depend on the chemist’s situa-
tion, objectives, and/or needs [22], such as the early-stage 
derivatization of hits, optimization of lead compounds, 
or large-scale synthesis of drug candidates. Thus, a desir-
able framework should provide as many useful routes as 
possible under specific conditions (e.g., room and high 
temperatures) and choose multiple reliable routes based 
on given situations (e.g., drug discovery or drug develop-
ment stages).

As a framework for providing multiple reliable routes, 
Kowalik et  al. have developed a promising approach 
using the Network of Organic Chemistry (NOC) [23–
27] and an enumeration algorithm of possible synthetic 
routes [28]. The NOC consists of all possible molecules 
and reactions that represent links from reactants to prod-
ucts. [27] The reactions are practically represented as 
templates that include the conditional/contextual rules of 
chemistry. Additionally, they implemented a recommen-
dation system of multiple synthetic routes for a target 
molecule as follows [28]. Firstly, they extracted the net-
work of molecules and reactions (chemical reaction net-
work) related to the target from the NOC. Secondly, they 
enumerated all possible synthetic routes from the chemi-
cal reaction network, and then, selected promising can-
didate routes. Although they showed a vast number of 
synthetic routes for some molecules and presented realis-
tic solutions, their approach has two potential issues: the 
NOC is very large, and thus, uneconomical for obtain-
ing optimal routes for a specific target molecule, and the 
enumeration algorithm does not always provide all pos-
sible routes. Hence, an efficient algorithm for construct-
ing a chemical reaction network is required for practical 
application. Further, an exact enumeration algorithm 
without loss or duplication is needed for practical usage 
and finding reliable alternative routes.

In this study, we propose a CASP framework called 
“CompRet,” which enumerates possible synthetic routes 
using a novel enumeration algorithm with a theoreti-
cal guarantee, and then selects useful routes based on 
several score functions. CompRet implements the fol-
lowing three steps to recommend synthetic routes: (1) 
constructing a chemical reaction network based on the 
depth-first proof number search (DFPN) and template-
based retrosynthesis [29, 30], without a large chemical 
reaction network such as the NOC, (2) enumerating all 
synthetic routes from the network using a novel algo-
rithm, and (3) recommending multiple synthetic routes 
by developing a naive visualization method and simple 
score functions. DFPN was initially developed by Nagai 

et  al. in the context of artificial intelligence for games 
such as Shogi and Go [31–33]. In application to CASP, it 
has shown superior or comparable performance to that 
of depth-first search or Monte Carlo tree search [34, 35]. 
Therefore, DFPN was adopted to construct the chemical 
reaction network proposed herein. The number of pos-
sible synthetic routes provided by the enumeration may 
reach or exceed several millions. As it would be impos-
sible for chemists to manually examine all of them, sev-
eral score functions and a visualization method have been 
introduced into the framework to simplify the process.

Here, we report the development of CompRet and 
mathematically prove the completeness and soundness 
of the proposed enumeration algorithm, which can pre-
cisely enumerate all synthetic routes from a given con-
structed chemical reaction network. To demonstrate 
the approach, possible synthetic routes were found for 
cetirizine, an antihistaminic drug. In addition to sort-
ing routes by scores, an embedding method to obtain 
an overview of millions of synthetic routes by defining a 
route fingerprint was attempted.

Method
Compret consists of three steps (Fig.  1). Each step is 
described as follows.

Construction of chemical reaction network
A synthetic route for a target molecule can be represented 
as a tree-like structure in which molecule nodes (circles) and 
chemical reactions (rectangles) appear alternately, as shown 
in Fig. 2(a). In order to make a route feasible, the end mol-
ecule nodes (molecules in the blue circles in Fig. 2(a)) must 
consist of starting materials (e.g., commercially available mol-
ecules), and each synthesis step should be reasonable [29, 30].

The chemical reaction network of a target molecule 
is typically large and can efficiently express (ideally all) 
possible synthetic routes to the target represented by 
the molecule and reaction nodes [27, 36]. In this study, 
we represent synthetic routes and chemical reaction 
networks as AND/OR trees, as shown in Fig.  2(b), to 
efficiently construct chemical reaction networks and 
precisely perform enumeration (see Additonal file 1:  for 
details on the AND/OR tree and chemical reaction net-
work). The synthetic route in Fig.  2(a) is represented as 
the black route in Fig.  2(b) by expressing the molecule 
and reaction nodes as OR and AND nodes, respectively. 
The gray route in Fig.  2(b) shows another route to syn-
thesize the same reactant. In an AND/OR tree, a mole-
cule is represented as an OR node because either black 
“OR” gray routes are available to synthesize the same 
reactant, as shown in Fig.  2(b). On the other hand, a 
reaction is represented as an AND node because all the 
reactants (e.g., B “AND” C OR nodes in Fig. 2(b)) of the 
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Fig. 1  Illustration of CompRet’s overall processes. Step 1: Construction of a chemical reaction network. Step 2: Enumeration of synthetic routes. 
Step 3: Ranking synthetic routes based on the scoring function
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Fig. 2  AND/OR representation of synthetic routes. a Example of a single synthetic route for cetirizine. Retrosynthetic computation is performed 
recursively from the topmost node (target) until it reaches to the starting materials at the bottom. b The synthetic route can be represented as an 
AND/OR tree in which the OR and AND nodes denote molecules and reactions, respectively. c A chemical reaction network ideally consists of all 
possible synthetic routes to a target (red sphere) molecule
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reaction (AND node A in Fig. 2(b)) are required to syn-
thesize the product. Merging the molecule and reaction 
nodes that appear in different synthetic routes in this 
manner (Fig. 2(b)) enables an efficient representation of 
a large number of routes as a chemical reaction network 
(Fig. 2(c)).

CompRet efficiently constructs the chemical reaction 
network for a given target molecule based on DFPN, a 
search method based on the AND/OR tree using proof 
and disproof numbers for each node (see Additonal 
file 1:  for details on the DFPN algorithm). To design a 
synthetic route, reaction templates are applied to a tar-
get to transform it into reactants. For the retrosynthetic 
computation, Reactor version 20.11.0 (ChemAxon 
[37]), which can consider stereochemistry in reaction 
templates, was used. The relevance of the transformed 
reactants was checked by computing the product of the 
template and the reactants. By recursively performing 

this transformation according to the DFPN algorithm, 
all possible synthetic routes for a target molecule can 
be obtained upon reaching the preset maximum depth 
md. The algorithm can design longer synthetic routes 
with a larger md value. Furthermore, CompRet repeat-
edly searches for a new route and merges it into a chemi-
cal reaction network (see the section  1 and 2, and Fig. 
S1 in Additional file  1: for details on the construction 
algorithm).

Enumeration algorithm
Enumerating all synthetic routes in the chemical reaction 
network of a given target may appear to be a simple prob-
lem, as described in the literature reported by Kowalik 
et al [28]. For example, in Fig. 3(a), the target (molecule 
1) can be synthesized via any one of the reactions A, B, or 
C. Here, we consider how to count all possible synthetic 

(a) (b)
Fig. 3  Example of the local structure of a chemical reaction network to illustrate the method used to calculate the number of synthetic 
routes. a Ideal structure of a network for which the naive method can count the exact number of synthetic routes for a target molecule. 
b The naive method cannot count synthetic routes precisely in this case. The number of synthetic routes for the target molecule, 
mol(1).count, is calculated as mol(5).count = 1,mol(6).count = 1, rxn(D).count = mol(5).count = 1, rxn(E).count = mol(6).count =

1,mol(4).count = rxn(D).count + rxn(E).count = 2 , and finally mol(a).count = 4 , while the true number of synthetic routes is 2
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routes. Synthetic routes for the target can be counted 
using the following equation:

where mol(1) and rxn(X).count denote the number of 
routes to synthesize the molecule 1 and the number of 
routes that use the reaction X, respectively. On the other 
hand, the number of ways to prepare reactants for a reac-
tion is calculated as follows. In the case of A,

These calculations are performed recursively until start-
ing materials for which mol.count is assigned one (e.g., 
mol(3).count = 1).

(1)
mol(1).count = rxn(A).count + rxn(B).count

+ rxn(C).count,

(2)rxn(A).count = mol(2).count ×mol(3).count.

However, as mentioned in the literature [28], this pro-
cedure does not count the exact number of synthetic 
routes because it assumes that each reactant is syn-
thesized independently. In the actual network, a single 
molecule can act as a reactant for several reactions; for 
example, the molecule 4 in Fig. 3(b). Note that both mol-
ecules 2 and 3 are required for the reaction A. The net-
work depicted in Fig.  3(b) includes only two synthetic 
routes for the molecule 1, i.e., a choice of the reactions 
D or E for synthesizing the molecule 4, while the number 
of synthetic routes is calculated to be 4 according to the 
above equations. Therefore, we propose an enumeration 
algorithm that extracts all possible routes in a network 
by considering “joined nodes”, as shown in Fig.  3(b). A 
brief description of the enumeration algorithm is given 

Fig. 4  Illustration of the enumeration algorithm. a An example of an input chemical reaction network. b Visualized procedures of the enumeration 
algorithm. The black filled circle is a node to focus on. X is a terminal state where a synthetic route is constructed. Y is also a terminal state where 
there is no node to focus on because all child nodes (1, 2) are already checked
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in Fig.  4. The details of the enumeration algorithm are 
described in the Additonal file 1.

Route ranking for recommendation
Three scoring functions were utilized for recommenda-
tion from the enumerated synthetic routes: the step-
based method (STEP), mean synthetic complexity score 
(MSCS), and reference route-based method (REF). STEP 
is a simple method that outputs the longest number of 
synthesis steps for a given synthetic route. Synthetic 
complexity score (SCScore) was developed by Coley et al. 
[12] to evaluate the complexity of the molecule. Like the 
SCScore, the MSCS for a synthetic route ranges from 0 
to 5. As the SCScore of a molecule is directly propor-
tional to the complexity of its synthesis, a molecule with 
a lower SCScore is preferred in synthesis planning. Here, 
MSCS is defined as the average of the SCScores of all 
molecules in a synthetic route. MSCS takes into account 
the complexity of intermediate molecules. REF is calcu-
lated only if a reference synthetic route is given. First, 
all the molecules that appear in the reference route are 
extracted and sorted by molecular weight. A list of sorted 
molecules is similarly prepared for a designed synthetic 
route. Then, the sum of fingerprint-based similarities 
between the sorted molecules of the reference and given 
routes is calculated. The RDKit fingerprint [38, 39] and 
Tanimoto metrics [40] were employed for this similarity 
evaluation. If the lengths of the sorted molecule lists dif-
fer, REF is set to 0. This score function is designed to find 
synthetic routes that are slightly different from the refer-
ence route, using the same number of intermediate mole-
cules. Smaller STEP and MSCS values indicate a superior 
route, whereas REF is designed such that a larger value 
indicates a more desired route.

Visualization for confirming route distribution
To confirm that the CompRet framework is capable of 
designing a wide variety of synthetic routes, we devel-
oped a simple method to plot the routes in a 2D space by 
converting a synthetic route into a vector. For the con-
version, route fingerprint f r for a route r is defined as

where t is a reaction template and f p(t) is the structural 
reaction fingerprint [41] of t computed by RDKit [39]. 
Following the computation of route fingerprints for 3,000 
sampled routes, t-SNE embedding [42] was computed 
using scikit-learn [43].

Reaction template and building block
Template-based approaches generally require both 
reaction templates and starting materials. A reaction 

(3)f r =
∑

t∈r

f p(t),

template is represented as a generalized chemical reac-
tion, and technically represented as a reactive center 
and the first neighboring atoms and bonds in a reaction. 
The reaction templates were extracted from 27 million 
single-step reactions obtained from Reaxys (from 1795 
to 2019) [44], following the method used in a previous 
study. [17] Here, the single-step reactions obtained from 
Reaxys were filtered on the condition that a reaction 
has a product and up to three reactants. Five hundred 
reaction templates were used in the order of occurrence 
frequency. In total, about 13 million reaction templates 
were extracted; in the top 500 templates, frequency 
counts are range from 1,906 to 188,460. Starting mate-
rials were defined as commercially available chemical 
compounds and used as stopping criteria for DFPN. For 
these, 157,544 molecules from Enamine building blocks 
[45] were used.

Results and discussion
Proof of enumeration algorithm
The proposed algorithm can enumerate all possible 
routes without loss or duplication from a given chemi-
cal reaction network of a target molecule. To prove this, 
it is necessary to show that (1) the algorithm outputs 
only synthetic routes, (2) there are no duplicate out-
puts, and (3) the algorithm outputs all synthetic routes 
in a given chemical reaction network. Here, these prop-
erties have been proven using the partition method 
[46, 47], which is widely used for enumeration algo-
rithms, and mathematical induction. Details of these 
proofs are given in the Additonal file 1. The properties 
(1), (2), and (3) are shown in Theorem 4.1, Lemma 4.1, 
and Theorem 4.2, respectively. The algorithm described 
in the literature reported by Kowalik et al. [28] cannot 
count the number of synthetic routes accurately, as dis-
cussed in the Methods section. On the other hand, the 
proposed enumeration algorithm outputs all synthetic 
routes without loss or duplication, based on the idea of 
the “prohibited list” (variable P) and related procedures 
in Algorithm S3.

Route enumeration for Heifets’ benchmark
For the first demonstration, Heifets’ benchmark mol-
ecules (http://www.cs.toron​to.edu/~aheif​ets/Chemi​calPl​
annin​g/BENCH​MARK.tar.gz ) [34] were used to show 
the scale of the chemical reaction networks constructed 
by CompRet and the synthetic route enumeration for the 
networks. The top 100 reaction templates of the prepared 
template data were used, and md was set to six. All calcu-
lations were conducted using a single CPU core (Intel(R) 
Xeon(R) CPU E5-2690 v3 @ 2.60GHz) with 256 GB of 
RAM.

http://www.cs.toronto.edu/%7eaheifets/ChemicalPlanning/BENCHMARK.tar.gz
http://www.cs.toronto.edu/%7eaheifets/ChemicalPlanning/BENCHMARK.tar.gz
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Table 1  Experimental result of  chemical reaction network construction and  synthetic route enumeration for  Heifets’ 
benchmark molecules

The numbers of OR and AND nodes indicate the corresponding number of nodes contained in the constructed chemical reaction network. The number of synthetic 
routes represents the number of enumerated possible routes in the network. The memory sizes of the network and total routes are calculated by converting objects 
into DOT files. The construction time indicates the computation time required for the construction of the network. The enumeration time indicates the computation 
time required to enumerate all possible synthetic routes from the network

Target molecule The number 
of OR nodes

The number 
of AND nodes

The 
number 
of edges

The number 
of synthetic 
routes

Memory size 
of the network

Memory 
size 
of total 
routes

Construction 
time (sec)

Enumeration 
time (sec)

29 61 149 70 10.9 KB 58.6 KB 2.68 2.91× 10(−2)

66 153 405 781 27.5 KB 1.15 MB 6.02 0.185

8 11 25 8 2.11 KB 7.33 KB 2.96 9.26× 10(−4)

22 29 58 32 5.38 KB 22.9 KB 2.57 9.01× 10(−3)

92 376 1040 127707 62.6 KB 311 MB 11.7 63.5

34 78 175 108385 13.1 KB 416 MB 6.33 97.6

17 19 42 12 4.00 KB 6.77 KB 4.30 6.20× 10(−4)

38 58 143 67 11.0 KB 64.5 KB 3.84 0.146

74 213 567 5213 36.4 KB 9.19 MB 6.35 0.645

45 93 208 1042 16.3 KB 178 MB 27.5 0.393

65 139 359 2520 25.9 KB 5.10 MB 9.85 0.346
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Table 1 shows the results of the construction of chemi-
cal reaction networks and enumerations for the target 
molecules.

In Table  1, benchmark molecules whose synthetic 
routes were designed by CompRet using the top 100 
reaction templates are shown. Note that the template set 
prepared in their study [34] consisted of 50 reactions that 
were selected to be suitable for synthesis of the bench-
mark molecules, although they succeeded in finding 
synthetic routes for most molecules in the benchmark. 
In Table  1, the second and third columns indicate the 
number of constituent OR and AND nodes, respectively, 
that is, the size of the chemical reaction network for the 
molecule depicted in the first column. The sizes of the 
generated chemical reaction networks differed signifi-
cantly between the molecules. The fourth column from 
the left shows the number of enumeration results of the 
synthetic routes extracted from each chemical reaction 
network. More than 100,000 synthetic routes have been 
successfully enumerated for the fifth and sixth molecules. 
This number may appear excessive considering the mol-
ecules; however, as reported in prior studies [27, 28], the 
number of synthetic routes can reach ≈ 105 depending 
on the molecules. Thus, the obtained results are consist-
ent with previous findings. The fifth and sixth columns 
denote the memory sizes of the constructed network and 

enumerated routes, respectively. Each object is converted 
into DOT format [48] to calculate the total amount of 
memory. The seventh and eighth columns show the 
generation time of the chemical reaction network and 
the calculation time of enumeration, respectively. It can 
be seen that the time for construction tends to be much 
longer than that for the enumeration of the chemical 
reaction network. This is because searching for applicable 
templates for a molecule, and then, using them to divide 
it into its substances are time-consuming tasks. Besides, 
enumeration from a larger and more complex network 
tends to require more time because the number of syn-
thetic routes in a chemical reaction network increases 
combinatorially. It should be noted that the benchmark 
originally consists of 20 molecules, half of which remain 
unsolved. This would be because the reaction templates 
we used did not include the reactions or starting materi-
als needed to solve the problems (Additional file 1).

Route recommendation for cetirizine
To examine the synthetic routes designed by CompRet 
in detail, we have applied CompRet to cetirizine, a drug 
whose reported synthetic route is relatively simple [49, 
50]. Here, the results of changing the template set size 
and the maximum depth md are shown, followed by the 
routes recommended by CompRet using three scoring 

Fig. 5  Searched synthetic routes for cetirizine with different template sets. The number of the routes for each chemical reaction network is counted 
at several time points. The labels size 50, size 100, and size 500 respectively indicate that the top 50, 100, and 500 reaction templates have been 
utilized. Counting is aborted when the total number of routes exceeds 1,500,000. The dotted line at the bottom indicates that the first synthetic 
route has been discovered
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methods: REF, MSCS, and STEP. We also performed 
additional experiments for several molecules; the results 
are shown in Fig. S5 in Additional file  1. First, the con-
struction of the chemical reaction network and the syn-
thetic routes for different template set sizes (top 50, 100, 
and 500) were investigated. The value of md was fixed to 
six. Figure 5 shows the time taken for the network con-
structions. The dotted line indicates that the first route 
has been found. Finding a single route for the top 100 
(orange line) and 500 (green line) template cases required 
an extended period of time, because the number of can-
didate routes increased exponentially with the increase in 
the number of templates. The blue line shows the result 
for size 50. In this case, the network construction was 
completed in approximately 30 seconds. In the cases of 
size 100 and 500, the number of routes increased signifi-
cantly; thus, enumeration was halted when the number 
of routes exceeded 1,500,000. In the case of size 500, the 

time taken to find 1,500,000 routes was less than 2,000 
seconds.

Figure  6 shows the scattered routes with the t-SNE 
embedding of the obtained synthetic routes, respectively. 
For ease of viewing, 1,000 randomly sampled routes are 
shown for each template set size. Three synthetic routes 
sampled from the distant plot at the top of Fig.  6 have 
different respective starting materials and reactions. The 
distribution of the synthetic routes designed for size 50 
does not seem to be a subset of those for size 100 because 
the total numbers of designed routes are different, but 
the sampled size is the same. Additionally, the precursors 
of cetirizine in the middle and left routes contain carbox-
ylic acid, while the precursor in the reported route [50], 
shown as the black sphere route in Fig.  8, contains car-
boxylate ester.

The results of constructing the chemical reaction net-
work with the respective md values of 4, 6, and 8 are 

Fig. 6  Sampled route distribution by t-SNE embedding. The blue, orange, and green points denote sampled routes from the network constructed 
with the top 50, 100, and 500 reaction templates, respectively. md is fixed to 6. For each setting, 1,000 routes are sampled out of millions 
of candidates. The black rhombus indicates a chemically unreasonable reaction. Such a reaction may sometimes occur because CompRet 
algorithmically enumerates synthetic routes
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shown in Fig. 7. The top 100 reaction templates were used 
throughout. The blue line in Fig. 7 is the result for md = 
4, where the chemical reaction network was constructed 
in less than 10 seconds, and 853 routes were obtained. 
The orange line is identical to that in Fig. 5, that is, the 
result of construction with md = 6. Enumeration was 
halted when the number of routes exceeded 1,500,000. 
Figure S4 in Additional file 1 depicts the scattered routes 
explored with each md using t-SNE embedding and sev-
eral examples of them. This visualization also shows a 
variety of routes explored by CompRet.

Finally, the results of route recommendation using the 
route scoring methods REF, MSCS, and STEP are shown 
in Fig.  8. The figure illustrates several examples of syn-
thetic routes recommended by these methods, explored 
using the top 500 templates and an md of 6. We also show 
the details of REF and MSCS distributions in Fig. S2 and 
S3, and Table S1 and S2 in Additional file 1. Compret suc-
cessfully obtained the synthetic route reported in the lit-
erature [50], denoted by the black sphere in Fig. 8. Using 
this known route as the reference for the REF methods, 
CompRet recommended the yellow route that changed 
chloride to bromine in the reference route. Its similar-
ity score was the highest (6.32) among the enumerated 
routes. This result indicates that the REF method is suit-
able for finding routes similar to the reference route. 

Using MSCS, CompRet recommended the orange and 
purple routes, whose MSCS scores were 1.80 (lowest) 
and 2.28, respectively. The two routes are different from 
the reference route; thus, the MSCS method would have 
the potential to provide a variety of synthetic routes. 
Using STEP, CompRet recommended the red and light 
blue routes, whose number of steps was the smallest. 
The green route also has a smaller number of synthetic 
steps. While these routes had smaller numbers of syn-
thetic steps, their starting materials and reactions dif-
fered. Consequently, the recommendation of routes that 
differed slightly from the known route, as well as diverse 
alternatives, demonstrates the effectiveness of the Com-
pRet framework.

Conclusions
In summary, we developed CompRet, a new recommen-
dation framework for CASP. It consists of three parts: 
DFPN-based chemical reaction network construction 
of a given target, enumeration of synthetic routes from 
a given chemical reaction network, and recommenda-
tion from the enumerated synthetic routes. In this study, 
the DFPN algorithm, which was employed to search for 
synthetic routes [34], is extended to construct a chemical 
reaction network. Furthermore, we have mathematically 
proven the validity of the enumeration algorithm. Since 

Fig. 7  Searched synthetic routes for cetirizine are enumerated, and the number of the routes for each chemical reaction network is counted at 
several time points. The value of md shows the maximum depth of the search algorithm. Counting is aborted when the total number of routes 
exceeds 1,500,000. The dotted line at the bottom indicates that the first synthetic route has been discovered
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a chemical reaction network is built for the target com-
pound each time, synthetic routes can be designed for the 
new compound as well. This algorithm works in general 
for a given appropriate chemical reaction network with 

a mathematical guarantee. CompRet was also applied 
to Heifets’ benchmark molecules and cetirizine. It was 
demonstrated to be able to construct chemical reaction 
networks, containing over a million routes in some cases, 
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with a relatively small computational cost. Furthermore, 
the recommendation and visualization methods could be 
useful to suggest a wide variety of conceivable synthetic 
routes, from a slight deviation from the existing route to 
significantly different alternatives.

The current version of CompRet is not at the stage of 
practical use and has room for improvement as follows. 
Naively enumerating all synthetic routes leads to expo-
nential growth of a chemical reaction network. Although 
the exponential growth is essentially difficult to over-
come, parallel tree search algorithms [51] have the poten-
tial to hand this problem. In-scope filter [18] or other 
graph pruning algorithms [21] will also provide solu-
tions. As shown in the demonstration of chemical reac-
tion network constructions, the explored synthetic routes 
depend on the template set and maximum depth md. The 
set of starting materials also affects the search results. 
Basically, CompRet can find a larger number of routes 
with a larger dataset and deeper depth setting. However, 
for practical applications, such a dataset and parameters 
should be determined adaptively based on the given case.

Further, template-based methods possess weaknesses 
such as computationally expensive subgraph isomor-
phism calculation [52]. In the future, it may be effective 
to construct chemical reaction networks by using refined 
template extraction methods [20], user-defined reaction 
templates, and template-free methods [9, 11, 52–54]. 
Although CompRet employs Reactor for retrosynthetic 
computation, other engines, such as RDChiral [55], ASK-
COS [19] and RTSA [15], would be effective alternatives. 
This study only considered simple methods for route 
recommendation. Designing synthetic route evaluation 
metrics that are effective in all situations is a challeng-
ing task because critical aspects of route design depend 
on the chemist’s objectives and/or needs [56]. However, 
various route evaluation methods, including SCScore 
with reformulation [12, 21] and other deep learning-
based methods [57], have been proposed in recent years. 
If these methods are appropriately combined with Com-
pRet, the customized framework could function as a 
user-friendly route recommendation system. The results 
obtained in this work are considered to be a successful 
example of bridging CASP and the field of discrete math-
ematics and developing an enumeration algorithm from a 
new perspective. This can enable the practical improve-
ment of CASP through algorithmic techniques. Finally, to 
improve usability of the framework, we plan to provide 
the Docker image and the web application of CompRet.

Availability and requirements

•	 Project name: CompRet
•	 Project home page: https​://githu​b.com/fulls​wing/

CompR​et
•	 Operating system(s): Platform independent
•	 Programming languages: Java, Python
•	 Other requirements: ChemAxon
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