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Abstract: Chimeric antigen receptor (CAR) T cell therapy can achieve outstanding response rates
in heavily pretreated patients with hematological malignancies. However, relapses occur and they limit
the efficacy of this promising treatment approach. The cellular composition and immunophenotype of
the administered CART cells play a crucial role for therapeutic success. Less differentiated CART cells
are associated with improved expansion, long-term in vivo persistence, and prolonged anti-tumor
control. Furthermore, the ratio between CD4+ and CD8+ T cells has an effect on the anti-tumor activity
of CART cells. The composition of the final cell product is not only influenced by the CART cell
construct, but also by the culturing conditions during ex vivo T cell expansion. This includes
different T cell activation strategies, cytokine supplementation, and specific pathway inhibition for
the differentiation blockade. The optimal production process is not yet defined. In this review,
we will discuss the use of different CART cell production strategies and the molecular background
for the generation of improved CART cells in detail.
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1. Introduction

Modern cancer therapies are increasingly relying on immunotherapeutic approaches. In particular,
immune checkpoint inhibitors and adoptive cell therapy (ACT), including tumor-infiltrating
lymphocytes (TILs), T cell receptor (TCR)-modified T cells, and chimeric antigen receptor (CAR)
T cells represent milestones in innovative strategies for cancer treatment. ACT showed limitations,
as the therapy with TILs only achieved encouraging results in selected highly immunogenic cancer
entities, such as malignant melanoma [1]. Human leukocyte antigen (HLA)-restricted antigen
recognition limits the application of TCR-modified T cells. The downregulation of HLA expression
can lead to tumor escape [2]. CART cells combine the dynamic of T cells with the antigen-specificity
of an antibody. They can bind the tumor antigen without antigen processing and independent of
HLA-mediated antigen presentation. CD19-specific CART cell therapy showed very promising results
in B cell malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia
(CLL), and Non-Hodgkin lymphoma (NHL) [3]. Recently, the U.S. Food and Drug Administration (FDA)
and the European Medicines Agency (EMA) approved Kymriah® (Tisagenlecleucel) for the treatment
of patients with relapsed/refractory (r/r) B cell precursor ALL [4] or diffuse large B cell lymphoma
(DLBCL) [5] and Yescarta® (Axicabtagene Ciloleucel) for the treatment of patients with r/r DLBCL
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and primary mediastinal B cell lymphoma (PMBCL) [6]. Additional tumor antigen targets are
currently under development, such as B cell maturation antigen (BCMA), for the treatment of multiple
myeloma [7]. In solid tumors, CART cells still have to overcome limitations in their therapeutic use [8].

Despite encouraging response rates, relapses occur and limit the efficacy of this promising
treatment approach. Therefore, it is critical to understand the current limitations of CART cell therapy
in order to utilize the full potential of this modern anticancer therapy [9,10]. The in vivo efficacy of
CART cells is linked to their proliferative capacity and long-term persistence to sustain sufficient
anti-tumor activity [11]. The in vivo expansion and persistence of CART cells is limited in certain
patients and it prohibits long-term anti-tumor control. One approach for improving the activity of
CART cells is the further development of CAR constructs and gene transfer systems. The reduced
fitness and dysfunction of T cells in the applied final cell product of certain patients might be another
reason for the impaired in vivo activity. Therefore, improving the mitochondrial fitness and biogenesis
may enhance the therapeutic efficacy of CART cell therapy and other ACTs [12]. Another approach for
improved therapeutic CART cell efficacy is the selection or modification of CART cell subpopulations
and subsets. The cellular composition of the final cell product has a major impact on the proliferative
capacity of CART cells and it is directly linked to in vivo efficacy [13–15]. Optimal T cell activation
and cultivation strategies for CART cell generation are crucial in producing efficient CART cells
with the preferred T cell immunophenotype and subsets. However, the manufacturing processes of
CART cells are not yet standardized. In this review, different strategies for the generation of highly
potent CART cells will be discussed.

2. The Role of Different T Cell Subtypes and Subpopulations for Efficient CART Cell Therapy

The number of transfused CART cells was assumed to majorly determine the therapeutic success
in an early stage of the CART cell therapy. However, above a certain threshold, the absolute
number of transfused CART cells does not directly correlate with in vivo expansion and therapeutic
success [3]. Consequently, other factors than the absolute number of transfused CART cells might
be more important for CART cell efficacy. For example, the cellular composition and phenotype of
the adoptively transferred T cells, including T cell subtypes and subpopulations, was identified as one
of the most critical success factors for efficient immunotherapy [16,17].

Although cytotoxic CD8+ CART cells, in particular, mediate direct tumor cell eradication, CD4+

T helper cells (Th cells) were identified as a highly potent and clinically important T cell subset [18].
It was demonstrated that CD4+ CART cells possess cytotoxic capacities that are comparable to
cytotoxic CD8+ CART cells [19]. In addition, a balanced ratio of CD4+ Th cells and CD8+ cytotoxic
T cells can positively influence the product regarding tumor eradication [13]. It was reported that
the treatment of B-ALL patients with a 1:1 ratio of CD4+ and CD8+ (CD4:CD8 ratio) CART cells could
achieve high remission rates [15]. For example, Lisocabtagene maraleucel (liso-cel; JCAR017) represents
an anti-CD19 CART cell product administered in a defined composition with a specific ratio of CD4+

Th CART cells and cytotoxic CD8+ CART cells [20]. The subsets must be isolated at the beginning of
the production and separately modified in order to gain a defined CD4:CD8 ratio, leading to a more
complex manufacturing process.

Moreover, the different Th cell subpopulations play an important role. The balance between
TEff cells and regulatory T (Treg) cells can influence the success of adoptive immunotherapy [21].
The infiltration of CD4+ Treg cells into solid tumors can decrease the anti-tumor activity of CD28-CD3ζ
signaling CART cells [22]. The deletion of the Lck binding moiety in the CD28 CAR endodomain of
a CD28-CD3ζ signaling CAR can enhance the anti-tumor efficacy in the presence of Treg cells [22].
It was reported that CART cells with the inducible T cell costimulator (ICOS) intracellular signaling
domain can stabilize the Th17 cell function and enhance the in vivo persistence of CART cells in mice
bearing human tumor xenografts [23]. Additionally, CART cells with the ICOS and 4-1BB intracellular
signaling domains showed enhanced efficacy in solid tumors when compared to the 4-1BB-based
CART cells [24].



Int. J. Mol. Sci. 2019, 20, 6223 3 of 21

Beside the T cell subtypes, the differentiation status of CART cells also plays a crucial role for
therapeutic success. Isolated and ex vivo expanded T cells provide intrinsic properties that have to be
considered in cellular immunotherapy. T cells vary in effector function, phenotypic characteristics, and
their appearance in peripheral blood (PB) of healthy donors and patients depending on age, previous
antigen exposure, and applied cytotoxic therapies due to their differentiation status [25]. In ACT,
terminally differentiated CD45RA+ CCR7− T effector-like cells (TEff cells) demonstrated enhanced
in vitro anti-tumor activity, whereas in vivo T cell activation, proliferative capacity, and persistence
were impaired [14]. These findings changed the approach and criteria for the selection of specific T cell
subsets for ACT and set the focus on less differentiated T cells: naïve-like T cells (TN cells) defined
as CD45RA+ CD45RO− CD95− T cells express the lymph node homing markers CCR7 and CD62L,
as well as CD28 and CD27 [17]. In contrast, the CD45RA− CD45RO+ CD95+ memory T cells can be
divided in CD62L+ CCR7+ T central memory-like cells (TCM cells) and in CD62L− CCR7− T effector
memory-like cells (TEM cells) [17]. Stem cell memory-like T cells (TSCM cells) represent a recently
described T cell subpopulation resembling TN cells in that they are CD45RA+ CD45RO− CCR7+ and
they express memory associated markers, such as CD95, and thereby exhibit properties of stem cells,
including high proliferative and self-renewal capacity [25,26]. TN cells and TSCM cells have the capacity
to persist and proliferate long-term in vivo after administration to the patient and they can possibly
lead to improved clinical outcome [16,26,27]. In particular, the ability of self-renewal and the capacity
to differentiate in all memory and effector subpopulations enable TSCM cells to sustain a long-lasting
anti-tumor activity by supplying the immune attack with more differentiated TEM cells and TEff cells
and refresh the pool of T cells with new less differentiated TSCM cells and TCM cells [17]. Consequently,
transfusion of a high number of less differentiated CART cells is favorable for therapeutic success.
The potential of individual T cell subsets is well described in the literature [17]. However, descriptions
regarding how the formation of a more favorable cellular composition and T cell phenotype in the final
CART cell product can be achieved during the production process are sparse.

3. Expression of Exhaustion and Homing Markers on CART Cells

Inhibitory tumor microenvironment binding inhibitory receptors, such as PD-1, CTLA-4, LAG-3,
and TIM-3 on T cells might also cause insufficient response rates of CART cells in certain tumor
entities, and therefore impair the immune attack [28,29]. A high expression of fatigue-related
inhibitory receptors PD-1 and TIM-3 on CD8+ T cells is associated with impairment of the T cell
function [30]. The dysfunction of tumor-specific T cells is a dynamic process that leads to antigen-driven
differentiation and it is initiated in an early stage of tumorigenesis [31]. Transcriptomic profiling
demonstrated that the expression of memory-related genes was enriched in CART cells from CLL
patients achieving complete remissions. In contrast, the analysis of CART cells from non-responders
revealed an upregulation of genes that mediate T cell differentiation, glycolysis, exhaustion, and
apoptosis [32]. Furthermore, a population of less differentiated CD8+ CART cells without PD-1
expression was identified to play a crucial role in tumor control [32]. In addition, lower expression of
PD-L1, PD-1, LAG-3, and TIM-3 was observed in lymphoma patients responding to CD19-specific
CART cells treatment. Whereas non-responders were expressing higher levels of immune-checkpoint
ligands on tumor cells and receptors on immune cells [33]. CART cells can provoke a reversible
antigen loss through trogocytosis by transferring the target antigen to T cells, leading to a decrease
of target density on cancer cells [34]. Additionally, T cell activity is reduced through the promotion
of exhaustion and fratricide T cell killing [34]. It was reported that CART cells encoding a single
immunoreceptor tyrosine-based activation motif (ITAM) showed an improved persistence of highly
functional CART cells [35]. Strategies that led to a disruption of the interaction between inhibitory
T cell receptors and their ligands expressed on cancer cells may improve the therapeutic efficacy
of cell-based therapies. The administration of a PD-1 blocking antibody increased the therapeutic
efficacy of CART cells [36]. Additionally, it was reported that anti-PD-1 single chain variable fragment
(scFv)-producing CART cells mediated potent therapeutic effects when compared to conventional



Int. J. Mol. Sci. 2019, 20, 6223 4 of 21

CART cells in preclinical models [37]. While these strategies aim to optimize CART cell therapy in vivo
after the administration to the patient, additional strategies are essential that improve the exhaustion
status and, in particular, possibly reduce the expression of inhibitory receptors on CART cells during
the manufacturing process.

Another challenge is the improvement of CART cell infiltration into the tumor site. The T cell
homing is the consequence of multiple molecular interactions. The repression of the anti-tumor immune
response of CART cells in the tumor site can be mediated by an immunologic barrier [38]. Different
homing properties constitute another distinctive feature of the different T cell subsets. While TN

cells, TSCM cells, and TCM cells tend to migrate into lymphoid tissue, the TEM cells and TEff cells
prefer peripheral tissue [25]. A stronger expression of the lymphoid homing marker CD62L and
CCR7 on less differentiated T cells is associated with increased anti-tumor activity in preclinical
models of ACT and might be beneficial for CART cells [27]. T cell extravasation, homing, and
persistence in the tumor microenvironment are essential aspects in overcoming current limitations
of CART cell therapy in solid tumors. It was demonstrated that CD28 costimulation could reduce
the inhibition of T cell proliferation mediated by the transforming growth factor β (TGFβ) [39].
The overexpression of CXCR2 can improve T cell migration into tumor sites [40]. The overexpression
of CCR2b on mesothelin-specific CART cells [41] and GD2-specific CART cells [42] led to enhanced
T cell tumor infiltration. It was reported that CD30-specific CART cells expressing CCR4 could mediate
an enhanced tumor control in a xenograft model [43]. NKG2D-specific CART cells could recruit
and activate endogenous antigen-specific cytotoxic CD8+ cells and CD4+ Th cells in the tumor site
in a CXCR3-dependent manner, leading to improved tumor eradication [44]. The modulation and role
of specific homing marker expression on CART cells has to be further examined in the future.

4. Optimization of the CART Cell Manufacturing Process

The major aspects of the CART cell manufacturing process are relatively standardized, whereas
clear differences can be identified in every single manufacturing step (Figure 1).
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Figure 1. Principles of current CART cell therapy. CART cell production includes initial T cell isolation
and enrichment, followed by T cell activation, T cell expansion, gene transfer of a CAR vector and
CART cell expansion. The final product is subjected to end-of-process formulation and cryopreservation.
Patients usually receive a lymphodepletion before CART cell administration.

The CART cell production process comprises the initial isolation and enrichment of the T cells [1],
CART cell preparation, including T cell activation [2], T cell expansion [3], gene transfer of a CAR vector
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while using viral or non-viral vector systems [4], followed by ex vivo CART cell expansion [5] (Figure 1).
The final cell product is subjected to end-of-process formulation and cryopreservation [6] (Figure 1).
Quality control testing is performed during the production as well as for the final cryopreserved
CART cell product for the integrity of the product. Cancer patients usually receive a lymphodepleting
treatment [7] before administration of the finally approved CART cell product [8] (Figure 1).

4.1. Isolation and Enrichment of T Vells

Peripheral blood mononuclear cells (PBMCs) are commonly obtained from PB. A ficoll density
gradient centrifugation is used for the removal of granulocytes, red blood cells, and platelets [45].
Alternatively, automated cell-washers can be employed to isolate T cells [46]. Further instruments
have been developed to facilitate or combine the manufacturing steps in one system, for example,
the Sefia™ Cell Processing System for isolation, harvesting, and final formulation of cellular products or
the CliniMACS Prodigy® for automated GMP-compliant manufacturing of various cell types [47,48].

The cellular composition at the beginning of the production process can influence the phenotype
of the CART cells, as patients with high number of tumor cells in the PB, such as untreated
CLL patients, showed low numbers of less differentiated T cells within their PBMCs [49].
Endogenous cellular elements can be a sink for supplemented cytokines and, therefore, may reduce
the cytokine-mediated effects on CART cells [50]. Therefore, the selection of CD3+ T cells might be
necessary in patients with a high number of circulating tumor cells in the PB. Magnetic bead-based
systems, such as the CliniMACS® system, with, for example, anti-CD3+, anti-CD4+, or anti-CD8+

microbeads can be used for the selection or depletion of specific T cell types within the PBMCs enabling
T cell expansion and administration of the final cell product with a defined CD4:CD8 ratio [45]. A focus
was on the development of clinical-scale selection, transduction, and cell expansion of these less
differentiated T cells in order to enrich TN cells, TSCM cells, and TCM cells [51–53]. The CART cell
production from defined T cell subsets seems to be very beneficial. However, a prior selection process
can complicate the manufacturing process and the optimal cellular composition at the beginning of
CART cell production is not yet defined.

4.2. T Cell Activation

T cell activation represents an indispensable step of the CART cell production. Optimal activation
should lead to sufficient T cell expansion without causing an immense T cell differentiation or activation
induced cell death (AICD). Antigen presenting cells (APCs), such as dendritic cells (DCs), mediates
physiological T cell activation. DCs come along with difficult laboratory and clinical application so that
DCs are not practical for CART cell therapy [45]. Simplified activation strategies have been developed
in order to avoid the usage of APCs as endogenous activators for ex vivo T cell activation.

4.2.1. Anti-CD3/Anti-CD28 Antibodies

An established concept to activate T cells represents the use of unconjugated monoclonal antibodies.
Coating of culture dishes or bags can use anti-CD3 monoclonal antibodies (OKT-3) with or without
anti-CD28 monoclonal antibodies. More common is the use of anti-CD3/anti-CD28 antibody coated
magnetic beads as artificial antigen presenting particles. A strong proliferative signal is provided
by the anti-CD3 antibodies, whereas the anti-CD28 antibodies can deliver a potent costimulatory
signal [54]. The beads allow for a continuous stimulation of the cells and they can be removed by
a strong electromagnet. It was reported that the cytokine production and, thereby, the T cell activation
was higher with beads when compared to activation with OKT-3 and interleukin (IL)-2 [52,54].
Furthermore, anti-CD3/anti-CD28 antibody coated magnetic beads may induce the generation of less
differentiated and potentially less senescent T cells as well as CART cells with enhanced proliferative
capacity and early in vivo anti-tumor responses as compared to stimulation with soluble OKT-3
and high-dose IL-2 [55]. Additional advantages concern the CART cell manufacturing process itself.
Enrichment and washing are more simplified, as the beads bound to cells can be magnetically retained.
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Moreover, the beads without the removal of the beads can perform selection and activation until
the end of expansion and the loss of expensive stimulating antibodies during media exchange can be
reduced [45]. Therefore, the anti-CD3/anti-CD28 antibody coated magnetic beads are assumed to be
the more promising activating strategy. In recent clinical trials, anti-CD3/anti-CD28 antibody coated
magnetic beads are frequently used, for example, for the production of Kymriah® (Tisagenlecleucel;
CTL019) [56,57] and Lisocabtagene maraleucel (liso-cel; JCAR017) [20], whereas for the production of
Yescarta® (Axicabtagene Ciloleucel; KTE-019) anti-CD3 antibodies with IL-2 are used [58].

It was reported that a specialized polymeric nanomatrix product (T Cell TransAct™) conjugated to
humanized recombinant CD3 and CD28 agonists together with a serum-free medium (TexMACS™)
can be used for T cell activation during CART cell production. This strategy led to an increase of TCM

cells with high CCR7 and CD62L expression, enhanced IL-2 production, and lower levels of exhausted
CD57+ cells when compared to activation with plate-bound anti-CD3/anti-CD28 antibodies [59].
However, PD-1 expression was not significantly influenced. This strategy had no significant influence
on the gene transfer efficiency. It was reported that this activation strategy mediated lower expansion,
supported the expansion of CD4+ T cells with a CD4:CD8 ratio of average 2:1, and additionally resulted
in lower cytolytic activity when compared to activation with the plate-bound anti-CD3/anti-CD28
antibodies [59].

4.2.2. Retronectin

Another activation strategy involves the recombinant human fibronectin fragment RetroNectin®

(Retronectin), which is mainly known to mediate increased gene transfer efficiency in retroviral
transduction. Its use as a T cell activator is less known. Retronectin together with plate-bound anti-CD3
or anti-CD3/anti-CD28 monoclonal antibodies used for T cell activation during the production of
GD2-specific CART cells [60] and CD19-specific CART cells [61] can promote a TN and TSCM cell
phenotype. A similar effect was reported for retronectin-mediated T cell activation, together with
anti-CD3 antibody or anti-CD3/anti-CD28 antibody coated beads for engineered AcGFP-expressing
T cells [62]. Retronectin-based T cell activation can increase the amount of cytotoxic CD8+ T cells and
possibly shift the CD4:CD8 ratio towards 1:1, whereas activation with anti-CD3/anti-CD28 induces CD4+

Th cell expansion [60–62]. Major disadvantages of retronectin-mediated T cell activation are poorer T cell
activation, insufficient T cell expansion, reduced gene transfer efficacy, and reduced cytokine secretion,
as it was reported for GD2-specific CART cells [60] and CD19-specific CART cells [61]. Additionally,
T cell activation with retronectin has to be performed with caution in patients with a high tumor
burden in the PB, as it can activate and stimulate persistent malignant B cells within the cell product,
particularly if no T cell selection process was performed prior to T cell activation at the beginning of
the production [61].

4.2.3. Artificial Antigen Presenting Cells

In recent studies, the T cell activation for CART cell production have been performed
with non-viable artificial APCs presenting a tumor-associated antigen (TAA) to activate T cells
in a CAR-dependent manner [63]. For this purpose, K-562 cells were genetically modified in order to
co-express costimulatory molecules and a TAA [63]. Lethally irradiated, these modified K-562 cells can
be used for numerical expansion of CART cells. The advantages of this strategy are that no expression
of HLA-A or HLA-B molecules is described, and that good manufacturing practice (GMP)-compliant
cultivation can be performed [63]. Additionally, these artificial APCs only stimulate the TAA-specific
CART cells.

In summary, the applied activation strategy can positively influence the cellular composition
and phenotype of the cell product. The predominant T cell activation strategy in recent studies is
the use of anti-CD3/anti-CD28 antibody coated magnetic beads, followed by monoclonal antibodies.
However, new alternative strategies are in development. The optimal strategy depends on tumor
entity and tumor burden in the PB.
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4.3. Gene Transfer System

Non-viral or viral gene transfer vectors transferring the corresponding genetic information into
the T cells mediate CAR expression on the T cell surface. Plasmid-based transposon/transposase
systems and viral vectors, including gamma-retroviral and lentiviral vectors as well as genome editing
and electroporation of naked DNA are applied for gene delivery in CART cell therapy.

4.3.1. Viral Transduction

Virus-based gene delivery systems are commonly used and they can achieve high transduction
efficiency rates [45]. Among the most frequently used viral vector systems are gamma-retroviral vectors
and lentiviral vectors, which both belong to the family of retroviruses [64]. Retroviruses mediate a stable
long-term gene expression, as the produced viral DNA is integrated into the host DNA [54]. Lentiviruses
need regulatory genes to neutralize the host cell defense and weaken the immune response, as well as
to regulate viral replication [64]. The risk of insertional mutagenesis and oncogenicity seems to be low
with lentiviral vectors [64]. Almost no genotoxic effects from gene transfer into differentiated cells,
including T cells, are known. Only a few cases of virus-mediated transformation in patients treated with
genetically modified T cells have been reported so far [65–67]. A lentiviral vector-mediated insertion
of the CAR transgene was observed in a CLL patient treated with CD19-specific CART cells, leading to
a disruption of the methylcytosine dioxygenase TET2 gene [65]. These TET2-disrupted CART cells
showed a modified T cell differentiation leading to a central memory phenotype at the maximum of
proliferation [65]. Although insertional mutagenesis is undesirable, the described TET2 modification
could be used for an optimization of CART cell therapy. An additional case of clonal expansion was
seen in a patient that was treated with CD22-specific CART cells caused by lentiviral vector-mediated
integration in the CBL gene that is important for the regulation of T cell responses [66]. Furthermore,
insertional mutagenesis led to tumor escape in a patient relapsing after treatment with CD19-specific
CART cells with a CD19-negative leukemia [67]. In this case, the CAR gene was unintentionally
introduced into a single leukemic B cell during the CART cell production process, which causes
a disguise from recognition [67]. To our knowledge, no accidental insertional has been yet reported for
gamma-retroviral vectors used for CART cell therapy. Therefore, gamma-retroviruses are still widely
used and seen as a safe vector system for clinical ACT.

Whereas, for the production of retroviral vectors stable packaging cell lines can be used,
the production of lentiviral vectors requires large amounts of plasmid DNA for transient transfection [68].
A prerequisite for efficient viral gene delivery is the presence of dividing T cells after T cell activation
particularly for retroviral gene transfer [69]. The intensive and expensive vector production is a major
disadvantage of viral gene transfer systems, as appropriate clean room facilities and the performance
of vector release testing for the retrovirally or lentivirally transduced cells are required [54]. This has
become a major bottle neck, even for big pharma in this field.

Lentiviral transduction is the predominantly used viral gene delivery system and, for example,
used for the production of Kymriah® (Tisagenlecleucel) for the treatment of ALL [4] or DLBCL [5] and
Lisocabtagene maraleucel (liso-cel; JCAR017) for the treatment of r/r aggressive NHL [20]. Retroviral
transduction was performed, for example, in the ZUMA-1 trial with Axicabtagene Ciloleucel for
the treatment of r/r large B cell lymphoma [58,70]. Viral vectors both mediate sufficient gene transfer
efficiency and lead to safe products. However, viral vector production remains to be very labor- and,
therefore, cost-intensive aspect in CART cell production.

4.3.2. Plasmid-Based Gene Delivery

Transposons/transposase systems constitute an alternative strategy for non-viral CAR gene delivery.
The “Sleeping Beauty” transposon/transposase system was employed for CART cell manufacturing [71].
This system consists of two DNA plasmids, one containing the transposon encoding the CAR
transgene and a second expressing the transposase that is necessary for excision and insertion of
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the transgene [69,72]. The use of a transposon system can increase the gene transfer efficiency when
compared to electroporation of naked DNA, revealed promising results for CART cell therapy and
it represents an economically beneficial strategy [45]. The advantage of this plasmid-based gene
delivery for CART cell therapy is a less expensive and labor-intensive production, as no GMP-grade
virus generation is necessary [69].

Plasmid electroporation was mainly used with 1st generation (1G) [73] and 3rd generation (3G)
CART cells [74]. The first clinical usage of the “Sleeping Beauty” transposon/transposase system for
CART cell therapy yielded encouraging results [75].

Analyses of the applied gene transfer system currently concentrate on transduction and clinical
efficacy, safety, and costs. The optimal gene transfer system is not yet defined, and further investigation
is necessary.

4.3.3. Genome Editing

Genome engineering tools, in particular, CRISPR/Cas9-based gene editing, represent an evolving
field for CAR-based therapies, enabling an efficient sequence-specific intervention in human
cells [76]. The CRISPR/Cas9 technology enables the specific genomic disruption of multiple gene
loci. The CRISPR/Cas9 system combined with an adeno-associated virus (AAV) vector repair matrix
was applied for the integration of the CAR encoding DNA into the T cell receptor α constant
(TRAC) locus provoking an uniform expression of the CAR, an improvement of T cell potency, and
an inhibition of T cell differentiation as well as of exhaustion [77]. Additionally, it was reported that
CRISPR/Cas9-mediated genome editing and lentiviral transduction was applied to produce PD-1
deficient CD19-specific CART cells, leading to enhanced anti-tumor and therapeutic efficacy [78].
Although multiple challenges, including efficiency, safety, and scalability, are a matter of concern,
CRISPR/Cas9-enhanced immune-gene cell therapy might further improve CART cell therapies [76].
Nevertheless, the full potential of genome editing in the context of CART cell-based immunotherapy is
not fully utilized and it has to be further examined in human clinical studies.

4.4. CART Cell Construct

The optimal composition of the CAR is crucial for efficient CART cell-based cancer immunotherapy.
CARs contain a scFv of an antibody as an extracellular binding domain for HLA-independent antigen
recognition, a transmembrane (TM) domain, and a CD3ζ chain as an intracellular signaling domain [79]
(Figure 2). Additional stability of the CAR can be obtained by a non-signaling extracellular spacer
domain between the scFv and the TM domain [80]. The length and composition of the spacer domain
can influence the CART cell function independently of the intracellular domain [80,81]. The spacer
domain often consists of an IgG hinge domain and a CH2-CH3 domain of an IgG-Fc [79].
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The CAR design has been further developed over several generations since its introduction
(Figure 3). 1G CARs were designed without a costimulatory domain and induced T cell activation
only by the primary signal via the CD3ζ signaling domain. CART cells relying only on CD3ζ for
signaling showed low cytokine production capacities, insufficient T cell expansion, and quickly became
anergic [82,83]. These CD3ζ-based CART cells dispose of a sufficient antigen-specific cytotoxic capacity,
however the T cell expansion was weak [79]. Therefore, the clinical results of patients suffering from
ovarian cancer [84], NHL [85], and neuroblastoma [86] treated with CD3ζ-based CART cells were
also limited. 2nd generation (2G) CARs were developed in order to achieve long-term persistence
and expansion as well as to prevent AICD and anergy [87]. The far-reaching change consisted
in the integration of a costimulatory domain, such as CD27 [88], CD28 [89,90], CD134 (OX40) [91],
or CD137 (4-1BB) [92,93]. This modification improved the in vivo properties of CART cells and
protected CART cells from AICD [94]. In vivo persistence was significantly influenced by the inserted
costimulatory domains [95]. It has been described that CD28, as a costimulatory domain, supports
stronger T cell expansion and improved tumor eradication [89,90], whereas 4-1BB, as a costimulatory
domain, is associated with prolonged persistence and ameliorates the development of exhaustion [93].
It was demonstrated that tonic CAR CD3ζ phosphorylation can provoke early exhaustion of CART cells
that limits antitumor efficacy [93]. Additionally, it was shown that CD28 costimulation increases and
4-1BB costimulation decreases exhaustion induced by ongoing CAR signaling [93]. While 2G CAR
only contain one costimulatory domain (CD28 or 4-1BB), the 3G CARs contain a second costimulatory
signal [96,97]. The combination of two costimulatory domains in a 3G CAR might have the potential
to combine these two advantages. The simultaneous infusion of 2G (CD28) and 3G (CD28/4-1BB)
CD19-specific CART cells in patients showed that the 3G CART cells had superior expansion and
persistence properties [98]. Furthermore, it was shown that the intracellular signaling activity of 3G
CART cells was higher than that of 2G CART cells, and probably led to superior cell proliferation [96].
First, clinical studies with anti-CD19 3G CART cells demonstrated efficacy and safety in patients with
B cell malignancies [99].
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Figure 3. Chimeric antigen receptor generations. The 1st generation CART cells induced T cell activation
only by the primary signal via the CD3ζ signaling domain. CART cells were further developed by
integration of a costimulatory domain in 2nd generation CART cells. The 3rd generation CART cells
consist of two costimulatory domains. The future 4th generation CART cells combine the vector with
enzymes, cytokines, and costimulatory ligands.
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Further development of the CAR led to 4th generation (4G) CARs and T cells redirected for
universal cytokine-mediated killing (TRUCKs). These novel 4G CARs express molecules due to
supplementary genetic modifications within the CAR construct to improve the therapeutic efficacy
of the CART cell therapy [100]. TRUCKs are CAR-redirected vehicles that can produce and release
a transgenic product, for example, a pro-inflammatory cytokine at the tumor site [100]. The recruitment
and activation of other components of the immune system can be achieved through the additional
expression of costimulatory ligands, such as 4-1BB-L [101] and CD40-L [102], or proinflammatory
cytokines, such as IL-15, IL-7, and IL-21 [103] leading to superior anti-tumor cytotoxicity. It was
reported that CD19-specific CART cells secreting IL-12 eradicate established tumor disease without
a prior conditioning regime [104]. It has to be mentioned that tumor-targeted IL-12 secreting T cells
became resistant against Treg cell-mediated inhibition [104]. The integration of a CAR-inducible IL-12
cytokine cassette leads to the secretion of IL-12 after CAR signaling, and thus to the accumulation and
maintenance of therapeutic levels of the cytokine in the targeted tissue, leading to the destruction
of TAA-expressing cells and TAA-negative tumor cells [105,106]. A disadvantage is that only
the antigen-expressing tumor sites can initiate the release of IL-12. This strategy has to be applied with
caution: use of cytokines with safe toxicity profiles and controlled release of cytokines are needed [107].
Moreover, it was reported that armored CART cells that have been modified to express degrading
enzymes showed enhanced capacity to infiltrate tumor sites [108].

Extensive research is currently ongoing for further optimizing CAR constructs. Most of
the protocols for CART cell generation are optimized for 2G and 3G CARs. Further analysis
will be necessary if novel production protocols have to be developed for these novel CART cell
therapy approaches.

4.5. T Cell Expansion

During the expansion of CART cells, the number of cells continuously increases, so that the volume
of culture medium has to be modified by means of more or larger tissue culture flasks or plates.
This immensely complicates the manufacturing process and it is not compatible with large-scale
production. Therefore, static culture bags have been developed, allowing a less manual open-handling,
as the connection by tubes can be performed under sterile conditions [45]. An alternative method
represents a rocking motion bioreactor, such as the Xuri™ Cell Expansion System and WAVETM

Bioreactor System, which utilize a perfusion regime to add nutrients as well as remove growth-inhibiting
substances, thereby simplifying the manufacturing process [109,110].

4.5.1. Stimulation with Cytokines

Besides the CAR vector and the T cell activation strategy, ex vivo stimulation with supplemented
γ-chain cytokines during the CART cell production process is another important factor that influences
the composition, quality, and phenotype of the final CART cell product. The receptors for cytokines of
the γ-chain family, such as IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, have a common CD132 or γ-chain.
The two most commonly used strategies for CART cell production are based on either IL-2 or IL-7, with or
without IL-15. So far, IL-2 was primarily used for T cell expansion in previous clinical studies [3,45,46].
For example, IL-2 is supplemented for the production of Yescarta® (Axicabtagene Ciloleucel) [70].
However, ex vivo T cell expansion in the presence of IL-2 can lead to a more differentiated and exhausted
phenotype and it can reduce T cell persistence [111]. Expansion with IL-7/IL-15 was shown to enhance
activation and proliferation when compared to IL-2 [60]. Additionally, it was reported that a combination
of IL-7/IL-15 promotes the survival and maintenance of less differentiated T cells, such as TN cells
and TSCM cells with high CD62L and CCR7 expression [112–114]. Moreover, the supplementation
of IL-7-/IL-15 mediated a higher expansion of CD4+ and CXCR3+ CD19-specific CART cells [114]
and NY-ESO-1-specific T cells [115] when compared to expansion with IL-2. It was reported that
supplementation of IL-15 alone can lead to reduced exhaustion marker expression, an increase of
anti-apoptotic properties, improved proliferation, and preservation of a TSCM phenotype as compared
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to IL-2 [116]. Moreover, IL-15 induced a reduction in mTORC1 activity, a decrease of glycolytic enzyme
expression, and enhanced mitochondrial fitness, thus leading to prevention of T cell differentiation [116].

IL-21 is another important member of the γ-chain family. It was reported that TILs expanded with
IL-21 showed a CD27+ CD28+ less differentiated phenotype with enhanced cytotoxic capacity [117].
In adoptive cell transfer, IL-21 can suppress antigen-induced differentiation of CD8+ T cells, whereas
IL-2 and IL-15 enhance the differentiation into terminally differentiated TEff cells [118]. Furthermore,
IL-21 mediated a higher expression of CD62L when compared to IL-2 and IL-15 as well as enhanced
antitumor activity [118]. The adoptive transfer of IL-21-stimulated CD19-specific CART cells resulted
in enhanced control of B cell malignancies in preclinical models [119].

In summary, the supplementation of cytokines during ex vivo expansion of CART cells is essential
and indispensable for CART cell manufacturing protocols. Current studies mainly rely on IL-2, IL-7,
IL-15, and IL-21. The optimal cytokine composition, as well as the role of other cytokines for CART cell
generation, is not clearly defined yet.

4.5.2. Inhibition of Specific Signaling Pathways

The supplementation of pathway inhibitors during ex vivo T cell expansion might cause
an interruption of T cell differentiation by the inhibition of specific signaling pathways, and thus shift
the T cell phenotype in the final CART cell product towards a less differentiated phenotype [120].
The possible targets include GSK3β, mTOR, AKT, and PI3K for specific pathway inhibition (Figure 4).
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The differentiation of naïve-like T (TN) cells and stem cell memory-like T (TSCM) cells into T central
memory-like (TCM) cells, T effector memory-like (TEM) cells, and highly differentiated T effector-like
(TEff) cells can be interrupted by molecules inhibiting key metabolic and developmental pathways.

It has been reported that the induction of the WNT-β catenin signaling pathway by GSK3β
inhibition might interrupt the T cell differentiation process and can generate CD8+ TSCM cells [121].

The PI3K-AKT-mTOR signaling pathway is crucial for T cell activation, survival, expansion,
migration, function, and differentiation [122]. mTOR plays a central role in T cell memory formation,
and the mTOR inhibitor rapamycin can mediate, in preclinical evaluation, a higher number of T memory
cells, increased expression of the lymph node homing marker CD62L, and the anti-apoptotic molecule
Bcl-2 [123]. It was reported that the supplementation of IL-15 during ex vivo CART cell expansion
could reduce mTORC1 activity and preserve a less differentiated phenotype [116]. The IL-15-mediated
preservation of a less differentiated T cell phenotype is most likely caused by reduced mTORC1 activity,
as CART cells ex vivo expanded with IL-2 and the mTORC1 inhibitor rapamycin showed similar
phenotypic features like CART cells expanded with only IL-15 [116]. It was shown that adoptively
transferred T cells showed improved anti-tumor activity after ex vivo AKT inhibition [124,125].

The B cell receptor (BCR) pathway inhibitor idelalisib, which is an inhibitor of
phosphatidylinosit-3-kinase p110δ (PI3Kδ), is currently approved for the treatment of patients with CLL
and follicular lymphoma. In addition to eliminating malignant B cells, idelalisib can degrade Treg cells,
and thereby reverse the immune tolerance of cancer cells [126,127]. The ex vivo treatment of CART cells
with a PI3Kδ inhibitor mediated higher amounts of less differentiated CCR7+ CD62L+ T cells and
improved the functional capacity of mesothelin-specific [128], CD33-specific [129], and CD19-specific
CART cells [49]. In healthy donors, the supplementation of IL-7/IL-15 during the production process led
to a very balanced CD4:CD8 ratio. However, CLL patient samples without prior T cell selection showed
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an unbalanced CD4:CD8 ratio with predominant CD4+ T cells that could be approximated towards
a 1:1 ratio by the supplementation of idelalisib during the manufacturing process [49]. The reduced
expression of exhaustion markers was another positive effect of the application of a PIK3δ inhibitor
during CART cell production [49,128]. The use of antagonists against PI3Kδ and the vasoactive intestinal
peptide (VIP) during ex vivo expansion of DLBCL patient T cells led to the inhibition of the terminal
T cell differentiation, reduced PD-1 expression, and improved T cell persistence in immune-deficient
mice [130]. The addition of these antagonists improved the expansion and gene transfer efficacy of
human anti-CD5 CART cells, as well as their cytotoxic capacity against CD5+ lymphoma cells [130].
This showed that a synergistic blockade is also a promising strategy for improving the expansion and
functional capacity of ex vivo expanded antigen-specific T cells [130]. Furthermore, it was reported
that the B cell adaptor for PI3K (BCAP) is also a regulator of CD8+ T cell differentiation and might be
another target for inducing the formation of specific T cell subpopulation [131].

The inhibition of the PI3K/AKT/mTOR pathway can lead to the down-regulation of c-Myc.
The treatment of T cells with the bromodomain and extra-terminal motif (BET) bromodomain inhibitor
downregulating c-Myc-dependent target genes [132] resulted in the enhanced expansion of CD8+

TSCM cells and TCM cells, improved the persistence and anti-tumor activity of CART cells in an ALL
model [133]. An increase of TN cells and TCM cells has also been reported in CD33-specific CART cells
that were treated five days after T cell activation for four days with BET inhibitors JQ-1 or iBET [134].

In summary, the ex vivo treatment with specific pathway inhibitors during the CART cell
manufacturing process might have a positive effect on CART cells and can, therefore, improve the final
CART cell product. The optimization of the usage of signaling pathway inhibitors for clinical application
will be the next step in further enhancing the efficacy of CART cell therapy.

4.6. Cryopreservation

The cryopreservation of CART cells at the end of production is mandatory for quality control tests
in most currently applied CART cell therapy approaches and it enables the transportation of the final
product from manufacturing sites to clinical centers. Moreover, the administration of the product is
more flexible, and patients could possibly receive multiple CART cell treatments. It was reported that
the cryopreservation of CART cells for up to 90 days did not hamper the viability, recovery, and gene
transfer efficacy of the cryopreserved CART cells [135]. Although the functionality of cryopreserved
CART cells directly after thawing was reduced, an overnight incubation at 37 ◦C led to recovery
from the harsh freeze-thaw process with restored functionality of the CART cells [135]. Additionally,
CART cells that have been cryopreserved and thawed immediately before transfusion showed similar
in vivo persistence and efficacy as fresh CART cells [136]. In summary, cryopreservation is a regularly
applied manufacturing step with obviously no significant impairment of the CART cell product.

5. Conclusions and Future Perspective

CART cell therapy represents a promising new therapeutic option for patients with hematological
malignancies and it might also become a therapeutic option for patients with solid tumors soon.
Even though FDA and EMA both approve first CART cell products, the expensive and highly variable
manufacturing processes are still a matter of debate. Improved CART cell therapy might be achieved by
the transfusion of a CART cell product with a favorable phenotype, including less differentiated
CART cells. Furthermore, costs may be reduced through more efficient production protocols.
The potential of anticancer immunotherapy improvement by optimizing the ex vivo expansion conditions
during the CART cell manufacturing process has not yet been fully exploited. Therefore, further efforts
are mandatory for standardizing and optimizing CART cell production protocols.
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Abbreviations

1G 1st generation
2G 2nd generation
3G 3rd generation
4G 4th generation
AAV Adeno-associated virus
ACT Adoptive cell therapy
AICD Activation induced cell death
ALL Acute lymphoblastic leukemia
APCs Antigen presenting cells
BCAP B cell adaptor for phosphoinositide 3-kinase
BCMA B cell maturation antigen
BCR B cell receptor
BET Bromodomain and extra-terminal motif
CAR Chimeric antigen receptor
CLL Chronic lymphocytic leukemia
CTLA-4 Cytotoxic T-lymphocyte-associated Protein 4
DCs Dendritic cells
DLBCL Diffuse large B cell lymphoma
EMA European Medicines Agency
FDA Food and Drug Administration
GMP Good manufacturing practice
HLA Human leukocyte antigen
ICOS Inducible T cell costimulator
IL Interleukin
ITAM Immunoreceptor tyrosine-based activation motif
NHL Non-Hodgkin lymphoma
LAG-3 Lymphocyte-activation gene-3
PB Peripheral blood
PBMC Peripheral blood mononuclear cells
PD-1 Programmed cell death protein 1
PI3K Phosphoinositide 3-kinase
PMBCL Primary mediastinal B cell lymphoma
r/r relapsed/refractory
scFv Single chain variable fragment
TAA Tumor-associated antigen
TCR T cell receptor
TCM cell Central memory-like T cell
TEff cell Effector-like T cell
TEM cell Effector memory-like T cell
TGFβ Transforming growth factor β
Th cell T helper cell
TILs Tumor-infiltrating lymphocytes
TIM-3 T cell immunoglobulin and mucin-domain containing-3
TN cell Naïve-like T cell
TM Transmembrane
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TRAC T cell receptor α constant
Treg cell Regulatory T cell
TRUCK T cells redirected for universal cytokine killing
TSCM cell Stem cell memory-like T cell
VIP Vasoactive intestinal peptide
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