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Abstract
The scientific literature continues to grow at an ever-increasing rate. Considering that thousands of new articles are published every week, it 
is obvious how challenging it is to keep up with newly published literature on a regular basis. Using a recommender system that improves the 
user experience in the online environment can be a solution to this problem. In the present study, we aimed to develop a web-based article 
recommender service, called Emati. Since the data are text-based by nature and we wanted our system to be independent of the number 
of users, a content-based approach has been adopted in this study. A supervised machine learning model has been proposed to generate 
article recommendations. Two different supervised learning approaches, namely the naïve Bayes model with Term Frequency-Inverse Document 
Frequency (TF-IDF) vectorizer and the state-of-the-art language model bidirectional encoder representations from transformers (BERT), have 
been implemented. In the first one, a list of documents is converted into TF-IDF–weighted features and fed into a classifier to distinguish 
relevant articles from irrelevant ones. Multinomial naïve Bayes algorithm is used as a classifier since, along with the class label, it also gives the 
probability that the input belongs to this class. The second approach is based on fine-tuning the pretrained state-of-the-art language model BERT 
for the text classification task. Emati provides a weekly updated list of article recommendations and presents it to the user, sorted by probability 
scores. New article recommendations are also sent to users’ email addresses on a weekly basis. Additionally, Emati has a personalized search 
feature to search online services’ (such as PubMed and arXiv) content and have the results sorted by the user’s classifier. 
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Introduction
The scientific literature is growing rapidly. Since more and 
more articles are published every year, it can be hard to keep 
track of relevant topics. In 2020 alone, PubMed (https://
pubmed.ncbi.nlm.nih.gov/) has indexed 1.4 million new sci-
entific papers. This equals an average of 27 000 papers every 
week. With such high numbers, it is impossible to find 
the most relevant publication without tediously browsing 
through long pages of search results. Considering that a per-
son can read an average of 200–250 words per minute and 
assuming that an average-length research article consists of 
5000 words, the reading time of an article is a minimum of 
20 min. According to this calculation, a researcher can read 
up to 168 articles per week by reading 8 h a day. These num-
bers show the difficulty of following the relevant literature for 
researchers with busy work routines. Recommendation sys-
tems play an important role in reducing this limitation and 
improving the search results by considering user profiles as 
well as domain data.

Recommender systems can be categorized into three 
approaches: collaborative filtering, content-based filtering 

and a hybrid approach. The content-based filtering approach 
considers the content similarity between users’ interests and 
the metadata of the articles (1, 2). Collaborative filtering offers 
suggestions based on the neighbor’s selection of the same 
user group (3). Lastly, the hybrid filtering technique aims to 
enhance recommendation quality by combining the first two 
methods (4). Content-based filtering is preferred when an item 
is information-rich, such as text data.

In a content-based recommendation system, a profile is cre-
ated for each item based on the information it contains, and 
each user has a profile based on the items they have liked or 
disliked in the past. Thus, a user profile defines the type of 
content related to that user. The purpose of the system is to 
find items whose content best matches the data stored in this 
user profile.

Since the approach is domain-specific, this means that it 
can deliver more precise results. It is easier to accurately tell a 
user’s interests by looking at the actual content, rather than 
inferring from a group of similar users. Furthermore, the 
major advantage of a content-based design is that it is inde-
pendent of the size of the user base. Recommendations will 
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be equally accurate whether it is just a single user or millions 
of users. Therefore, it can be applied even to small projects 
that might not have enough users to make a collaborative 
approach applicable. However, in this approach, it is impor-
tant to properly represent information in terms of features. 
In previous studies, articles are represented in different ways 
such as paper’s metadata (5), bag of words (6), vector space 
(7), key phrase (8, 9) and user’s given tag (10, 11). The TF-IDF 
method has been used as a similarity measure between items 
in article recommendation system studies (12, 13). There are 
many other studies (14–16) that use this method for the same 
purpose in different domains.

Recently, various approaches have been used in content-
based research article recommendation systems. Chaudhuri 
et al. proposed new features for improving the efficiency of 
the recommendation system, which are extracted indirectly 
from research articles. These features are keyword diversifica-
tion, text complexity, citation analysis over time and scientific 
quality measurement to represent a research article. The key-
word diversification indicates the uniqueness of the keywords 
to help variation in a recommendation. The text complexity 
measure helps match an article to a user based on the user’s 
understandability level. The citation analysis over time indi-
cates the relevancy of a paper. The scientific quality ranks 
the scientific merits of articles (17). Bulut et al. used the 
Doc2vec method to compare user profiles with candidate 
articles to be recommended. User profiles and candidate arti-
cles are represented as continuous vectors in the Doc2vec 
method. Similar articles to a user profile are recommended to 
that user (13). Hao et al. integrated academic network infor-
mation with content similarity information to improve the 
accuracy and efficiency of recommendations. The academic 
network consists of links between author nodes, paper notes 
and conference nodes (18).

In content-based recommendation systems, the task of 
determining the semantic similarity of texts is challenging. 
The recently announced pretrained transformers for language 
modeling such as bidirectional encoder representations from 
transformers (BERT) Embeddings from Language Models and 
Generative Pre-trained Transformer 3 are quite successful in 
overcoming this challenge. These pretrained machine learning 
models have achieved state-of-the-art performance for many 
natural language processing (NLP) tasks such as question 
answering, sentiment analysis and named entity recognition 
(19–21). There are also some recent studies using BERT in 
various ways in recommendation systems. Jeong et al. (2020) 
proposed a citation recommender model by using BERT to 
obtain embedding vectors from textual data and by using 
graph convolutional network to obtain embedding vectors 
from citation graphs (22). Sun et al. proposed a recommender 
system in which BERT architecture was adapted to take a set 
of items instead of text as input values (23). In these stud-
ies, the BERT model showed a stronger performance than the 
other models.

According to a literature survey on research-paper recom-
mender systems conducted by Beel et al. (24), out of the 
reviewed approaches, only 39% of research-paper recom-
mender systems could be used by users in practice. Of these 
recommender systems, 44% are still running and actively 
maintained. On the other hand, Beel et al. emphasized 
that most of the real-world recommender systems imple-
ment basic recommendation approaches that are not based on 
recent research (24). In order to bridge this gap, we focused 

our study on developing a web-based article recommenda-
tion service, which provides users with updated research
results.

The developed system adopts a content-based approach 
and uses supervised machine learning to create recommen-
dations. The classification task is to label each article with 
one of the two target classes ‘interesting’ and ‘irrelevant’. Two 
different approaches have been implemented for this task. 
In the first one, we represent articles with TF-IDF vectors 
and train a classifier with these vectors. The multinomial 
naïve Bayes classifier is used in the implementation since it 
provides probability distribution, which determines the prob-
ability that the input belongs to each class, as well as a class 
label. The recommended articles are ranked based on their 
probability scores. The second approach is based on a state-
of-the-art language model BERT. The pretrained BERT model 
is fine-tuned for the text classification task. The probability 
of class membership for each class label is obtained by the 
softmax function.

SCI-BERT is a pretrained language model that has the same 
architecture as BERT but is trained on a large corpus of sci-
entific text (25). The SCI-BERT paper reports a +1.92 F1 
score increase on average at the fine-tuned SCI-BERT mod-
els for various tasks in the biomedical domain such as named 
entity recognition, PICO extraction, relation classification and 
dependency parsing, compared to the BERT-base. However, it 
does not report any result for the text classification task in the 
biomedical domain, which we employ in this study. It reports 
the results of the text classification task on two data sets from 
multiple domains, which yield only a +0.49 F1 score increase 
on average. Therefore, large improvements are not expected 
from the use of SCI-BERT models instead of the BERT-base.

A website has been developed to display a weekly updated 
list of articles recommended for each user, which is avail-
able at https://emati.biotec.tu-dresden.de. The system also 
sends new article recommendations to users’ email addresses 
on a weekly basis. Furthermore, Emati has a personalized 
search feature to search from online services (such as PubMed 
and arXiv) and have the results sorted by the user’s clas-
sifier. The first approach, which is based on TF-IDF and 
multinomial naïve Bayes, is used in production as a clas-
sifier due to the need for scalability. The source codes of 
the project are available on the GitHub repository (https://
github.com/bioinfcollab/emati), where both naïve Bayes– and 
BERT-based approaches are available to the user as a classifier
option.

The advantages of Emati over similar systems such as arX-
ivDigest (26) can be listed as follows: arXivDigest provides 
recommendations over papers published on only arXiv. Emati 
currently provides recommendations from both PubMed and 
arXiv, which means it can offer a wider range and produce 
more accurate recommendations, especially for biomedical 
researchers. Also due to the flexible design of Emati, fur-
ther sources can be easily integrated. Moreover, arXivDigest 
requires the users to provide topics of their interests as key-
words at the registration and it basically returns the keyword 
search results to the users as recommended articles. It enables 
the researchers can register their own recommender system; 
however, it does not itself provide any complex recommender 
engine based on machine learning, collaborative filtering or 
another state-of-the-art recommendation method. Emati rec-
ommendations are based on a machine learning classifier, and 
users can upload the reference list of the articles they are 
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Figure 1. Weekly article recommendations of the user are listed on the homepage.

interested in to train the personalized classifier based on their 
interests.

Materials and Methods
Emati is a web-based recommender system that displays 
a weekly updated list of recommended scientific articles. 
Figure 1 shows a screenshot of the main page. The Emati 
database (DB) contains article information published in 
PubMed and arXiv since 2000, and it is updated every 
week with newly published articles. The approximate num-
ber of articles in the DB in 2022 is ∼15 million. The system 
allows fetching new content from any source, as long as it 
offers an Application Programming Interface for download-
ing papers with their title, abstract, journal, authors and date 
of publication stored in separate fields. Thus, it is possible to 
include multiple sources and expand the range of topics.

In order to get updated article recommendations, a user 
creates an account, logs in to the system and uploads their 
reference files. The file upload process is detailed in the 2.2.4 
training corpus subsection. The reference files are parsed to 
learn about the topics this particular user is interested in. 
Once the initial recommender model is initialized, it can be 
updated with the data collected from user interaction. Users 
click on the articles to read and click like or dislike buttons 
in accordance with their interests. With this information, a 
personal machine learning classifier is trained. When enough 
new interactions are detected, the classifier is retrained to keep 
itself up-to-date. The trained model is used to create new 
weekly content for the user. A combination of percentage and 
absolute interactions is used as the number of new interactions 
required to trigger retraining. Whatever case occurs first trig-
gers the retraining. The percentage threshold is the percentage 
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Figure 2. (a) High-level system design that shows how components of the system are connected and communicate with each other. (b) Data flow 
diagram for the creation of recommendations. (c) Personalized search pipeline that shows how a query term is searched from the search engine and 
returned results are reordered by the classifier.

in relation to total interactions so far. For example, a user 
has clicked/liked/disliked 100 articles in total. A threshold of 
0.1 means that 100 * 0.1 = 10 new interactions since the last 
training are needed to train the classifier anew. The absolute 
threshold is the absolute number of new interactions required 
to trigger retraining. These parameters are set to 0.1 and 10 
by default, respectively.

General structure of the system
The system is composed of two separate servers. Figure 2(a) 
shows the high-level system design of the project. The code 
implemented during this study resides within the Django 
project. The machine learning aspects of this project are also 
implemented in Python using the scikit-learn library.

Elasticsearch is the search engine responsible for the full-
text search feature. Django communicates with the search 
index by sending requests to Elasticsearch’s web interface. 

Elasticsearch consists of a search index managed by a server 
that provides an HTTP web interface. By sending requests to 
that server, it is possible to query the search index or add new 
documents. There is also an official Python client for Elas-
ticsearch that takes care of handling requests and responses 
(https://github.com/elastic/elasticsearch-py, accessed 30 Octo-
ber 2021). This makes it very easy to communicate with the 
search index from within the Django project.

Recommender model
The recommender model is based on a classification task that 
is used to label each article with one of the two target classes 
‘interesting’ and ‘irrelevant’. Since our ultimate goal is to 
rank articles according to how interesting they are, we need 
not only a binary classification but also their probability of 
belonging to a particular target class. This requirement was 
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met by using the multinomial naïve Bayes classifier and the 
BERT classifier with a softmax function in the implementa-
tion of this study. Since those classes are mutually exclusive, 
their scores will always add up to 1. In other words, if an arti-
cle is considered interesting with a probability of 80%, then 
it must be irrelevant with a probability of 20%.

Figure 2(b) shows the data flow during the creation of 
new recommendations. The Ranker will take a list of articles 
together with the classifier of a single user. It then calculates 
the scores for each article. These scores indicate the probabil-
ity with which an article belongs to the class titled interesting. 
For the best scoring articles, the Ranker will create Recom-
mendation objects that contain references to the user and that 
specific article together with the computed score. By saving 
only the best scoring recommendations, we also reduce the 
required data storage.

Multinomial naïve Bayes
Multinomial naïve Bayes classifier, which is still a popular 
model for text classification, is used in this study. A naïve 
Bayes classifier outputs a maximum a posteriori prediction 
where the posterior probabilities for the levels of the target 
feature are computed, assuming that the descriptive features 
are conditionally independent in an instance given a target fea-
ture level (27). The naïve Bayes model is defined as follows: 

𝑀(𝑞) = 𝑎𝑟 𝑔𝑚𝑎𝑥 𝑙 ∈𝑙𝑒𝑣𝑒𝑙𝑠(𝑡) ((
𝑚

∏
𝑖=1

𝑝(𝑞[𝑖] |𝑡 = 𝑙)) ∗ 𝑝(𝑡 = 𝑙))

where t is the target feature with a set of levels, levels(t), and 
q is the query instance with a set of descriptive features, q[1], 
…, q[m].

Feature generation and classification
Our data set consists of the article’s title and abstract, the 
journal it was published in, the list of authors and the date 
of publication. These data can be used to categorize a doc-
ument into ‘interesting’ and ‘irrelevant’. The text is split into 
words that are then weighted according to the TF-IDF weight-
ing scheme. Each document is represented by a vector of these 
features. The vectors are then fed into the multinomial naïve 
Bayes classifier.

During training, the algorithm will learn all words present 
in the corpus. Since each user’s field of interest is differ-
ent, each training corpus will be different as well. This 
also means that all users will have a personalized vocabu-
lary of words that are known to their classifier. Each user’s 
final model, therefore, consists of a vectorizer and a classi-
fier. The vectorizer represents the learned vocabulary. It is 
responsible for converting a list of documents into vectors 
of TF-IDF–weighted features. During the training process, 
the vectorizer learns the weights based on the given corpus. 
The TF-IDF vectorizer uses the corpus from the training data. 
So while creating recommendations from new articles, it can 
vectorize only existing terms in that corpus. The classifier is 
responsible for the actual categorization task. It takes a list of 
feature vectors and returns a vector of probabilities for each 
document, which indicates the likeliness with which it belongs 
to one of the available classes.

Bidirectional encoder representations from transformers
BERT is one of the most popular natural language mod-
els which is mainly divided into two stages: pretraining and 
fine-tuning. It has been pretrained to learn deep bidirectional 
representation from the unlabeled text. It is designed to per-
form fine-tuning using labeled text for various NLP tasks 
after pretraining (19). The BERT model uses a large corpus 
comprising BooksCorpus (800 M words) (28) and English 
Wikipedia (2500 M words) for the pretraining. In fine-tuning, 
the BERT model is initialized with pretrained parameters and 
then trained on a downstream task, which is text classification 
in our case, by simply fine-tuning all pretrained parameters. 
The self-attention mechanism in the transformer enables the 
modeling of multiple downstream tasks by replacing appro-
priate inputs and outputs.

BERT’s most superior feature is to generate contextual-
ized word representations. However, it also brings some 
drawbacks. The model is huge due to the training structure 
and large corpus. It is slower to train compared to shallow 
machine learning algorithms. It is also very compute-intensive 
at inference time, which means that it can become costly if 
someone wants to use it in production at scale. A single BERT-
base model checkpoint is ∼1.3 GB in size. Moreover, it is 
stated that the fine-tuning examples in the BERT paper (19), 
which use BERT-base, should be able to run on a graphics 
processing unit that has at least 12 GB of random access mem-
ory (RAM) using the hyperparameters given in https://github.
com/google-research/bert. In a multiuser system where each 
user’s own profile is created and updated over time, such high-
capacity hardware requirements increase costs significantly as 
the number of users increases.

Training corpus
As already stated earlier, the recommender system works on 
scientific articles. But naturally, the system has no data on 
a newly signed-up user. To overcome this problem, which is 
also referred to as the ‘cold-start’ or ‘new-user’ problem, the 
system provides users with the possibility to upload reference 
files from the ‘Settings’ menu, as shown in Figure 3. Currently 
supported file formats are BibTeX (.bib), RIS (.ris) and End-
note XML (.xml). These files contain a list of articles the user 
has cited in the past. This makes it possible to infer the field 
they are working on. The reference files contain the same type 
of data that our system is working with (title, journal, author 
and abstract) and already store it in separate fields. Thus, they 
can be easily parsed and fed into the algorithm. If the abstract 
of an article is not already provided in the reference file, the 
system queries the article title from the sources and includes 
the abstract if available. Users can also upload a PubMed ID 
(PMID) list of articles as a text (.txt) file or save the PMIDs in 
a text area provided in the ‘Settings’ menu. The system queries 
PubMed by the provided PMIDs and fetches the article infor-
mation such as title, journal, author and abstract. According 
to a current study (29), the increase of the Area Under the 
Curve value when full texts were used instead of abstracts 
ranges from 0% to 9% across six different text mining tasks, 
and the median was 3.5%. Since the improvement expected in 
the performance is not so large compared to the reduced scal-
ability and increase in resources needed, we decided to use 
abstracts in this study.

The data points collected this way serve as positive training 
samples—they define the ‘interesting’ class. A set of randomly 
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Figure 3. Reference files are uploaded from the Settings menu.

picked articles are used as negative samples. The training 
corpus is filled with random articles until there is an equal 
amount of positive and negative samples. Once the initial 
recommender model is initialized, it can be updated with 
the data collected from user interaction. Every user interac-
tion is logged so that a classifier can be retrained regularly 
with an ever-increasing corpus. Implicitly, this is done by 

incorporating the articles that the user clicked on to view 
their details since it might be an indication of their inter-
est. More explicit feedback is provided by the website in the 
form of like and dislike buttons. The collected feedback is 
weighted higher than the logged click since the user explicitly 
tells the system their opinion. In other words, clicked articles 
have less (50% by default) weight than liked articles while 
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training a classifier since ‘like’ is stronger evidence rather than 
‘click’. Also with disliked articles, a better negative training 
set is obtained. During the first training, the negative samples 
consisted only of randomly picked articles, meaning that the 
system tried to discern ‘interesting’ articles from the ‘average’ 
article. But it cannot make a clear distinction since it does not 
know the true bounds of the ‘interesting’ class—the borders 
are fuzzy. By using articles that were considered ‘interesting’ 
by the engine but labeled ‘irrelevant’ by the user, the true 
edge of the ‘interesting’ class can be discovered and the border 
becomes sharper.

Results and Discussion
In order to evaluate the proposed recommendation system, we 
conducted some necessary experiments on several data sets for 
different use-case scenarios. All the experiments were imple-
mented using Python on a Debian GNU/Linux 10 (buster) 
and run on an Intel(R) Xeon(R) E5-2650 v2 @ 2.60 GHz cen-
tral processing unit and 256 GB RAM. Both the naïve Bayes 
with TF-IDF vectorizer and BERT-based approaches have 
been implemented. The multinomial naïve Bayes algorithm 
was implemented using scikit-learn. The pretrained ‘BERT-
base-uncased’ model has been downloaded and fine-tuned for 
the text classification task using the HuggingFace Transform-
ers library on the data sets detailed later. The text data are 
tokenized by using the BERT tokenizer and fed to the BERT 
model. The input token length is 300, which is the approxi-
mate length of an abstract. The parameters set for fine-tuning 
are as follows: the number of training epochs is 3. Batch sizes 
for training and evaluation are set to 32 and 64, respectively. 
The best model is loaded to be used for inference at the end 
of training.

A 10-fold cross-validation scheme has been implemented to 
evaluate the naïve Bayes models. n-fold cross-validation splits 
the training data into n equal parts. A model is trained by n
− 1 parts and tested by one part. This process iterates n times 
until all parts are used in the training and test process. To be 
more specific, the split ratio is 90:10 per iteration in our case. 
The hold-out validation method has been used to evaluate the 
BERT models. The split ratio is 80:20.

A researcher use case with a particular research focus
A new-user account has been created, and a BibTeX file con-
taining positive training examples has been generated and 
uploaded to Emati. In order to create a user profile for 
a researcher who is interested in biology with a specific 
focus on liquid–liquid phase separation (LLPS), 52 protein 
names that are common in four LLPS DBs (30–33) have been 
queried in PubMed along with related keywords such as phase 
separation, phase transition, condensate and membraneless 
organelle. The articles published in journals with an impact 
factor have been filtered out in the results to create a pos-
itive data set. As a result, the reference file contained data 
of 300 articles. The same number of negative samples has 
been randomly selected among the downloaded PubMed arti-
cles published between 1 May 2021 and 10 July 2021. Two 
more example user profiles have been created separately for 
the researchers who are interested in the topics of ‘neurode-
generative diseases’ and ‘antibiotics resistance’. These two 
terms have been queried in PubMed. The articles published 
in journals with an impact factor have been filtered out in 

the results to create positive data sets from indexed jour-
nals. As a result, the data of 7048 and 6852 articles have 
been uploaded to the system as positive samples for example 
user profiles who are interested in the topics of neurodegen-
erative diseases and antibiotics resistance, respectively. The 
same number of negative samples has been randomly selected 
among the downloaded PubMed articles published in 2021.

The performance values obtained by the experiments using 
both the naïve Bayes and BERT models are given in Tables 1 
and 2. BERT models provided more accurate results com-
pared to naïve Bayes models for all researcher profiles. We also 
have subsampled 15 random samples from each constructed 
positive data set and trained models using them to observe 
the training performance of the models when users provide a 
small set of positive examples. When using smaller training 
sets, the performance drop of BERT models was quite greater 
than that of naïve Bayes. The naïve Bayes performed better on 
small data sets. 

A curator use case with a focus on a model organism DB
Model organism DBs are biological DBs that holistically pro-
duce, source and blend species-specific information by putting 
expert knowledge together with bioinformatics and literature 
curation. DB curators are hired experts who read articles, 

Table 1. Training performance values obtained by the validation of naïve 
Bayes models trained with three different researcher profiles

Researcher 
profile LLPS proteins

Neurodegenerative 
diseases

Antibiotics 
resistance

Data set 
size

Large 
(300 * 2)

Small 
(15 * 2)

Large 
(7048 * 2)

Small 
(15 * 2)

Large 
(6852 * 2)

Small (15 * 2)

Precision 0.95 0.95 0.83 0.7 0.88 0.65
Recall 1 0.9 0.96 1 0.99 1
F-measure 0.98 0.95 0.89 0.82 0.93 0.79

Table 2. Training performance values obtained by the validation of BERT 
models trained with three different researcher profiles

Researcher 
profile LLPS proteins

Neurodegenerative 
diseases

Antibiotics 
resistance

Data set 
size

Large 
(300 * 2)

Small 
(15 * 2)

Large 
(7048 * 2)

Small 
(15 * 2)

Large 
(6852 * 2)

Small (15 * 2)

Precision 1 0.5 0.97 0.33 0.98 0.66
Recall 0.98 1 0.97 1 0.98 1
F-measure 0.99 0.67 0.99 0.5 0.98 0.8

Table 3. The number of positive examples in the FlyBase, ZFIN and MGI 
data sets

DB name FlyBase ZFIN MGI

No. of articles in 2019 cited in the DB 2825 3330 12 744

Table 4. Training performance values obtained by the validation of naïve 
Bayes and BERT classifiers trained with the FlyBase, ZFIN and MGI data 
sets

 Naïve Bayes (10-fold cv) BERT (train/test split 80:20)

DB name FlyBase ZFIN MGI FlyBase ZFIN MGI
Precision 0.97 0.97 0.98 0.98 0.97 0.94
Recall 0.82 0.75 0.85 0.97 0.94 0.98
F-measure 0.89 0.84 0.91 0.97 0.95 0.96
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extract useful information and place that information into 
searchable DBs.

Considering that the curators may be potential users of the 
proposed system, some retrospective experiments have been 
carried out on FlyBase (http://flybase.org/), The Zebrafish 
Information Network (ZFIN) (http://zfin.org/) and Mouse
Genome Informatics (MGI) (http://www.informatics.jax.
org/), which are model organism DBs for fruit fly, zebrafish 
and mouse, respectively. The DBs provide the information 
of the articles they use as evidence for their annotations. In 
our experiments, we have extracted those articles published 
in 2019 to be used as a positive training set while training 
recommender models. The number of articles extracted from 
each DB is given in Table 3. The same number of random 
articles published in 2019 has been collected from PubMed 

as negative examples. Table 4 shows the precision, recall and 
F-measure values of the trained models for each DB based on 
the implemented validation scheme.

The models trained on the full 2019 training data have 
been used to create recommendations for the first, second and 
third weeks of 2020. The system recommendations have been 
compared with the articles published in corresponding weeks 
which were already cited by the DBs. Precision@50 (precision 
at top 50 Emati recommendations) and Recall@n for different 
n values have been computed for each DB (Tables 5–7).

The training performance of the naïve Bayes classifiers 
trained using the same number of positive and negative exam-
ples is quite high with F-measures ranging from 0.84 to 0.91. 
However, since thousands of new papers are published in 
a week, the task of recommending weekly articles is much 

Table 5. Recommendation performance values of the classifiers trained with the FlyBase data set, based on the first 3 weeks of 2020

 Naïve Bayes classifier  BERT classifier

n (no. of weekly 
articles in FlyBase) Recall@n Precision@50 Recall@n Precision@50

First week of 2020 58 11/58 = 0.19 11/50 = 0.22 33/58 = 0.57 29/50 = 0.58
Second week of 2020 66 23/66 = 0.35 17/50 = 0.34 48/66 = 0.73 39/50 = 0.78
Third week of 2020 46 15/46 = 0.33 17/50 = 0.34 26/46 = 0.57 27/50 = 0.54

Table 6. Recommendation performance values of the classifiers trained with the ZFIN data set, based on the first 3 weeks of 2020

 Naïve Bayes classifier  BERT classifier

n (no. of weekly 
articles in ZFIN) Recall@n Precision@50 Recall@n Precision@50

First week of 2020 178 63/178 = 0.35 33/50 = 0.66 108/178 = 0.61 48/50 = 0.96
Second week of 2020 38 5/38 = 0.13 9/50 = 0.18 28/38 = 0.74 31/50 = 0.62
Third week of 2020 58 12/58 = 0.21 11/50 = 0.22 42/58 = 0.72 42/50 = 0.84

Table 7. Recommendation performance values of the classifiers trained with the MGI data set, based on the first 3 weeks of 2020

 Naïve Bayes classifier  BERT classifier

n (no. of weekly 
articles in MGI) Recall@n Precision@50 Recall@n Precision@50

First week of 2020 505 102/505a = 0.20 27/50 = 0.54 170/505 = 0.34 37/50 = 0.74
Second week of 2020 151 52/151 = 0.34 20/50 = 0.40 49/151 = 0.32 30/50 = 0.60
Third week of 2020 184 28/184 = 0.15 19/50 = 0.38 63/184 = 0.34 31/50 = 0.62

aThe number of weekly Emati recommendations < n.

Figure 4. Average recommendation performances of the classifiers trained with the FlyBase, ZFIN and MGI data sets in terms of (a) Recall@n and (b) 
Precision@50.

http://flybase.org/
http://zfin.org/
http://www.informatics.jax.org/
http://www.informatics.jax.org/
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Table 8. Training time and size of the naïve Bayes and BERT models trained 
on the LLPS and MGI data sets

 Model name

 Naïve Bayes  BERT

Data set 
name

Data set 
size

Training 
time

Model 
size

Training time Model 
size

LLPS 300 * 2 0.32 s 1.1 MB 18 min 45 s 1.3 GB
MGI 12 744 * 2 9.34 s 13 MB 12 h 56 min 

12 s
1.3 GB

harder than distinguishing positive and negative examples in a 
balanced data set. Therefore, it is reasonable that the precision 
and recall values given in Tables 5–7 are relatively lower. On 
the other hand, the BERT models obtained outstanding results 
for the recommendation task. The recommendation perfor-
mance values of fine-tuned BERT models are significantly 
higher than naïve Bayes models. Figure 4 illustrates the 3-week 
average recommendation performance of classifiers trained 
with the FlyBase, ZFIN and MGI data sets, whose sizes are 
given next to their names.

Model training time and size evaluation
The training time of each model trained on the smallest (LLPS) 
and largest (MGI) data sets used in the experiments is given 
in Table 8. The size of the data set and the complexity of 
the model are highly related to the training time. The sizes 
of BERT models are huge due to the training structure and 
large corpus compared to the naïve Bayes models, as shown 
in Table 8. The naïve Bayes model sizes include both vectorizer 
and classifier. 

Personalized search
The system provides a personalized search feature. Users can 
search articles’ content and have the results sorted according 
to their classifier. This allows for better search results because 
the system already knows which topics are relevant to the user 
without having to explicitly narrow down the search query. 
The search pipeline is illustrated in Figure 2(c). Instead of 
querying an online service (such as PubMed) for every search 
request, which slows down the search, the design is centered 
on a DB storing all fetched articles. Searching is done on a 
local search index. The index is updated regularly with new 
publications.

Conclusion and future work
We have developed a web-based article recommender service 
which can be accessed at https://emati.biotec.tu-dresden.de. It 
displays a weekly updated list of articles based on the users’ 
profile and sends it to users’ emails on a weekly basis. It 
has also a personalized search feature to search online ser-
vices’ (such as PubMed and arXiv) content and have the 
results sorted by the user’s classifier. The potential users of 
the recommender system are scientific researchers who want 
to keep up-to-date with the scientific literature. For example, 
model organism DB curators who read the currently pub-
lished relevant articles, extract useful information and place 
that information into searchable DBs are potential users to 
highly benefit from the system. In addition, the system also 
might be useful for PhD students, postdoctoral researchers or 

principal investigators who want to follow current literature 
related to their research interests, as well as research group 
members who want to present current articles in the journal 
club.

The system contains a content-based recommender using 
supervised machine learning to classify articles as ‘relevant’ 
and ‘irrelevant’ to the user. Two different supervised learning 
approaches, namely the naïve Bayes model with TF-IDF vec-
torizer and the state-of-the-art language model BERT, have 
been implemented. The training performance of naïve Bayes 
models trained on small data sets was higher than that of 
fine-tuned BERT models. On the other hand, BERT mod-
els showed outstanding recommendation performance in the 
experiments using test data sets from model organism DBs. 
Due to the need for scalability, the currently deployed ver-
sion of Emati is based on the TF-IDF vectorizer and the naïve 
Bayes classifier approach. The BERT fine-tuning implementa-
tion is also available as an option in the source code which is 
provided at https://github.com/bioinfcollab/emati.

Currently, the system sources new content from PubMed 
and arXiv. In the future, it could still be extended by incorpo-
rating even more additional services as sources.
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