
Database, 2022, 1–10
DOI: https://doi.org/10.1093/database/baac104
Original article

Emati: a recommender system for biomedical literature
based on supervised learning
Özge Kart 1,2, Alexandre Mestiashvili1, Kurt Lachmann1, Richard Kwasnicki1 and
Michael Schroeder 1,*

1Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universit ̈at Dresden, Tatzberg 47-49,
Dresden 01307, Germany
2Department of Computer Engineering, Dokuz Eylül University, Tinaztepe Campus, Buca 35160 Izmir, Turkey
*Corresponding author: Tel: +49 351 463-40062; Email: michael.schroeder@tu-dresden.de

Citation details: Kart, Ö., Mestiashvili, A., Lachmann, K. et al. Emati: a recommender system for biomedical literature based on supervised learning.
Database (2022) Vol. 2022: article ID baac104; DOI: https://doi.org/10.1093/database/baac104

Abstract
The scientific literature continues to grow at an ever-increasing rate. Considering that thousands of new articles are published every week, it
is obvious how challenging it is to keep up with newly published literature on a regular basis. Using a recommender system that improves the
user experience in the online environment can be a solution to this problem. In the present study, we aimed to develop a web-based article
recommender service, called Emati. Since the data are text-based by nature and we wanted our system to be independent of the number
of users, a content-based approach has been adopted in this study. A supervised machine learning model has been proposed to generate
article recommendations. Two different supervised learning approaches, namely the naïve Bayes model with Term Frequency-Inverse Document
Frequency (TF-IDF) vectorizer and the state-of-the-art language model bidirectional encoder representations from transformers (BERT), have
been implemented. In the first one, a list of documents is converted into TF-IDF–weighted features and fed into a classifier to distinguish
relevant articles from irrelevant ones. Multinomial naïve Bayes algorithm is used as a classifier since, along with the class label, it also gives the
probability that the input belongs to this class. The second approach is based on fine-tuning the pretrained state-of-the-art language model BERT
for the text classification task. Emati provides a weekly updated list of article recommendations and presents it to the user, sorted by probability
scores. New article recommendations are also sent to users’ email addresses on a weekly basis. Additionally, Emati has a personalized search
feature to search online services’ (such as PubMed and arXiv) content and have the results sorted by the user’s classifier.

© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

Database URL: https://emati.biotec.tu-dresden.de

Introduction
The scientific literature is growing rapidly. Since more and
more articles are published every year, it can be hard to keep
track of relevant topics. In 2020 alone, PubMed (https://
pubmed.ncbi.nlm.nih.gov/) has indexed 1.4 million new sci-
entific papers. This equals an average of 27 000 papers every
week. With such high numbers, it is impossible to find
the most relevant publication without tediously browsing
through long pages of search results. Considering that a per-
son can read an average of 200–250 words per minute and
assuming that an average-length research article consists of
5000 words, the reading time of an article is a minimum of
20 min. According to this calculation, a researcher can read
up to 168 articles per week by reading 8 h a day. These num-
bers show the difficulty of following the relevant literature for
researchers with busy work routines. Recommendation sys-
tems play an important role in reducing this limitation and
improving the search results by considering user profiles as
well as domain data.

Recommender systems can be categorized into three
approaches: collaborative filtering, content-based filtering

and a hybrid approach. The content-based filtering approach
considers the content similarity between users’ interests and
the metadata of the articles (1, 2). Collaborative filtering offers
suggestions based on the neighbor’s selection of the same
user group (3). Lastly, the hybrid filtering technique aims to
enhance recommendation quality by combining the first two
methods (4). Content-based filtering is preferred when an item
is information-rich, such as text data.

In a content-based recommendation system, a profile is cre-
ated for each item based on the information it contains, and
each user has a profile based on the items they have liked or
disliked in the past. Thus, a user profile defines the type of
content related to that user. The purpose of the system is to
find items whose content best matches the data stored in this
user profile.

Since the approach is domain-specific, this means that it
can deliver more precise results. It is easier to accurately tell a
user’s interests by looking at the actual content, rather than
inferring from a group of similar users. Furthermore, the
major advantage of a content-based design is that it is inde-
pendent of the size of the user base. Recommendations will

https://orcid.org/0000-0001-6954-4928
https://orcid.org/0000-0003-2848-6949
mailto:michael.schroeder@tu-dresden.de
https://emati.biotec.tu-dresden.de
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

2 Database , Vol. 00, Article ID baac104

be equally accurate whether it is just a single user or millions
of users. Therefore, it can be applied even to small projects
that might not have enough users to make a collaborative
approach applicable. However, in this approach, it is impor-
tant to properly represent information in terms of features.
In previous studies, articles are represented in different ways
such as paper’s metadata (5), bag of words (6), vector space
(7), key phrase (8, 9) and user’s given tag (10, 11). The TF-IDF
method has been used as a similarity measure between items
in article recommendation system studies (12, 13). There are
many other studies (14–16) that use this method for the same
purpose in different domains.

Recently, various approaches have been used in content-
based research article recommendation systems. Chaudhuri
et al. proposed new features for improving the efficiency of
the recommendation system, which are extracted indirectly
from research articles. These features are keyword diversifica-
tion, text complexity, citation analysis over time and scientific
quality measurement to represent a research article. The key-
word diversification indicates the uniqueness of the keywords
to help variation in a recommendation. The text complexity
measure helps match an article to a user based on the user’s
understandability level. The citation analysis over time indi-
cates the relevancy of a paper. The scientific quality ranks
the scientific merits of articles (17). Bulut et al. used the
Doc2vec method to compare user profiles with candidate
articles to be recommended. User profiles and candidate arti-
cles are represented as continuous vectors in the Doc2vec
method. Similar articles to a user profile are recommended to
that user (13). Hao et al. integrated academic network infor-
mation with content similarity information to improve the
accuracy and efficiency of recommendations. The academic
network consists of links between author nodes, paper notes
and conference nodes (18).

In content-based recommendation systems, the task of
determining the semantic similarity of texts is challenging.
The recently announced pretrained transformers for language
modeling such as bidirectional encoder representations from
transformers (BERT) Embeddings from Language Models and
Generative Pre-trained Transformer 3 are quite successful in
overcoming this challenge. These pretrained machine learning
models have achieved state-of-the-art performance for many
natural language processing (NLP) tasks such as question
answering, sentiment analysis and named entity recognition
(19–21). There are also some recent studies using BERT in
various ways in recommendation systems. Jeong et al. (2020)
proposed a citation recommender model by using BERT to
obtain embedding vectors from textual data and by using
graph convolutional network to obtain embedding vectors
from citation graphs (22). Sun et al. proposed a recommender
system in which BERT architecture was adapted to take a set
of items instead of text as input values (23). In these stud-
ies, the BERT model showed a stronger performance than the
other models.

According to a literature survey on research-paper recom-
mender systems conducted by Beel et al. (24), out of the
reviewed approaches, only 39% of research-paper recom-
mender systems could be used by users in practice. Of these
recommender systems, 44% are still running and actively
maintained. On the other hand, Beel et al. emphasized
that most of the real-world recommender systems imple-
ment basic recommendation approaches that are not based on
recent research (24). In order to bridge this gap, we focused

our study on developing a web-based article recommenda-
tion service, which provides users with updated research
results.

The developed system adopts a content-based approach
and uses supervised machine learning to create recommen-
dations. The classification task is to label each article with
one of the two target classes ‘interesting’ and ‘irrelevant’. Two
different approaches have been implemented for this task.
In the first one, we represent articles with TF-IDF vectors
and train a classifier with these vectors. The multinomial
naïve Bayes classifier is used in the implementation since it
provides probability distribution, which determines the prob-
ability that the input belongs to each class, as well as a class
label. The recommended articles are ranked based on their
probability scores. The second approach is based on a state-
of-the-art language model BERT. The pretrained BERT model
is fine-tuned for the text classification task. The probability
of class membership for each class label is obtained by the
softmax function.

SCI-BERT is a pretrained language model that has the same
architecture as BERT but is trained on a large corpus of sci-
entific text (25). The SCI-BERT paper reports a +1.92 F1
score increase on average at the fine-tuned SCI-BERT mod-
els for various tasks in the biomedical domain such as named
entity recognition, PICO extraction, relation classification and
dependency parsing, compared to the BERT-base. However, it
does not report any result for the text classification task in the
biomedical domain, which we employ in this study. It reports
the results of the text classification task on two data sets from
multiple domains, which yield only a +0.49 F1 score increase
on average. Therefore, large improvements are not expected
from the use of SCI-BERT models instead of the BERT-base.

A website has been developed to display a weekly updated
list of articles recommended for each user, which is avail-
able at https://emati.biotec.tu-dresden.de. The system also
sends new article recommendations to users’ email addresses
on a weekly basis. Furthermore, Emati has a personalized
search feature to search from online services (such as PubMed
and arXiv) and have the results sorted by the user’s clas-
sifier. The first approach, which is based on TF-IDF and
multinomial naïve Bayes, is used in production as a clas-
sifier due to the need for scalability. The source codes of
the project are available on the GitHub repository (https://
github.com/bioinfcollab/emati), where both naïve Bayes– and
BERT-based approaches are available to the user as a classifier
option.

The advantages of Emati over similar systems such as arX-
ivDigest (26) can be listed as follows: arXivDigest provides
recommendations over papers published on only arXiv. Emati
currently provides recommendations from both PubMed and
arXiv, which means it can offer a wider range and produce
more accurate recommendations, especially for biomedical
researchers. Also due to the flexible design of Emati, fur-
ther sources can be easily integrated. Moreover, arXivDigest
requires the users to provide topics of their interests as key-
words at the registration and it basically returns the keyword
search results to the users as recommended articles. It enables
the researchers can register their own recommender system;
however, it does not itself provide any complex recommender
engine based on machine learning, collaborative filtering or
another state-of-the-art recommendation method. Emati rec-
ommendations are based on a machine learning classifier, and
users can upload the reference list of the articles they are

https://emati.biotec.tu-dresden.de
https://github.com/bioinfcollab/emati
https://github.com/bioinfcollab/emati

Database, Vol. 00, Article ID baac104 3

Figure 1. Weekly article recommendations of the user are listed on the homepage.

interested in to train the personalized classifier based on their
interests.

Materials and Methods
Emati is a web-based recommender system that displays
a weekly updated list of recommended scientific articles.
Figure 1 shows a screenshot of the main page. The Emati
database (DB) contains article information published in
PubMed and arXiv since 2000, and it is updated every
week with newly published articles. The approximate num-
ber of articles in the DB in 2022 is ∼15 million. The system
allows fetching new content from any source, as long as it
offers an Application Programming Interface for download-
ing papers with their title, abstract, journal, authors and date
of publication stored in separate fields. Thus, it is possible to
include multiple sources and expand the range of topics.

In order to get updated article recommendations, a user
creates an account, logs in to the system and uploads their
reference files. The file upload process is detailed in the 2.2.4
training corpus subsection. The reference files are parsed to
learn about the topics this particular user is interested in.
Once the initial recommender model is initialized, it can be
updated with the data collected from user interaction. Users
click on the articles to read and click like or dislike buttons
in accordance with their interests. With this information, a
personal machine learning classifier is trained. When enough
new interactions are detected, the classifier is retrained to keep
itself up-to-date. The trained model is used to create new
weekly content for the user. A combination of percentage and
absolute interactions is used as the number of new interactions
required to trigger retraining. Whatever case occurs first trig-
gers the retraining. The percentage threshold is the percentage

4 Database , Vol. 00, Article ID baac104

Figure 2. (a) High-level system design that shows how components of the system are connected and communicate with each other. (b) Data flow
diagram for the creation of recommendations. (c) Personalized search pipeline that shows how a query term is searched from the search engine and
returned results are reordered by the classifier.

in relation to total interactions so far. For example, a user
has clicked/liked/disliked 100 articles in total. A threshold of
0.1 means that 100 * 0.1 = 10 new interactions since the last
training are needed to train the classifier anew. The absolute
threshold is the absolute number of new interactions required
to trigger retraining. These parameters are set to 0.1 and 10
by default, respectively.

General structure of the system
The system is composed of two separate servers. Figure 2(a)
shows the high-level system design of the project. The code
implemented during this study resides within the Django
project. The machine learning aspects of this project are also
implemented in Python using the scikit-learn library.

Elasticsearch is the search engine responsible for the full-
text search feature. Django communicates with the search
index by sending requests to Elasticsearch’s web interface.

Elasticsearch consists of a search index managed by a server
that provides an HTTP web interface. By sending requests to
that server, it is possible to query the search index or add new
documents. There is also an official Python client for Elas-
ticsearch that takes care of handling requests and responses
(https://github.com/elastic/elasticsearch-py, accessed 30 Octo-
ber 2021). This makes it very easy to communicate with the
search index from within the Django project.

Recommender model
The recommender model is based on a classification task that
is used to label each article with one of the two target classes
‘interesting’ and ‘irrelevant’. Since our ultimate goal is to
rank articles according to how interesting they are, we need
not only a binary classification but also their probability of
belonging to a particular target class. This requirement was

https://github.com/elastic/elasticsearch-py

Database, Vol. 00, Article ID baac104 5

met by using the multinomial naïve Bayes classifier and the
BERT classifier with a softmax function in the implementa-
tion of this study. Since those classes are mutually exclusive,
their scores will always add up to 1. In other words, if an arti-
cle is considered interesting with a probability of 80%, then
it must be irrelevant with a probability of 20%.

Figure 2(b) shows the data flow during the creation of
new recommendations. The Ranker will take a list of articles
together with the classifier of a single user. It then calculates
the scores for each article. These scores indicate the probabil-
ity with which an article belongs to the class titled interesting.
For the best scoring articles, the Ranker will create Recom-
mendation objects that contain references to the user and that
specific article together with the computed score. By saving
only the best scoring recommendations, we also reduce the
required data storage.

Multinomial naïve Bayes
Multinomial naïve Bayes classifier, which is still a popular
model for text classification, is used in this study. A naïve
Bayes classifier outputs a maximum a posteriori prediction
where the posterior probabilities for the levels of the target
feature are computed, assuming that the descriptive features
are conditionally independent in an instance given a target fea-
ture level (27). The naïve Bayes model is defined as follows:

𝑀(𝑞) = 𝑎𝑟 𝑔𝑚𝑎𝑥 𝑙 ∈𝑙𝑒𝑣𝑒𝑙𝑠(𝑡) ((
𝑚

∏
𝑖=1

𝑝(𝑞[𝑖] |𝑡 = 𝑙)) ∗ 𝑝(𝑡 = 𝑙))

where t is the target feature with a set of levels, levels(t), and
q is the query instance with a set of descriptive features, q[1],
…, q[m].

Feature generation and classification
Our data set consists of the article’s title and abstract, the
journal it was published in, the list of authors and the date
of publication. These data can be used to categorize a doc-
ument into ‘interesting’ and ‘irrelevant’. The text is split into
words that are then weighted according to the TF-IDF weight-
ing scheme. Each document is represented by a vector of these
features. The vectors are then fed into the multinomial naïve
Bayes classifier.

During training, the algorithm will learn all words present
in the corpus. Since each user’s field of interest is differ-
ent, each training corpus will be different as well. This
also means that all users will have a personalized vocabu-
lary of words that are known to their classifier. Each user’s
final model, therefore, consists of a vectorizer and a classi-
fier. The vectorizer represents the learned vocabulary. It is
responsible for converting a list of documents into vectors
of TF-IDF–weighted features. During the training process,
the vectorizer learns the weights based on the given corpus.
The TF-IDF vectorizer uses the corpus from the training data.
So while creating recommendations from new articles, it can
vectorize only existing terms in that corpus. The classifier is
responsible for the actual categorization task. It takes a list of
feature vectors and returns a vector of probabilities for each
document, which indicates the likeliness with which it belongs
to one of the available classes.

Bidirectional encoder representations from transformers
BERT is one of the most popular natural language mod-
els which is mainly divided into two stages: pretraining and
fine-tuning. It has been pretrained to learn deep bidirectional
representation from the unlabeled text. It is designed to per-
form fine-tuning using labeled text for various NLP tasks
after pretraining (19). The BERT model uses a large corpus
comprising BooksCorpus (800 M words) (28) and English
Wikipedia (2500 M words) for the pretraining. In fine-tuning,
the BERT model is initialized with pretrained parameters and
then trained on a downstream task, which is text classification
in our case, by simply fine-tuning all pretrained parameters.
The self-attention mechanism in the transformer enables the
modeling of multiple downstream tasks by replacing appro-
priate inputs and outputs.

BERT’s most superior feature is to generate contextual-
ized word representations. However, it also brings some
drawbacks. The model is huge due to the training structure
and large corpus. It is slower to train compared to shallow
machine learning algorithms. It is also very compute-intensive
at inference time, which means that it can become costly if
someone wants to use it in production at scale. A single BERT-
base model checkpoint is ∼1.3 GB in size. Moreover, it is
stated that the fine-tuning examples in the BERT paper (19),
which use BERT-base, should be able to run on a graphics
processing unit that has at least 12 GB of random access mem-
ory (RAM) using the hyperparameters given in https://github.
com/google-research/bert. In a multiuser system where each
user’s own profile is created and updated over time, such high-
capacity hardware requirements increase costs significantly as
the number of users increases.

Training corpus
As already stated earlier, the recommender system works on
scientific articles. But naturally, the system has no data on
a newly signed-up user. To overcome this problem, which is
also referred to as the ‘cold-start’ or ‘new-user’ problem, the
system provides users with the possibility to upload reference
files from the ‘Settings’ menu, as shown in Figure 3. Currently
supported file formats are BibTeX (.bib), RIS (.ris) and End-
note XML (.xml). These files contain a list of articles the user
has cited in the past. This makes it possible to infer the field
they are working on. The reference files contain the same type
of data that our system is working with (title, journal, author
and abstract) and already store it in separate fields. Thus, they
can be easily parsed and fed into the algorithm. If the abstract
of an article is not already provided in the reference file, the
system queries the article title from the sources and includes
the abstract if available. Users can also upload a PubMed ID
(PMID) list of articles as a text (.txt) file or save the PMIDs in
a text area provided in the ‘Settings’ menu. The system queries
PubMed by the provided PMIDs and fetches the article infor-
mation such as title, journal, author and abstract. According
to a current study (29), the increase of the Area Under the
Curve value when full texts were used instead of abstracts
ranges from 0% to 9% across six different text mining tasks,
and the median was 3.5%. Since the improvement expected in
the performance is not so large compared to the reduced scal-
ability and increase in resources needed, we decided to use
abstracts in this study.

The data points collected this way serve as positive training
samples—they define the ‘interesting’ class. A set of randomly

https://github.com/google-research/bert
https://github.com/google-research/bert

6 Database , Vol. 00, Article ID baac104

Figure 3. Reference files are uploaded from the Settings menu.

picked articles are used as negative samples. The training
corpus is filled with random articles until there is an equal
amount of positive and negative samples. Once the initial
recommender model is initialized, it can be updated with
the data collected from user interaction. Every user interac-
tion is logged so that a classifier can be retrained regularly
with an ever-increasing corpus. Implicitly, this is done by

incorporating the articles that the user clicked on to view
their details since it might be an indication of their inter-
est. More explicit feedback is provided by the website in the
form of like and dislike buttons. The collected feedback is
weighted higher than the logged click since the user explicitly
tells the system their opinion. In other words, clicked articles
have less (50% by default) weight than liked articles while

Database, Vol. 00, Article ID baac104 7

training a classifier since ‘like’ is stronger evidence rather than
‘click’. Also with disliked articles, a better negative training
set is obtained. During the first training, the negative samples
consisted only of randomly picked articles, meaning that the
system tried to discern ‘interesting’ articles from the ‘average’
article. But it cannot make a clear distinction since it does not
know the true bounds of the ‘interesting’ class—the borders
are fuzzy. By using articles that were considered ‘interesting’
by the engine but labeled ‘irrelevant’ by the user, the true
edge of the ‘interesting’ class can be discovered and the border
becomes sharper.

Results and Discussion
In order to evaluate the proposed recommendation system, we
conducted some necessary experiments on several data sets for
different use-case scenarios. All the experiments were imple-
mented using Python on a Debian GNU/Linux 10 (buster)
and run on an Intel(R) Xeon(R) E5-2650 v2 @ 2.60 GHz cen-
tral processing unit and 256 GB RAM. Both the naïve Bayes
with TF-IDF vectorizer and BERT-based approaches have
been implemented. The multinomial naïve Bayes algorithm
was implemented using scikit-learn. The pretrained ‘BERT-
base-uncased’ model has been downloaded and fine-tuned for
the text classification task using the HuggingFace Transform-
ers library on the data sets detailed later. The text data are
tokenized by using the BERT tokenizer and fed to the BERT
model. The input token length is 300, which is the approxi-
mate length of an abstract. The parameters set for fine-tuning
are as follows: the number of training epochs is 3. Batch sizes
for training and evaluation are set to 32 and 64, respectively.
The best model is loaded to be used for inference at the end
of training.

A 10-fold cross-validation scheme has been implemented to
evaluate the naïve Bayes models. n-fold cross-validation splits
the training data into n equal parts. A model is trained by n
− 1 parts and tested by one part. This process iterates n times
until all parts are used in the training and test process. To be
more specific, the split ratio is 90:10 per iteration in our case.
The hold-out validation method has been used to evaluate the
BERT models. The split ratio is 80:20.

A researcher use case with a particular research focus
A new-user account has been created, and a BibTeX file con-
taining positive training examples has been generated and
uploaded to Emati. In order to create a user profile for
a researcher who is interested in biology with a specific
focus on liquid–liquid phase separation (LLPS), 52 protein
names that are common in four LLPS DBs (30–33) have been
queried in PubMed along with related keywords such as phase
separation, phase transition, condensate and membraneless
organelle. The articles published in journals with an impact
factor have been filtered out in the results to create a pos-
itive data set. As a result, the reference file contained data
of 300 articles. The same number of negative samples has
been randomly selected among the downloaded PubMed arti-
cles published between 1 May 2021 and 10 July 2021. Two
more example user profiles have been created separately for
the researchers who are interested in the topics of ‘neurode-
generative diseases’ and ‘antibiotics resistance’. These two
terms have been queried in PubMed. The articles published
in journals with an impact factor have been filtered out in

the results to create positive data sets from indexed jour-
nals. As a result, the data of 7048 and 6852 articles have
been uploaded to the system as positive samples for example
user profiles who are interested in the topics of neurodegen-
erative diseases and antibiotics resistance, respectively. The
same number of negative samples has been randomly selected
among the downloaded PubMed articles published in 2021.

The performance values obtained by the experiments using
both the naïve Bayes and BERT models are given in Tables 1
and 2. BERT models provided more accurate results com-
pared to naïve Bayes models for all researcher profiles. We also
have subsampled 15 random samples from each constructed
positive data set and trained models using them to observe
the training performance of the models when users provide a
small set of positive examples. When using smaller training
sets, the performance drop of BERT models was quite greater
than that of naïve Bayes. The naïve Bayes performed better on
small data sets.

A curator use case with a focus on a model organism DB
Model organism DBs are biological DBs that holistically pro-
duce, source and blend species-specific information by putting
expert knowledge together with bioinformatics and literature
curation. DB curators are hired experts who read articles,

Table 1. Training performance values obtained by the validation of naïve
Bayes models trained with three different researcher profiles

Researcher
profile LLPS proteins

Neurodegenerative
diseases

Antibiotics
resistance

Data set
size

Large
(300 * 2)

Small
(15 * 2)

Large
(7048 * 2)

Small
(15 * 2)

Large
(6852 * 2)

Small (15 * 2)

Precision 0.95 0.95 0.83 0.7 0.88 0.65
Recall 1 0.9 0.96 1 0.99 1
F-measure 0.98 0.95 0.89 0.82 0.93 0.79

Table 2. Training performance values obtained by the validation of BERT
models trained with three different researcher profiles

Researcher
profile LLPS proteins

Neurodegenerative
diseases

Antibiotics
resistance

Data set
size

Large
(300 * 2)

Small
(15 * 2)

Large
(7048 * 2)

Small
(15 * 2)

Large
(6852 * 2)

Small (15 * 2)

Precision 1 0.5 0.97 0.33 0.98 0.66
Recall 0.98 1 0.97 1 0.98 1
F-measure 0.99 0.67 0.99 0.5 0.98 0.8

Table 3. The number of positive examples in the FlyBase, ZFIN and MGI
data sets

DB name FlyBase ZFIN MGI

No. of articles in 2019 cited in the DB 2825 3330 12 744

Table 4. Training performance values obtained by the validation of naïve
Bayes and BERT classifiers trained with the FlyBase, ZFIN and MGI data
sets

 Naïve Bayes (10-fold cv) BERT (train/test split 80:20)

DB name FlyBase ZFIN MGI FlyBase ZFIN MGI
Precision 0.97 0.97 0.98 0.98 0.97 0.94
Recall 0.82 0.75 0.85 0.97 0.94 0.98
F-measure 0.89 0.84 0.91 0.97 0.95 0.96

8 Database , Vol. 00, Article ID baac104

extract useful information and place that information into
searchable DBs.

Considering that the curators may be potential users of the
proposed system, some retrospective experiments have been
carried out on FlyBase (http://flybase.org/), The Zebrafish
Information Network (ZFIN) (http://zfin.org/) and Mouse
Genome Informatics (MGI) (http://www.informatics.jax.
org/), which are model organism DBs for fruit fly, zebrafish
and mouse, respectively. The DBs provide the information
of the articles they use as evidence for their annotations. In
our experiments, we have extracted those articles published
in 2019 to be used as a positive training set while training
recommender models. The number of articles extracted from
each DB is given in Table 3. The same number of random
articles published in 2019 has been collected from PubMed

as negative examples. Table 4 shows the precision, recall and
F-measure values of the trained models for each DB based on
the implemented validation scheme.

The models trained on the full 2019 training data have
been used to create recommendations for the first, second and
third weeks of 2020. The system recommendations have been
compared with the articles published in corresponding weeks
which were already cited by the DBs. Precision@50 (precision
at top 50 Emati recommendations) and Recall@n for different
n values have been computed for each DB (Tables 5–7).

The training performance of the naïve Bayes classifiers
trained using the same number of positive and negative exam-
ples is quite high with F-measures ranging from 0.84 to 0.91.
However, since thousands of new papers are published in
a week, the task of recommending weekly articles is much

Table 5. Recommendation performance values of the classifiers trained with the FlyBase data set, based on the first 3 weeks of 2020

 Naïve Bayes classifier BERT classifier

n (no. of weekly
articles in FlyBase) Recall@n Precision@50 Recall@n Precision@50

First week of 2020 58 11/58 = 0.19 11/50 = 0.22 33/58 = 0.57 29/50 = 0.58
Second week of 2020 66 23/66 = 0.35 17/50 = 0.34 48/66 = 0.73 39/50 = 0.78
Third week of 2020 46 15/46 = 0.33 17/50 = 0.34 26/46 = 0.57 27/50 = 0.54

Table 6. Recommendation performance values of the classifiers trained with the ZFIN data set, based on the first 3 weeks of 2020

 Naïve Bayes classifier BERT classifier

n (no. of weekly
articles in ZFIN) Recall@n Precision@50 Recall@n Precision@50

First week of 2020 178 63/178 = 0.35 33/50 = 0.66 108/178 = 0.61 48/50 = 0.96
Second week of 2020 38 5/38 = 0.13 9/50 = 0.18 28/38 = 0.74 31/50 = 0.62
Third week of 2020 58 12/58 = 0.21 11/50 = 0.22 42/58 = 0.72 42/50 = 0.84

Table 7. Recommendation performance values of the classifiers trained with the MGI data set, based on the first 3 weeks of 2020

 Naïve Bayes classifier BERT classifier

n (no. of weekly
articles in MGI) Recall@n Precision@50 Recall@n Precision@50

First week of 2020 505 102/505a = 0.20 27/50 = 0.54 170/505 = 0.34 37/50 = 0.74
Second week of 2020 151 52/151 = 0.34 20/50 = 0.40 49/151 = 0.32 30/50 = 0.60
Third week of 2020 184 28/184 = 0.15 19/50 = 0.38 63/184 = 0.34 31/50 = 0.62

aThe number of weekly Emati recommendations < n.

Figure 4. Average recommendation performances of the classifiers trained with the FlyBase, ZFIN and MGI data sets in terms of (a) Recall@n and (b)
Precision@50.

http://flybase.org/
http://zfin.org/
http://www.informatics.jax.org/
http://www.informatics.jax.org/

Database, Vol. 00, Article ID baac104 9

Table 8. Training time and size of the naïve Bayes and BERT models trained
on the LLPS and MGI data sets

 Model name

 Naïve Bayes BERT

Data set
name

Data set
size

Training
time

Model
size

Training time Model
size

LLPS 300 * 2 0.32 s 1.1 MB 18 min 45 s 1.3 GB
MGI 12 744 * 2 9.34 s 13 MB 12 h 56 min

12 s
1.3 GB

harder than distinguishing positive and negative examples in a
balanced data set. Therefore, it is reasonable that the precision
and recall values given in Tables 5–7 are relatively lower. On
the other hand, the BERT models obtained outstanding results
for the recommendation task. The recommendation perfor-
mance values of fine-tuned BERT models are significantly
higher than naïve Bayes models. Figure 4 illustrates the 3-week
average recommendation performance of classifiers trained
with the FlyBase, ZFIN and MGI data sets, whose sizes are
given next to their names.

Model training time and size evaluation
The training time of each model trained on the smallest (LLPS)
and largest (MGI) data sets used in the experiments is given
in Table 8. The size of the data set and the complexity of
the model are highly related to the training time. The sizes
of BERT models are huge due to the training structure and
large corpus compared to the naïve Bayes models, as shown
in Table 8. The naïve Bayes model sizes include both vectorizer
and classifier.

Personalized search
The system provides a personalized search feature. Users can
search articles’ content and have the results sorted according
to their classifier. This allows for better search results because
the system already knows which topics are relevant to the user
without having to explicitly narrow down the search query.
The search pipeline is illustrated in Figure 2(c). Instead of
querying an online service (such as PubMed) for every search
request, which slows down the search, the design is centered
on a DB storing all fetched articles. Searching is done on a
local search index. The index is updated regularly with new
publications.

Conclusion and future work
We have developed a web-based article recommender service
which can be accessed at https://emati.biotec.tu-dresden.de. It
displays a weekly updated list of articles based on the users’
profile and sends it to users’ emails on a weekly basis. It
has also a personalized search feature to search online ser-
vices’ (such as PubMed and arXiv) content and have the
results sorted by the user’s classifier. The potential users of
the recommender system are scientific researchers who want
to keep up-to-date with the scientific literature. For example,
model organism DB curators who read the currently pub-
lished relevant articles, extract useful information and place
that information into searchable DBs are potential users to
highly benefit from the system. In addition, the system also
might be useful for PhD students, postdoctoral researchers or

principal investigators who want to follow current literature
related to their research interests, as well as research group
members who want to present current articles in the journal
club.

The system contains a content-based recommender using
supervised machine learning to classify articles as ‘relevant’
and ‘irrelevant’ to the user. Two different supervised learning
approaches, namely the naïve Bayes model with TF-IDF vec-
torizer and the state-of-the-art language model BERT, have
been implemented. The training performance of naïve Bayes
models trained on small data sets was higher than that of
fine-tuned BERT models. On the other hand, BERT mod-
els showed outstanding recommendation performance in the
experiments using test data sets from model organism DBs.
Due to the need for scalability, the currently deployed ver-
sion of Emati is based on the TF-IDF vectorizer and the naïve
Bayes classifier approach. The BERT fine-tuning implementa-
tion is also available as an option in the source code which is
provided at https://github.com/bioinfcollab/emati.

Currently, the system sources new content from PubMed
and arXiv. In the future, it could still be extended by incorpo-
rating even more additional services as sources.

Acknowledgements
We are very grateful to Steven Marygold from FlyBase, Dou-
glas G. Howe and Leyla Ruzicka from ZFIN and Martin
Ringwald and Cynthia Smith from MGI for their valuable
feedback on this study.

Funding
Federal Ministry of Education and Research project Center
for Scalable Data Analytics and Artificial Intelligence.

Conflict of interest
None declared.

References
1. Sugiyama,K. and Kan,M.Y. (2015) A comprehensive evaluation of

scholarly paper recommendation using potential citation papers.
Int. J. Digit. Libr., 16, 91–109.

2. Lops,P., Jannach,D., Musto,C. et al. (2019) Trends in content-
based recommendation. User Model. User-Adapt. Interact., 29,
239–249.

3. Haruna,K., Ismail,M.A., Damiasih,D. et al. (2017). A collaborative
approach for research paper recommender system. PLoS ONE, 12,
e0184516.

4. Zhang,Z.P., Li,L.N. and Yu,H.Y. (2013) A hybrid document rec-
ommender algorithm based on random walk. Appl. Mech. Mater.,
336, 2270–2276.

5. Kanakia,A., Eide,D., Shen,Z. et al. (2019) A scalable hybrid
research paper recommender system for Microsoft academic. In:
The Web Conference 2019—Proceedings of the World Wide Web
Conference, WWW 2019. San Francisco, CA, USA.

6. Sugiyama,K., Hatano,K. and Yoshikawa,M. (2004) Adaptive Web
search based on user profile constructed without any effort from
users. In: Thirteenth International World Wide Web Conference
Proceedings, WWW 2004. New York, NY, USA.

7. Musto,C. (2010) Enhanced vector space models for content-based
recommender systems. In: RecSys’10 - Proceedings of the 4th ACM
Conference on Recommender Systems, Barcelona, Spain.

https://emati.biotec.tu-dresden.de
https://github.com/bioinfcollab/emati

10 Database , Vol. 00, Article ID baac104

8. Ferrara,F., Pudota,N. and Tasso,C. (2011) A keyphrase-based
paper recommender system. In: Italian Research Conference on
Digital Libraries, Pisa, Italy, pp. 14–25.

9. Beel,J., Langer,S., Gipp,B. et al. (2014) The architecture and
datasets of Docear’s research paper recommender system. D-Lib
Magazine, vol. 20.

10. Jomsri,P., Sanguansintukul,S. and Choochaiwattana,W. (2010) A
framework for tag-based research paper recommender system: an
IR approach. In: 24th IEEE International Conference on Advanced
Information Networking and Applications Workshops, WAINA
2010. Perth, WA, Australia.

11. Gautam,J. and Kumar,E. (2012) An improved framework for tag-
based academic information sharing and recommendation system.
World Congress on Engineering London, U.K. July 4 - 6, 2012.

12. White,H.D. (2018) Bag of works retrieval: TF*IDF weighting of
works co-cited with a seed. Int. J. Digit. Libr., 19, 139–49.

13. Bulut,B., Gündo ̆gan,E., Kaya,B. et al (2020) User’s Research Inter-
ests Based Paper Recommendation System: A Deep Learning
Approach In: Kaya M, Birinci ˛S, Kawash, J and Alhajj Reda (eds.)
Putting Social Media and Networking Data in Practice for Educa-
tion, Planning, Prediction and Recommendation. Springer, Cham,
pp. 117–130.

14. Zhang,W., Yoshida,T. and Tang,X. (2011) A comparative study of
TF*IDF, LSI and multi-words for text classification. Expert Syst.
Appl., 38, 2758–65.

15. Kenter,T. and Rijke,M.D. (2015) Short text similarity with word
embeddings categories and subject descriptors. In: Proceedings of
the 24th ACM International on Conference on Information and
Knowledge Management (CIKM 2015). Melbourne, Australia.

16. Albitar,S., Fournier,S. and Espinasse,B. (2014) An effective TF/IDF-
based text-to-text semantic similarity measure for text classifica-
tion Web Information System Engineering Thessaloniki, Greece
12-14 October 2014.

17. Chaudhuri,A., Sinhababu,N., Sarma,M. et al. (2021) Hidden
features identification for designing an efficient research article
recommendation system. Int. J. Digit. Libr., 22, 233–4.

18. Hao,L., Liu,S. and Pan,L. (2021) Paper recommendation based
on author-paper interest and graph structure. In: Proceedings
of the 2021 IEEE 24th International Conference on Computer
Supported Cooperative Work in Design, CSCWD, 2021. Dalian,
China.

19. Devlin,J., Chang,M.W., Lee,K. et al. (2018) BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805.

20. Peters,M.E., Neumann,M., Iyyer,M. et al. (2018) Deep con-
textualized word representations. arXiv preprint arXiv:1802.
05365, 12.

21. Brown,T., Mann,B., Ryder,N. et al. (2020) Language models are
few-shot learners. Adv. Neural Inf. Process. Syst., 33, 1877–1901.

22. Jeong,C., Jang,S., Park,E. et al. (2020) A context-aware cita-
tion recommendation model with BERT and graph convolutional
networks. Scientometrics, 124, 1907–1922.

23. Sun,F., Liu,J., Wu,J. et al. (2019) BERT4Rec: sequential recom-
mendation with bidirectional encoder representations from trans-
former In: Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. Beijing, China.

24. Beel,J., Gipp,B., Langer,S. et al. (2016) Research-paper recom-
mender systems: a literature survey. Int. J. Digit. Libr., 17,
305–338.

25. Beltagy,I., Lo,K. and Cohan,A. (2019) SciBERT: a pretrained lan-
guage model for scientific text. arXiv preprint arXiv:1903.10676.

26. Gingstad,K., Jekteberg,Ø. and Balog,K. (2020) ArXivDigest: a
living lab for personalized scientific literature recommendation.
In: Proceedings of the 29th ACM International Conference on
Information & Knowledge Management. Virtual Event Ireland.

27. Kelleher,J.D., Namee,B.M. and D’Arcy,A. (2015) Fundamentals of
machine learning for predictive data analytics (MIT press) 624.

28. Zhu,Y., Kiros,R., Zemel,R. et al. (2015) Aligning books and
movies: towards story-like visual explanations by watching
movies and reading books. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. Santiago, Chile, pp.
19–27.

29. Westergaard,D., Stærfeldt,H.H., Tønsberg,C. et al. (2018) A com-
prehensive and quantitative comparison of text-mining in 15 mil-
lion full-text articles versus their corresponding abstracts. PLoS
Comput. Biol., 14, e1005962.

30. Li,Q., Peng,X., Li,Y. et al. (2020) LLPSDB: a database of proteins
undergoing liquid-liquid phase separation in vitro. Nucleic Acids
Res., 48, D320–7.

31. You,K., Huang,Q., Yu,C. et al. (2020) PhaSepDB: A database of
liquid-liquid phase separation related proteins. Nucleic Acids Res.,
48, D354–9.

32. Mészáros,B., Erdos,G., Szabó,B. et al. (2020) PhaSePro: the
database of proteins driving liquid-liquid phase separation. Nucleic
Acids Res., 48, D360–7.

33. Ning,W., Guo,Y., Lin,S. et al. (2020) DrLLPS: a data resource of
liquid-liquid phase separation in eukaryotes. Nucleic Acids Res.,
48, D288–95.

	Emati: a recommender system for biomedical literature based on supervised learning
	 Introduction
	 Materials and Methods
	 General structure of the system
	 Recommender model
	 Multinomial naïve Bayes
	 Feature generation and classification
	 Bidirectional encoder representations from transformers
	 Training corpus

	 Results and Discussion
	 A researcher use case with a particular research focus
	 A curator use case with a focus on a model organism DB
	 Model training time and size evaluation

	 Personalized search

	 Conclusion and future work
	Acknowledgements
	Funding
	Conflict of interest
	References

