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A B S T R A C T

Immune checkpoint inhibitor (ICI) therapies can improve clinical outcomes for patients with solid tumors, but
relatively few patients respond. Because ICI therapies support an adaptive immune response, patients with an
active tumor microenvironment (TME) may be more likely to respond, and thus biomarkers capable of discerning
an active from a quiescent TME may be useful in patient selection. We developed an algorithm optimized for
genes expressed in the mesenchymal and immunomodulatory subtypes of a 101-gene triple negative breast cancer
model (Ring, BMC Cancer, 2016, 16:143) as a means to capture the immunological state of the TME. We
compared the outcome of the algorithm (IO score) with the 101-gene model and found 88% concordance,
indicating the models are correlated but not identical, and may be measuring different TME features. We found
92.5% correlation between IO scores of matched tumor epithelial and adjacent stromal tissues, indicating the IO
score is not specific to these tissues, but reflects the TME as a whole. We observed a significant difference in IO
score (p ¼ 0.0092) between samples with high tumor-infiltrating lymphocytes and samples with increased
neutrophil load, demonstrating agreement between IO score and these two prognostic markers. Finally, among
non-small cell lung cancer patients receiving immunotherapy, we observed a significant difference in IO score (p
¼ 0.0035) between responders and non-responders, and a significant odds ratio (OR ¼ 5.76, 95% CI 1.30–25.51,
p ¼ 0.021), indicating the IO score can predict patient response. The immuno-oncology algorithm may offer
independent and incremental predictive value over current biomarkers in the clinic.
1. Introduction

Immunotherapies using immune checkpoint inhibitors (ICIs) are now
standard of care in the treatment of lung cancer, breast cancer, and other
solid tumor types [1, 2]. Although ICIs are able to improve clinical out-
comes for patients with a variety of solid tumors, only a small subset of
patients respond [3, 4]. Moreover, ICIs can cause immune-related
adverse events, some of which are clinically serious and potentially
life-threatening [5, 6]. Hence, the ability to identify patients who are
more likely to benefit from ICI therapy with minimal toxicity is essential
for optimizing immunotherapy use.

Predictive biomarkers that can support patient selection for ICI
therapy are limited. Expression of programmed death-ligand 1 (PD-L1)
on tumor cells has been most widely investigated, but PD-L1 testing does
not consistently predict patient benefit from immunotherapy [7, 8, 9].
The lack of effective biomarkers for predicting response to ICIs is
partially due to the complexity of the tumor-immune system interactions
lsen).
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of the tumor microenvironment (TME). Within the TME is a complex and
dynamic milieu of non-malignant cells that interact with each other and
with the tumor cells, affecting tumor growth, invasion and metastasis
[10, 11]. As such, biomarkers that are able to capture the complex in-
teractions of the TME could be more useful in selecting patients who will
benefit from ICI therapies.

In previous work, a 101-gene model was developed to clinically
subtype triple negative breast cancer (TNBC) patients [12]. This algo-
rithm classified TNBC into five molecular subtypes, including two basal
like (BL1 and BL2), luminal androgen receptor (LAR), mesenchymal (M),
and mesenchymal stem-like (MSL), with each of these subtypes further
classified by a positive or negative immunomodulatory (IM) signature. In
applying the 101-gene model to independent TNBC cohorts, we noticed
that tumors of the M subtype never had a positive IM signature, an
observation that was consistent with studies showing that the M and IM
subtypes are inversely correlated [13, 14]. This observation led to the
hypothesis that the M subtype would be antithetical to the IM subtype,
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Figure 1. Gene selection process for building the novel immuno-oncology al-
gorithm. Gene set resulted from data set normalization, batch correction, gene
set enrichment analysis, and elastic net modeling.
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with the former indicating a more quiescent immunological state and the
latter indicating an immunologically active state. Additionally, we hy-
pothesized that the molecular basis for the M and IM subtypes would
translate across other solid tumor types based on features of the TME that
are driving this profile. We reasoned that, if this were true, it may be
possible to develop a gene expression algorithm to measure the TME by
optimizing a gene set to include those most relevant to the M and IM
subtypes. Such an algorithm could potentially distinguish tumors in a
more quiescent state from those that are immunologically active andmay
have expanded utility across multiple cancer types.

Here we describe the development and validation of a novel immuno-
oncology algorithm that measures the TME. This algorithm was opti-
mized using genes expressed in both quiescent and immunologically
active tumors and may be useful in predicting response to
immunotherapies.

2. Material and methods

2.1. Data analysis

All analyses, unless otherwise stated, were done on RStudio Version
1.2 utilizing R version 3.6 [15,16].

2.2. Gene expression dataset processing

Twenty-five gene expression profile data sets (Table 1), representing
three microarray platforms, were downloaded from the publicly avail-
able Gene Expression Omnibus (GEO, ncbi.nlm.nih.gov/geo/). Data were
combined from raw microarray expression (CEL) files collectively
normalized by robust multiarray average (RMA), and log transformed.
Samples from this data set were pared down to triple negative status
using a bimodal distribution of ESR1, ERBB2, and PGR genes, resulting in
1284 unique TNBC samples. Of these, 994 unique TNBC samples were
used to train the model, and the remaining 335 unique TNBC samples
were used for model validation.

For genes represented by multiple probes, the probe with the highest
inter-quartile range was selected to prioritize genes with a large dynamic
range of expression. Batch correction was performed using an Empirical
Bayes method, ComBat [17]. Patient datasets were previously made
publicly available under the ethical policies of the National Institutes of
Health's Gene Expression Omnibus (GEO) database. No additional ethics
review was required for the in-silico analysis of these datasets.

2.3. Model building

Model building for the novel immuno-oncology algorithm was per-
formed using R version 3.5.2 (Figure 1). As suggested by Ring et al., large
Table 1. Source of TNBC specimens for model Training and Validation.

Dataset TNBC Specimens

GSE1456 44

GSE1561 21

GSE2034 59

GSE2109 55

GSE2603 35

GSE2990 11

GSE3494 27

GSE3744 17

GSE5327 35

GSE5364 36

GSE5462 2

GSE6596 8

GSE7390 42

2

scale gene expression classifiers have an inherent problem with the in-
clusion of genes which have minimal signal contribution across each
classifier [12]. Therefore, a further reduction of the genes from the
101-gene signature to enrich for those which most strongly contribute to
the immunomodulatory and mesenchymal classifiers would hypotheti-
cally lead to a more clinically robust and practical biomarker.
Dataset TNBC Specimens

GSE7904 17

GSE10780 5

GSE11121 21

GSE12093 57

GSE12763 5

GSE13787 10

GSE16716 62

GSE25066 178

GSE31519 67

GSE58812 107

GSE76124 198

GSE76250 165
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To this end, the 101-gene signature was used to identify gene sets that
distinguished the classes via gene set enrichment analysis (GSEA) using
the C2 curated gene sets of canonical pathways [18]. Elastic-net regu-
larized linear models were employed to create individual subclassifying
models for the BL1, BL2, LAR,MSL, M, and IM subtypes with the subtypes
treated as a multinomial variable [19]. The 30 genes utilized for the M
and IM subtype classifications with this model were then used to derive a
logistic elastic net model on the new data set, minus three genes whose
probes had been reassigned between analyses (UBD, JCHAIN, and
KRT17). Strength of association with classification variables was assessed
using ten-fold cross validation of the misclassification error. The model
threshold for determining the immuno-oncology score (IO score) was
determined using the area under the curve (AUC) [20] to maximize
sensitivity to the immunomodulatory score from 101-gene signature, in
contrast to the significance of the correlation method for determining
threshold previously described by Ring et al. [12].

2.4. GSE81838 dataset analysis of TNBC tumor epithelial and adjacent
stromal tissue

Microarray data were obtained from GSE81838 where laser-capture
microdissection had been performed on 10 TNBC tumors to isolate ma-
lignant epithelial cell-enriched areas and the adjacent stromal cell-
containing areas of the tumor sections [13]. The IO scores for each
sample were obtained and correlated between the matched tumor
epithelial and adjacent stromal tissue using Spearman's method.

2.5. TCGA breast cancer datasets and analysis

Gene expression profiles from breast cancer specimens collected for
The Cancer Genome Atlas (TCGA) were obtained from the National
Cancer Institute Genomic Data Commons Data Portal. TNBC status was
confirmed by bimodal modeling of ESR1, PGR, and ERBB2 gene
expression, resulting in 180 total samples with matching tumor infil-
trating lymphocytes (TILs) presence and intensity as described previously
[13]. Neutrophil presence was obtained by the TCGA study investigators
who assessed the hematoxylin and eosin (H&E) staining to discern
neutrophil presence and was aligned to the TNBC samples. The IO scores
of samples with intense TIL staining and samples with neutrophil pres-
ence of 30% or greater was assessed by the Welch t-test for significance.

2.6. GEO non-small cell lung cancer (NSCLC) datasets and analysis

The clinical response to anti-PD-1 therapy and expression data of
advanced NSCLC patients in the GSE135222 (27 patients) and
GSE126044 (16 patients) cohorts were obtained from GEO. Response
was measured in both cohorts using Response Evaluation Criteria in Solid
Tumors (RESCIST) metrics [21], where patients exhibiting partial
response or stable disease for >6 months were classified as responders
[22, 23]. Because response was defined in the same manner for both
cohorts, we were able to combine the data for purposes of the analysis.
Expression data from the combined cohort were processed using the
novel immuno-oncology algorithm and analyzed by IO score. The dif-
ference in IO score between responders and non-responders was evalu-
ated for significance using the Welch t-test. The data from the combined
cohort was then evaluated for the correlation of IO score to objective
response. The predefined threshold was used to divide patients into IO
score positive and negative and compared to objective response to
calculate an odds ratio.

3. Results

3.1. Concordance between IO score from novel algorithm and IM status
from 101-gene model

We hypothesized using features of the M and IM subtypes from the
101-gene model could be combined in an independent algorithm with a
3

reduced gene set that may increase the likelihood of capturing biological
processes relevant to immunotherapy response. To this end, an inde-
pendent expression-based centroid model, defined by the M and IM
features of the 101-gene model, was obtained from elastic net modeling
and contained a total of 27-genes (Table 2).

We then compared the independent immuno-oncology algorithm and
101-gene model by testing a validation cohort of 335 unique TNBC
samples (Table 3). The resulting matrix indicates 88% concordance for
IOþ/IMþ and IO-/IM- scores, indicating that the novel immuno-
oncology algorithm and 101-gene model are strongly correlated but
not identical, and may be measuring different features of the TME.

3.2. Correlation of IO score to tumor epithelial and adjacent stromal tissue
in TNBC

The IO score describes the TME which generally includes both tumor
and stromal tissue. As such, we hypothesized that both tumor and stromal
tissue would contribute to the IO score in describing the state of the TME.
As a test of this hypothesis, we analyzed the IO scores from matched
TNBC tumor epithelial and adjacent stromal tissue samples using the
GSE81838 dataset. This dataset includes gene expression data from 10
patients with TNBC tumors that had been subjected to laser-capture
microdissection to parse the epithelial tumor mass from the adjacent
stromal tissue resulting in 20 unique samples. Due to the limited sample
size (only 20 samples) and replicate patient identification (only 10 pa-
tients), we chose to evaluate concordance of the IO score of matched
tumor epithelial and adjacent stromal tissue samples for each patient
using Spearman's method. We observed a 92.7% (p < 0.001) correlation
of IO scores between the tissue types when matched to each unique pa-
tient, suggesting that the IO score is a measure of the tumor microenvi-
ronment spanning the tumor and stromal regions, and may tolerate
variable tumor fraction in available samples to obtain a reliable signal.

3.3. Correlation of IO score to high levels of TILs or neutrophils in TNBC

The presence of high levels of TILs indicates an active immunological
state and is considered prognostic of good outcome with ICIs in TNBC
patients [24]. In contrast, increased neutrophil load in the tumor may be
contraindicative of response to immunotherapy [25, 26]. Therefore, as a
biological test of whether the IO score may indicate an active immuno-
logical state or not, we evaluated the IO scores of TNBC samples with
high TILs and samples with increased neutrophil load obtained from
TCGA (Figure 2). Using the Welch t-test, we found that the difference in
IO score between TNBC samples with high TILs (0.09) and samples with
increased neutrophil load (-0.30) was significant (p¼ 0.0092), indicating
agreement with these prognostic markers. These results suggest that a
positive IO score may possess features associated with a favorable
outcome to immunotherapy, while a negative IO score may indicate poor
immunotherapy response.

3.4. Correlation of IO score to immunotherapy response in NSCLC patients

As a test of whether the IO score may hold prognostic potential for
other sold tumor types, we evaluated the IO scores from a combined
cohort of NSCLC patients where response was defined as exhibiting
partial response or stable disease for >6 months. The average IO score of
responders (0.29) and non-responders (-0.096) was found to be signifi-
cantly different by the Welch t-test (p ¼ 0.0035) (Figure 3), clearly
separated on both sides of the predefined threshold. Notably, while the
immuno-oncology algorithm was generated using RNA expression data
frommicroarrays, the input data for these NSCLC cohorts were generated
using whole transcriptome RNA-Seq, demonstrating the ability of the
immuno-oncology algorithm to analyze data from multiple platforms.

We further evaluated the prognostic potential of the IO score in
NSCLC by calculating the Odds Ratio (OR), finding that clinical response
to immunotherapy was significantly associated with a positive IO score



Table 2. IO signature 27-gene list.

HGNC_Gene_symbol ensmbl_ID

APOD ENSG00000189058

ASPN ENSG00000106819

CCL5 ENSG00000271503

CD52 ENSG00000169442

COL2A1 ENSG00000139219

CXCL11 ENSG00000169248

CXCL13 ENSG00000156234

DUSP5 ENSG00000138166

FOXC1 ENSG00000054598

GZMB ENSG00000100453

HTRA1 ENSG00000166033

IDO1 ENSG00000131203

IL23A ENSG00000110944

ITM2A ENSG00000078596

KMO ENSG00000117009

KRT16 ENSG00000186832

KYNU ENSG00000115919

MIA ENSG00000261857

PSMB9 ENSG00000240065

PTGDS ENSG00000107317

PLAAT4 ENSG00000133321

RTP4 ENSG00000136514

S100A8 ENSG00000143546

SFRP1 ENSG00000104332

SPTLC2 ENSG00000100596

TNFAIP8 ENSG00000145779

TNFSF10 ENSG00000121858

Table 3. Concordance between IM status from the 101-gene model and IO score
from the novel immuno-oncology algorithm within the validation cohort of 335
unique TNBC samples.

101-gene TNBC Model

IMþ IM-

IO Algorithm IOþ 82 (24%) 37 (11%)

IO- 2 (1%) 214 (64%)

Figure 3. Box and Whisker plot displaying IO scores from Responders (R) and
Non-Responders (Non-R) from the combined NSCLC cohorts. The IO score
threshold is indicated at 0.09. The line within the box plots represents the
median and the cross represents the mean.

Figure 2. Box and Whisker plot displaying IO scores of TNBC samples from
TCGA with high levels of TILs as compared to samples with increased neutrophil
load. The IO score threshold is indicated at 0.09. The line within the box plots
represents the median and the cross represents the mean.
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(OR ¼ 5.76, 95% CI 1.30 to 25.51, p ¼ 0.021) using the predefined
threshold for IO positivity.

4. Discussion

Immunotherapy with ICIs has revolutionized cancer treatment and is
responsible for a significant portion of the largest single-year drop in
cancer mortality rates from 2016 to 2017 [27]. Despite its effectiveness
in multiple cancer types, only a small proportion of patients respond to
ICI therapy. Recent estimates of U.S. cancer patients eligible for ICI
therapy have been lowered from 12.5% to 10.9%, in part due to the
failure of ICI drugs to show improvement in overall survival or
progression-free survival [28]. In order to realize the full potential of ICI
therapies, reliable biomarkers are necessary to distinguish patients who
will benefit and to avoid unintended morbidities.

Capturing the immunological state of the TME appears to be a critical
pillar of predicting response to immunotherapies [29]. Whereas the
active TME is defined as having an established innate and adaptive im-
mune response to the tumor as well as supportive immune recruitment by
the surrounding stroma, the quiescent state contains more immunosup-
pressive features including increased extracellular matrix components
[30] and an increased pro-inflammatory response enhancing
4

vascularization [31] which plays a tumor supportive role. Because ICI
therapies typically support an adaptive immune response, patients with
an active TMEmay be more likely to respond [32]. Current gold standard
biomarkers only capture a defined aspect of the TME and have limited
ability to predict immunotherapy response. Thus, there is an unmet
clinical need for biomarkers capable of discerning an active from a
quiescent TMEwhichmay be useful in predicting response to ICI therapy.

Here we have described a novel immuno-oncology algorithm that was
optimized for genes expressed in the M and IM subtypes of TNBC as a
means to capture the immunological state of the TME (Figure 4). Earlier
studies have shown that the IM subtype may have predictive value in
immunotherapies, and that the M and IM subtypes are inversely corre-
lated [13, 14]. We hypothesized that the IM subtype reflects an immu-
nologically active TME which is indicative of response to
immunotherapies, whereas the M subtype reflects a more quiescent TME.
We reasoned that the M and IM subtypes could inform an algorithm to
measure the TME immunological state that may be useful in selecting
patients likely to benefit from ICI therapies.

In developing the immuno-oncology algorithm, we adapted some of
the methods used to derive the 101-gene model described by Ring et al.
to generate shrunken centroids [12]. As hypothesized by Ring, feature
and dimensional reduction of large-scale gene expression datasets min-
imizes overfitting which can improve clinical subtype identification. This
hypothesis seems to be supported by the outcome of the validation cohort
in which we observed 88% concordance between the IM score of the
101-gene model and the IO score of the immuno-oncology algorithm.
Among the discordant group, 11% is represented by samples that were IO
positive but IM negative. Further studies are planned to evaluate the
performance of the novel immuno-oncology algorithm in clinical cohorts.



Figure 4. Overview of IO score as a measure
of the quiescent or immunologically active
state of the tumor microenvironment (TME).
We hypothesized that a negative IO score
may indicate a quiescent state, where the
tumor cells are more actively promoting
angiogenesis, inducing an inflammatory
response, and stimulating cancer-associated
fibroblasts which collectively is construct-
ing extracellular matrix. By comparison, a
positive IO score may indicate an immuno-
logically active TME with reduced inflam-
matory characteristics combined with an
increase in the innate and adaptive immune
systems increasing tumor cell invasion.
Whereas a biomarker such as PD-L1 may be
present in both states, the immuno-oncology
algorithm is able to distinguish a quiescent
from an active TME.
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Several observations support our hypothesis that the novel immuno-
oncology algorithm measures the immunological state of the TME. For
one, using microarray data from GSE81838 we were able to obtain a
92.5% Spearman correlation coefficient between IO scores of the tumor
epithelial and adjacent stromal tissues. These results indicate that the IO
score is not specific to either of these tissue types, but rather reflects the
broader TME as a whole. In another line of experiments with TCGA breast
cancer datasets, we observed a significant difference in IO score (p ¼
0.0092) between TNBC samples with high TILs and samples with
increased neutrophil load. This result demonstrates agreement between
IO score and these two prognostic markers, and suggests that a negative
IO score possesses features consistent with poor response to immuno-
therapy, whereas a positive IO score correlates with features associated
with a favorable outcome.

To further elucidate how the different 27-genes capture a complex
signature of the TME and simplify to an indicator of response to immu-
notherapies we have separated the genes by whether they impact
immunomodulatory (hot) or mesenchymal (cold) signatures of the IO
score (Table 4). While CDH1 (E-cadherin) and TGFB1 (TGF-β) are
commonly associated with the epithelial to mesenchymal transition
(EMT), they are not specifically included in our algorithm. However,
many of the cold genes of the 27-gene algorithm appear to interact with
the EMT pathway suggesting this is an important mechanism we are
capturing.

Finally, we were able to demonstrate that the IO score is informative
not only in TNBC but also in NSCLC. Using RNA expression data matched
to clinical outcome in a combined cohort of NSCLC patients treated with
an immunotherapy drug, we observed a significant difference in IO score
(p ¼ 0.0035) between responders and non-responders. In addition, we
observed a significant odds ratio (OR ¼ 5.76, 95% CI 1.30 to 25.51, p ¼
0.021), indicating the IO score is capable of predicting response to im-
munotherapies. Together, these data demonstrate the potential clinical
utility of the immuno-oncology algorithm in providing a means to opti-
mize immunotherapy use by predicting response to ICIs. We plan to
Table 4. Description of 27-gene IO algorithm gene profile.

‘Hot’ TME genes CCL5, CD52, CXCL11, CXCL13,
GZMB, IDO1, IL23A, ITM2A, KMO,
KYNU, PSMB9, PTGDS, RARRES3,
RTP4, S100A8, TNFAIP8, TNFSF10

‘Cold’ TME genes APOD, ASPN, COL2A1, FOXC1, HTRA1,
KRT16, MIA, SFRP1

Uncertain DUSP5, SPTLC2

5

further evaluate the performance of the immuno-oncology algorithm in
clinical cohorts.

5. Conclusions

There is an unmet need for improved biomarkers to optimize ICI
immunotherapy use in clinical settings. The novel immuno-oncology
algorithm could potentially address this need by providing a means to
distinguish patients likely to benefit from treatment with ICIs. Unlike
previously described biomarker models, the novel immuno-oncology
algorithm measures the immunological state of the TME as a means to
capture the interplay of the patient's immune system and tumor immune
evasion. The concept that “tumors are wounds that do not heal” has been
used to describe this interplay as the tumor co-ops the wound healing
response which encompasses immunosurveillance as well as various as-
pects of wound healing that appear to be components of tumor mainte-
nance and growth [33]. What makes the immuno-oncology algorithm
unique is its ability to capture aspects of immunosurveillance, immuno-
suppression, and immune evasion as a tumor transitions from a prolif-
erative to a metastatic state. Moreover, the immuno-oncology algorithm
is capable of analyzing data obtained from multiple platforms. We
believe that bymeasuring the immunological state of the TME as a whole,
the novel immuno-oncology algorithm may offer independent and in-
cremental predictive value over the current gold standard biomarkers in
the clinic.
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