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Identifying new treatments for existing drugs can help reduce drug development costs 
and explore novel indications of drugs. The prediction of associations between drugs 
and diseases is challenging because their similarities and relations are complicated and 
non-linear. We propose a HeteroDualNet model to address this issue. Firstly, three types 
of matrices are extracted to represent intra-drug similarities, intra-disease similarity and 
drug-disease associations. The intra-drug similarities consider three drug features and a 
newly introduced drug-related disease correlation. Secondly, an embedding mechanism 
is proposed to integrate these matrices in a heterogenous drug-disease association layer 
(hetero-layer). Further, a neighbouring heterogeneous layer (hetero-layer-N) is constructed 
to incorporate the biological premise that similar drugs can often treat related diseases. 
Finally, a dual convolutional neural network is built with hetero-layer and hetero-layer-N 
as two branches to learn from characteristics of drug-disease and the relations of their 
neighbours simultaneously. HeteroDualNet outperformed the other four methods in 
comparison over a public dataset of 763 drugs and 681 diseases in terms of Areas Under 
the Curves of Receiver Operating Characteristics and Precision-Recall, and recall rate at 
top k. Case study of five drugs further proved the capacity of HeteroDualNet in finding 
reliable disease candidates of drugs as validated by database records or literature. Our 
findings show that the embedded heterogenous layers of original and neighbouring drug-
disease representations in a dual neural network improved the association prediction 
performance.

Keywords: drug-disease association prediction, multiple kinds of similarities, neighbouring heterogeneous layer, 
deep learning, dual convolutional neural network

INTRODUCTION
The research and development (R&D) processes of new drugs are time-consuming and expensive. 
Stringent drug testing and approvals are required for an invented new drug to make it to market. 
For instance, it takes an average of 15 years from preliminary examination of compounds to clinical 
trials of drug candidates, and finally to drug marketing, while the estimated investment cost is 
about 800 million dollars (Adams and Brantner, 2006; Tamimi and Ellis, 2009; Pushpakom et al., 
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2018). However, even in the case of a significant amount of time 
and capital investment, the R&D of new drugs still faces high 
failure risks (Li et al., 2016). Meanwhile, the number of new 
drugs approved by major drug regulatory agencies around the 
world is decreasing year by year (Grabowski, 2004; Nosengo, 
2016). According to the statistics of the US Food and Drug 
Administration (FDA), the average success rate of new drugs 
approved from 2003 to 2011 was less than 10% (Padhy and 
Gupta, 2011; Hay et al., 2014; Pritchard et al., 2017). Therefore, 
the conventional R&D productivity of new drugs has been 
stagnant in the last few decades (Paul et al., 2010).

Given the challenges faced by conventional drug R&D 
techniques, there are significant needs of innovative drug 
development strategies to increase R&D productivity, which is 
one of the essential priorities in the pharmaceutical industry. 
Drug repositioning techniques, or the so-called reuse of existing 
drugs, have been proved of its advantages over the conventional 
drug R&D strategies. (Hurle et al., 2013) Drug repositioning is 
the process to identify new indications for existing drugs and 
is playing an essential role in the state-of-the-art drug R&D 
process. Drug repositioning can be applied to drugs which have 
been approved to market. Because those drugs have passed the 
procedures of laboratory, pharmacokinetics, toxicology and 
safety testing, drug developers can use these drugs in clinical 
trials directly. In this way, drug repositioning skips those 
procedures and will significantly reduce the time and financial 
costs in drug development. At the same time, it also reduces 
the risks of drug development failure. Thus, drug repositioning 
has attracted great interests in the pharmaceutical industry and 
research community (Hurle et al., 2013).

Drug repositioning aims to find potential indications 
for existing drugs (Shim and Liu, 2014; Chen et al., 2016). 
Computational methods in biology are playing increasingly 
important roles in the stimulation, development and finding 
of new drugs (Chou, 2015). To develop useful predictors for 
biological systems via computing models, Chou’s 5-steps (Chou, 
2011; Chou, 2019b) are used by recent publications (Chou, 
2019a; Awais et al., 2019; Ehsan et al., 2019; Hussain et al., 2019). 
These steps provide guidance in the development and validation 
of computerized methods, which include selection of a valid 
benchmark dataset for training and testing, representation of 
samples by effective formulation to reflect intrinsic correlations 
with the target, development of algorithms for prediction, 
objective performance evaluation by cross-validation, and 
consideration of public accessibility by web-server.

Several methods have been proposed to predict drug-
disease associations. For example, Chiang and Butte proposed a 
technique based on the internal correlation of networks to predict 
the potential drug-disease associations (Chiang and Butte, 2009). 
Sirota et al. developed a prediction method by integrating the 
common gene expressions of drugs and diseases (Sirota et al., 
2011). Besides, Yang and Agarwal et al. proposed to infer the new 
drug-disease associations by using the phenotypic information 
on drug side effects (Yang and Agarwal, 2011). Most of these 
methods are designed for early-stage drugs which have multiple 
uses and treatment plans. They cannot be used for association 

prediction when there are no common gene expressions and side 
effects information between drugs and diseases.

With the increasing amount and variety of drug-related 
data, recent research has been focusing on integrating 
multimodality information to investigate the potential uses of 
drugs. Gottlieb et al. proposed a classification model which 
used various associations of drug and disease as distinguish 
signatures. A logistical regression model was then used to 
predict the indications of drugs (Gottlieb et al., 2011). A 
kernel-based strategy was proposed to integrate molecular 
structure, molecular activity, and phenotypic information for 
drug repositioning (Wang et al., 2013). Heterogenous networks 
have also been investigated to predict drug indications. 
Heterogeneous networks are constructed by associating drugs, 
diseases, targets and genes. The prediction can be achieved by 
approaches such as network clustering (Wu et al., 2013), priority 
ranking (Martinez et al., 2015), network topology measurement 
(Chen et al., 2015), or iteration (Wang et al., 2014b). Given these 
heterogeneous networks, some other models integrated multiple 
chemical features such as chemical phenotype of drugs and 
molecular characteristics of diseases. Then the prediction of new 
drug indications can be achieved by proteochemometric models 
(Dakshanamurthy et al., 2012; Yu et al., 2015), statistical (Iwata 
et al., 2015) or sparse subspace learning (Liang et al., 2017; Xuan 
et al., 2019) models.

Most of the above existing methods for drug-disease 
association predictions are shallow models. The associations 
between drugs and diseases, however, are non-linear and 
complicated. It is challenging for these shallow models to dig 
out advanced level while hidden drug-disease relations. Thus, 
there are great necessities to develop models to learn the deep 
representations of drug-disease associations for improved drug 
indication prediction.

In this work, we propose a novel convolutional network 
with heterogeneous layers and dual branches, referred to as 
HeteroDualNet, for drug-disease association prediction. 
Our first unique contribution is the extraction of three types 
of matrices for the representation and indexing of intra-
drug similarity, drug-disease similarity and drug-disease 
associations. When constructing intra-drug similarity 
matrices, we consider both regular drug features, including 
chemical substructures, domains and annotations of target 
proteins, and a newly introduced feature calculated by drug-
related disease correlations. The second contribution is that 
we construct a new heterogenous drug-disease association 
layer (hetero-layer) to associate three types of matrices by a 
proposed embedding mechanism. Further, a drug-disease 
association layer with neighbouring information (hetero-
layer-N) is constructed by the embedding mechanism to reflect 
the biological premise that similar drugs can often treat related 
diseases. Finally, HeteroDualNet is built to predict drug-
disease associations with hetero-layer and hetero-layer-N as 
two branches to learn from both original and neighbouring 
characteristics of drugs and diseases simultaneously. We also 
investigate the prediction capacity of the proposed model in 
therapeutic drug indications by case studies of five drugs.
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MATeRIALS AND MeTHODS

Dataset
We obtained the data of drugs and diseases from a published 
work (Wang et al., 2014a). There are 763 drugs, 681 diseases 
and 3051 known drug-disease associations. The characteristics 
of each drug include 881 chemical substructures which were 
initially derived from the chemical fingerprints extracted from 
the PubChem database (Wang et al., 2009); 1,426 target protein 
domains from the InterPro database (Mitchell et al., 2015); and 
4,447 target protein annotations obtained from the UniProt 
database (Uniprot, 2010). The similarities among diseases were 
calculated by (Wang et al., 2010) and provided in the dataset.

Hypothesis and Framework
We hypothesize that a dual neural network which integrates 
features of drugs, drug-related disease correlations, and the 
biological premise of drugs and diseases will improve the 
performance of drug-disease association predictions. The 
overview of the proposed method is shown in Figure 1. Given 
the input dataset, the drugs and diseases information is firstly 
extracted and indexed by three types of similarity matrices in 
terms of intra-drug, intra-disease and drug-disease. Then, a 
heterogenous drug-disease association layer, referred by hetero-
layer, is constructed by a proposed embedding mechanism to 
associate those matrices among drugs and diseases. Another 
heterogeneous layer with neighbouring information, denoted 
by hetero-layer-N, is built to represent the biological premise 
that similar drugs can often treat related diseases. Lastly, the 
dual convolutional neural network is constructed by integrating 
hetero-layer and hetero-layer-N using a fully connected layer.

Drug and Disease Similarity and 
Association Representation
We define three types of matrices to represent and index the 
information of drugs and diseases in terms of intra-drug 
similarity, intra-disease similarity and drug-disease associations.

Intra-Disease Similarity Matrix
Intra-disease similarities were calculated and provided by (Wang 
et al., 2010) based on semantic information of diseases (Wang 
et al., 2010). This information was also used in published work 
such as Liang et al. (2017) and Zhang et al. (2018). The similarity 
between disease di and the disease dj is denoted by D(i,j) ∈[0,1]. 
where  is the intra-disease similarity matrix and NDI is the number 
of diseases. The greater D(i,j) is, the higher similarity between 
diseases di and dj.

Intra-Drug Similarity Matrix
Four intra-drug similarity matrices are obtained by calculating the 
similarities between drugs from four perspectives, including the 
chemical substructures, target protein domain information, target 
protein annotations and the related disease information of drugs.

The first three intra-drug similarity matrices of chemical 
substructure, domain and annotation information of target 
proteins represent that if two drugs have more common 
chemical substructures, target protein domains or gene ontology 
information, the more similar they are. Thus, we calculate 
these three intra-drug similarity matrices by cosine similarity 
measurement (Liang et al., 2017).

To calculate the first three intra-drug similarity matrices, we 
firstly obtain matrices of features and drugs. The feature matrix 
of chemical feature and all the drugs is denoted by F1

1∈ ×


N NF DR
 

where N F
1  is the number of chemical substructure features, 

and NDR is the number of drugs. Similarly, the feature matrix of 
protein domain and drugs is F2

2∈ ×


N NF DR  and that of protein 
annotation and drugs is F3

3∈ ×


N NF DR , where N F
2  is the number 

of target protein domain feature and N F
3  is the number of target 

protein annotation. Each element of the vectors is 1 or 0 according 
to whether the drug has such a feature. Given the dataset used in 
this paper, N F

1 = 881 , N F
2 =1426  and N F

3 = 4 447‚ . Let ft,i be the 
feature vector of i-th drug ri in the t-th feature matrix Ft (1 ≤ t ≤ 
3), the similarity Rt(i,j) between drugs ri and rj in terms of feature 
t is calculated by cosine similarity measurement as

 
Rt || || || ||

i j
f f

f f
t i t j

t i t j
, ., ,

, ,
( ) =

⋅

 (1)

FIgURe 1 | Overview of the proposed HeteroDualNet model for drug-disease association prediction. Given input data, (A) similarity and association representations 
are extracted including (B) intra-disease similarity, (C) intra-drug similarity, and (D) drug-disease association. Then (e) an embedding mechanism is proposed to embed 
these matrices. The final drug-disease association score is obtained by (H) HeteroDualNet with (F) heterogeneous and biological premise enhanced (g) neighboring 
heterogeneous drug-disease association layers. 
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where Rt(i,j)∈[0,1] and higher values indicate higher similarity 
between a pair of drugs.

The fourth intra-drug similarities matrix R4 ∈ ×


N NDR DR
 is 

obtained based on the idea that if two drugs are associated with 
similar diseases, the drugs are more likely to be correlated. 
Given the dataset of diseases DI={dk|k∈[1,NDI]} and intra-
disease similarity matrix D if i-th drug ri is associated with 
a subset of diseases DIm ⊂ DI, and drug rj is related to a 
disease subset DIn, the similarity R4(i,j) between i-th and j-th 
drugs  can be obtained by calculating the similarity between 
DIm and DIn as proposed in our previous work (Xuan et al., 
2019) by

 
R4

1i j
D d d D d di k j j k i

k

n

,
max , max ,, , , ,( ) =

( )( ) + ( )( )∗ ∗
=

uum DI

k

num DI

m n

nm

num DI num DI

( )
=

( ) ∑∑
( ) + ( )

1

 (2)

where num(DIm) denotes the number of elements in DIm. di,k 
represents the kth disease related with drug ri, dj,* denotes 
all the related diseases of drug rj, and max(D(di,k,dj,*)) is the 
maximum similarity between drug r sj

'  kth related disease and 
all the related diseases of rj. Similarly, max(D(di,k,dj,*)) denotes 
the maximum similarity between drug r sj

'  kth related disease 
and all the associated diseases of ri. The final similarity 
between ri and rj is obtained by the average maximum 
similarities between diseases in their relevant disease subsets 
DIm and DIn.

Drug-Disease Association Matrix
The drug-disease association matrix is denoted by A ∈ ×



N NDR DI
 

where an element can be 0 or 1. 1 indicates that a drug and a disease 
are related, and the association is available; while 0 represents that 
the relation between a drug and a disease is unknown. Among all 
the 763 drugs and 681 diseases in the dataset, 3051 drug-disease 
associations are available. The remaining unknown associations 
are to be predicted.

HeteroDualNet Architecture
The sparsity of drug-disease associations makes it challenging 
to dig out the hidden characteristics and relations between 
drugs and diseases. We construct HeteroDualNet, a dual 
convolutional neural network with heterogeneous layers, to 
predict drug-disease associations. One branch integrates 
the three matrices of drugs and diseases by a heterogeneous 
association layer (hetero-layer); the other branch incorporates 
the neighbouring information in a neighbouring heterogenous 
layer (hetero-layer-N). The two heterogeneous layers are 
learnt by passing through convolutional and pooling layers 
and joint by a connection module. The final association score 
is obtained by weighted voting of association scores from 
two branches.

Embedding Mechanism for Heterogeneous  
Drug-Disease Association Matrix
The heterogenous drug-disease association layer is built upon 
an embedded matrix of afore-extracted matrices. An embedding 

mechanism is proposed based on the idea that if two drugs are more 
similar, the more likely they are associated with related diseases, 
whereas two similar diseases tend to be associated with similar 
drugs. Given intra-drug matrices Rt, drug-disease association 
matrix A and intra-disease matrix D, the heterogeneous matrix 
XL of drug ri(i∈[1,NDR]) and disease dk(k∈[1,NDI]) is obtained by 
the following embedding procedures.

Firstly, row vectors Rt(i,*) are combined sequentially as 
XL,11=[R1(i,*); R2(i,*); R3(i,*); R4(i,*)] where Rt(i,*) denotes the 
i-th row in an intra-drug similarity matrix Rt which records 
the t-th type of similarities between ri and all drugs, t = 1,2,3,4 
denotes chemical substructures, target protein domains, 
target protein annotations and related disease information 
respectively. Secondly, the transposed column vector AT(*,k) 
is concatenated under R4(i,*) as XL,21 where A(*,k) is the kth 
column of A which contains the associations between dk and 
all the drugs. Thirdly, A(i,*) is repeated four times and spliced 
to the right of each row in XL,11 as XL,12=[A(i,*); A(i,*); A(i,*); 
A(i,*)] where A(i,*) denotes the ith row of A which includes 
the associations between ri and all the diseases. Lastly, 
D(k,*) is spliced under XL,12 where D(k,*) is the kth row of D 
containing the similarities between dk and all the diseases. The 
final embedded matrix X L

N Nr d∈ × +( )


5  of drug ri and disease 
dk is formed as
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 (3)

Given such a heterogeneous matrix XL, the unknown drug-
disease relations can be inferred via the correlations between 
diseases. In the meanwhile, the unavailable associations can 
be derived upon the similarities between drugs. In Figure 2, 
we illustrate the embedding procedure and use drug r2 and 
disease d1 whose association is unknown as an example. If r2 
is very similar to r3 and r4 (as shown in Figure 2A),r3 and r4 
are closely associated with d1(Figure 2B), it can be inferred 
that r2 is more likely to be associated with d1. Alternatively, if 
d1 is similar to d4 (shown in Figure 2C), and d4 is related with 
r2 (Figure 2B), a high possibility that r2 is associated with d1 
can be derived.

Neighbouring Heterogeneous Association Matrix
The neighbouring heterogeneous drug-disease association 
matrix XL–N embeds the neighbours of drug ri and disease dk. 
The embedding is proposed based on the biological premise that 
if the neighbours of a drug are associated with the neighbours 
of a disease, there is a high probability that the drug and the 
disease are associated. The embedding procedures considering 
the neighbours of ri and dk is: Firstly, we find drugs rm, rn, rp, 
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and rq which are the most similar neighbours of drug ri in R1, 
R2, R3 and R4 respectively. We also find dl, the most similar 
neighbour of dk, in D. Similar with XL,11, the m-th row of R1, nth 
row of R2, p-th row of R3, and qth row of R4 are combined from 
top to bottom to form XL–N,11. Secondly, the l-th column of A 
indicating the association between the most similar disease dl 
and all the drugs is transposed and concatenated under XL–N,11 
as XL–N,21. Thirdly, row vectors A(m,*), A(n,*), A(p,*), A(q,*) 
are spliced to the right of each row in XL–N,11, where A(m,*), 
A(n,*), A(p,*), A(q,*) indicate the associations between drugs 
rm,rn,rp and rq and all the diseases. Lastly, the l-th row of D 
containing the similarities between disease dl and all the other 
diseases is concatenated under XL–N,21. In such a way, the final 
embedding of most similar neighbours of ri and dk is formed 
as X L N

N NDR DI

−
× +( )∈

5 :

 

X
X X
X X

R

L
L N L N

L N L N
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 (4)

In XL–N, the most similar neighbours of drugs and diseases 
serve as the bridge to propagate associations. In Figure 3, we 
use drug r2 and disease d1 whose association is unknown as an 
example to illustrate the embedding procedure and information 

FIgURe 2 | Illustration of the proposed embedding mechanism for heterogenous drug-disease association matrix. Given drug r2 and disease d1 as an example, 
(D) the heterogeneous matrix is obtained by integrating (A) four types of intra-drug similarities, (B) drug-disease associations and (C) intra-disease similarities. 
In (A) and (C), darker colours indicate higher similarities; in (B) darker colour represents the drug-disease association is available.
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propagations. For instance, assume we find that drug r2 likes r3 
the most in R1, r1 in R2,r5 in R3, and r4 in R4(Figure 3A), and d1 
likes d4 the most in D (as shown in Figure 3B). In the embedded 
matrix XL–N, the left part indicates that all r s2

'  most similar 
neighbours (r3, r1, r5, r4) are very similar to r2 and r3. Because d4 
is associated with bridging drugs r2 and r3 based on A (Figure 
3C), it can be inferred that there is a high probability that r2 and 
d1 are associated. The right part shows that the majority of r s2

'  
most similar neighbours are related with d2. As d s1

' most similar 
neighbour d4 is closely related to the bridging disease d2 by D, it 
can be derived that d1 is probably related with r2.

HeteroDualNet for Association Prediction
The architecture of HeterDualNet is given in Figure 4. The hetero-
layer and hetero-layer-N are obtained by zero padding heterogenous 
matrices XL and XL–N. One branch in the dual CNN model alternates 
two convolution and two pooling operations over hetero-layer 
(Figure 4A), the other branch is built where hetero-layer-N is 
convolved and pooled for neighbouring feature representations 
(Figure 4B). These two branches are connected by a fully connected 
network to achieve the final association score between ri and dk 
(Figure 4C). Same network settings are used in the two branches, 
thus we introduce the branch with hetero-layer in detail.

Convolutional module on hetero-layer. The heterogeneous 
matrix XL is firstly padded with zeros to preserve the marginal 
information of matrices. In the first convolutional layer, we set 
N1 filters where each filter is with width and length of nwc1

 and 
nlc1

. The hetero-layer is thus denoted as V1
5 2 2∈ ( )× + +( )



+ l N N pr d  where 
l = nwc1

1 2−( ) /  p = nlc1
1 2−( ) / . The case when N1=3, nwc1

3= , 
and nlc1

5=  is illustrated as an example in Figure 4A. The weight 

parameter matrix of a n-th filter in the first convolutional layer is 
denoted by W1

1 1
,n

n nwc lc∈ ×


, n∈[1,N1]. The step size of a sliding 
window is set to be 1 1× . The output of the first convolutional 
layer is obtained as S1

51∈ × × +( )


N N Nr d  where S1
5

,n
N Nr d∈ × +( )


 is 

the n-th output after V1 is scanned by the n-th filter as
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where Sl,n(i,j) is the element in the i-th row and the j-th column 
of Sl,n as:

 
S V W1 1 1 1, ,

'
, ,n i j n ng b( ) = ⋅ +( )

 (6)

where bl,n is the bias, “g” denotes the dot product, and g is a ReLu 
function. Vl(i,j) is the element in the i-th row and the j-th column 
of V1. When the filter slides to the position where V1(i,j) is the 
center point, V1

1 1
i j

n nwc lc
,

'
( )

×∈  is formed by all the elements in the 
filter window as follow
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FIgURe 3 | Illustration of the embedding procedure for neighbouring heterogeneous matrix. Using drug r2 and disease d1 as an example, (D) the final matrix is 
obtained by finding the most similar neighbours (e.g. r3,r1,r5,r4) of r2 calculated from (A) four intra-drug similarities respectively, the most similar neighbour (e.g. 
d4) of drug d1 by (B) intra-drug similarity matrix, and (C) drug-disease associations. In (A) and (B), darker colours indicate higher similarities; in (C) darker colour 
represents the drug-disease association is available.
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We set the width and length of the sliding window in the first 
pooling layer as nwp1

 and nlp1
 ( nwp1

1=  and nlp1
2=  as an example 

in Figure 4) and the step size as. The output of the first pooling 
S2

5 21∈ × × +( )


N N Nr d / . is obtained by a max-pooling operation where 
the n-th output S2
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where S2, ,n i j( )  is the maximum value between S1 2 1, ,n i j-( )  and 
S1 2, ,n i j( )  defined as

 
S S S2 1 2 1 1 2, , , , , ,,n i j n i j n i j( ) −( ) ( )= ( )max  (9)

By padding S2,n with zeros, V2 is obtained as V2
5 2 2∈ ( )× + +( )



+ l N N pr d  
where l nwc

= −( )2
1 2/  and p nlc= −( )2

1 2/ . The number of filters is 
set as N2 in the second convolution. The output of the second 

convolution is obtained as S3
5 22∈ × × +( )



N N Nr d / . In the second pooling 
layer, we set the width and length of the sliding window as nwp2

 
and nlp2

, and the step size as n nw lp p2 2
× . For instance, the case 

when N2 = 6, nwp2
1=  and nlp2

2=  is illustrated as an example 
in Figure 4. The output of the second pooling is obtained as 
S4

5 42∈ × × +( )


N N Nr d /  which is also the final output. Let SL represent 
the final output of this branch, SL = S4.

Convolutional module on hetero-layer-N. The settings of 
convolution and pooling operations on hetero-layer-N is the 
same as the above branch. Let SR denote the final output given 
XL–N as inputs, SR

N N Nr d∈ × × +( )


2 5 4/ .
Final integration module. The integration of two 

branches is obtained by firstly flattening SL and SR as vectors 
u uL R

N N Nr d, /∈ × × × +( )( )


1 5 42 . uL and uR are then fed into a fully 
connected layer (as shown in Figure 4C).

The association score hL ∈ ×


2 1  between drug ri ri and disease 
dk in one branch is obtained as

 
h W u bL L L L= +( )softmax T  (10)

where WL
N N nr d∈ × × +( ) ×( )



2 5 4 2/  is the weight parameter matrix, 
and bL is a bias vector. hL(1) contains the probability that ri is 

FIgURe 4 | Schematic diagram of HeteroDualNet. (A) One branch over hetero-layer of drug-disease characteristics and (B) one branch over the neighbouring 
heterogeneous layer (hetero-layer-N) are connected by (C) an integration module for final association score prediction. Three 3×5 filters in 1st convolution, six 3×5 
filters in 2nd convolution, a sliding window of 1 × 2 in 1st and 2nd pooling are used for illustration.
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associated with dk and hL(2) is the probability that ri and dk are 
not associated. Similarly, the association score hR of the other 
branch is calculated by

 h W u bR R R R= +( )softmax T  (11)

The final association score h is obtained by a weighted fusion 
of hL and hR as

 h = h hα α αL R s t+ −( ) ≤ ≤1 0 1, . .  (12)

where α is a regulation parameter to balance the contributions of two 
branches. Let lossL and lossR denote the losses of two branches as:

 lossL L F
= −min h y

2

, lossR R F
= −min h y

2

 (13)

where y =












y
y

0

1
 is the probability that drug ri and disease dk are 

associated. If ri and dk are associated, y0=0 and y1=1, otherwise 
y0=1 and y1=0. The final loss loss is obtained by

 loss L F R F
= − + −( ) −min α αh y h y

2 2
1  (14)

where the regulation parameter α is the same as that in Equation 
12. With the network architecture and loss function, the 
parameters are randomly initialized and adjusted in the training 
process until the loss function is minimized. Given three types 
of drug-disease matrices, the final drug-disease association score 
can be predicted by the trained HeteroDualNet model.

In order to reduce the impact of overfitting which is caused by the 
number of parameters in the proposed model based on dual CNN, 
we adopt the widely used dropout strategy to prevent the overfitting 
of HeteroDualNet. During each iteration process for training the 
model, HeteroDualNet randomly ignores some neurons to ensure 
that the trained model will have a good generalization ability.

eXPeRIMeNTAL eVALUATIONS AND 
DISCUSSIONS

experimental Setup
The drug-disease samples with known associations are regarded 
as one class (L1), while those pairs with unknown associations are 
considered as the other class (L2). In total, there are 3051 L1 samples, 
and 763*681-3051 = 516552 L2 samples. Because L1 and L2 samples 
are largely imbalanced, undersampling strategy is used to address 
this issue. We divided the data into two subsets. One subset A is 
composed of 3051 L1 samples and 3051 L2 samples, while the second 
subset B contains the remaining 516552 – 3051 L2 samples.

Five-fold cross-validation is performed to evaluate the 
prediction performance of HeteroDualNet and other compared 
models. The same training and testing data are used for the 
training and testing of the models. In each round of validation, 
the samples in subset A are equally divided into five parts where 

four parts are used as the training dataset, and one part together 
with subset B are used for testing.

As the calculation of the 4-th intra-drug similarities matrix 
R4 involves drug-disease association matrix A and intra-disease 
matrix D to ensure that there is no testing data information in 
the training dataset, R4 is recalculated by removing drug-disease 
samples that appear in training in each round of validation.

Comparison Methods and evaluation 
Metrics
To evaluated the contributions of the proposed HeteroDualNet 
architecture and heterogenous drug-disease similarity 
representations, our model is compared with other four prediction 
methods including TL_HGBI (Wang et al., 2014b), MBiRW (Luo et 
al., 2016), LRSSL (Liang et al., 2017), and SCMFDD (Zhang et al., 
2018). LRSSL is based on three drug features without considering 
neighbouring information and our proposed fourth intra-drug 
similarity from drug-related disease correlations. MBiRW used 
only one type of drug feature. SCMFDD and TL_HGBI used 
matrix decomposition and heterogeneous networks, but they didn’t 
consider neighbouring information and multiple features.

The prediction performance is comprehensively evaluated by 
true positive rate (TPR), false positive rate (FPR), the Receiver 
Operating Characteristic (ROC) area under curve (ROC AUC), 
the Precision-Recall area under curve (PR AUC) and recall rate 
under different top k values. TPR and FPR are calculated as

 
TPR TP

TP FN
FPR FP

TN FP
=

+
=

+
, ,

 (15)

where TP (FN) is the number of positive samples that are 
correctly identified (misidentified), TN (FP) is the number of 
correctly identified (misidentified) negative samples. A sample 
is regarded as a positive sample when its predicted association 
score is greater than a threshold θ. If the testing sample’s score is 
smaller than θ, it is identified as a negative sample. The values of 
FPR and TPR are calculated by setting different values of θ. The 
average ROC AUC value of all the evaluated drugs is used as the 
overall prediction performance of a method.

Since two classes are heavily imbalanced, the evaluation by PR 
AUC is more appropriate than ROC AUC in our study. Thus, PR 
AUC is also compared among different methods. Precision and 
Recall are defined by

 
Precision Recall ==

+ +
TP

TP FP
TP

TP FN
,

 (16)

where Precision represents the ratio between the number of 
correctly identified positive samples and all samples which are 
predicted to be positive samples, and Recall represents the ratio 
of the correctly identified positive samples to all the positive 
samples. Meanwhile, because the top-ranked results are of greater 
interest in real practices, which are often considered by biologists 
for further validation, we also calculate the recall rate in top k 
ranked results. The higher the recall rate for the top k disease, the 
more drug-related diseases can be predicted by the model.
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experimental Results and Discussion
The ROC and PR of all the methods using all the 763 drugs are 
shown in Figure 5. The AUC results are given in Table 1. As 
shown by Figure 5A and Table 1, our model achieved the highest 
AUC of 0.908 among all the methods in comparison, which is 
7.1% greater than the second best MBiRW model, 18.2% higher 
than the SCMFDD method, and 22.6% higher than the TL_HGBI 
method. As shown by Figure 5B and Table 1, HeteroDudalNet 
achieved the best performance where PR AUC reached 0.154, 
which was 3.2%, 10.7%, 14%, and 14.1% better than the that of 
LRSSL, MBiRW, SCMFDD and TL_HGBI models respectively.

As shown by the ROC and PR evaluation results, 
HeteroDudalNet outperformed the second best LRSSL because 
of the integration of neighbouring information on drugs and 
diseases and the intra-drug similarity calculated by correlations 
of drug-related diseases. Compared with LRSSL which 
considered three types of drug features, the third best model 
MBiRW considered only one type of drug feature in an adopted 
a random walk-based model, which resulted in a much  lower 
prediction score. Without considering neighbouring associations 
and multiple features, SCMFDD and TL_HGBI methods failed 
to achieve satisfactory prediction performance although they 
used matrix decomposition and heterogeneous networks.

The average performance over all the 763 drugs in terms of recall 
rate given different top k values is shown in Figure 6. The higher 
the recall rate for the top k diseases, the more drug-related diseases 

can be predicted by a computing model. When increasing the value 
of k from 30 to 240 with a step of 30, the average recall rate of our 
method is the best among all the models in comparison. When 
examining the top 30, 60 and 90 diseases, our model achieved recall 
rates of 69.2%, 77%, and 83.5%, and the second best was obtained 
by LRSSL with recall rates of 63.4%, 71.3%, and 77.7% respectively. 
The third-ranked model MBiRW performed slightly worse than 
LRSSL where the results were 52.9%, 66% and 74.2%. When k was 
increased from 90 to 240, MBiRW started to perform better than 
LRSSL and achieved its highest recall rate of 88.7% when k was 
240, while our model obtained the best rate of 90.9% among all the 
methods. Overall, the top k recall rates of SCMFDD and TL_HGBI 
were significantly lower than the other techniques in comparison.

As shown by the top k recall rate test, our model achieved the 
best performance, which could be useful for biologists to conduct 
clinical experiments because the highest ranked list contains 
more real drug-disease associations. As shown by the results 
when k was smaller than 90, our model and LRSSL outperformed 
the other methods because of the consideration of multiple drug 
features. The comprehensive representation of drugs concerning 
similarities in various perspectives contributes to digging out 

FIgURe 5 | Comparison between the proposed HeteroDudalNet model (H_D_Net) against four other methods by Receiver Operating Characteristic (ROC) (A) and 
Precision-Recall (PR) (B) curves.

TABLe 1 | Receiver Operating Characteristic area under curve (ROC AUC) and 
Precision-Recall area under curve (PR AUC) of all the methods in comparison.

Average performance on 763 drugs

HeteroDualNet TL_HgBI MBiRW LRSSL SCMFDD

ROC AUC 0.908 0.723 0.855 0.845 0.611
PR AUC 0.154 0.031 0.045 0.089 0.006

FIgURe 6 | The recalls across all the tested drugs at different top k cutoffs.
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the potential associations between drugs and diseases. When k > 
90, the number of common features between drug and disease 
may be decreasing when compared with smaller k values. Thus, 
considering only multiple features could not always guarantee a 
good prediction result. MBiRW performed better than LRSSL 
due to the consideration of global information in a random walk 
based network. By incorporating three drug characteristics, the 
calculated correlations between drug-related diseases as intra-
drug similarities, and neighbouring information of similar 
drugs and diseases, our model achieved better results than 
LRSSL and MBiRW.

Case Studies of Five Drugs
To further evaluate and demonstrate the effectiveness of 
the proposed HeteroDualNet in finding reliable disease 
candidates of drugs, we conducted case studies of five drugs, 
including ciprofloxacin, ceftriaxone, ofloxacin, ampicillin and 
cefotaxime. Two public drug disease databases, Comparative 
Toxicogenomics Database (CTD) and DrugBank, were used to 
verify and confirm the predicted drug-disease associations by 
the proposed model. CTD is funded by the National Institute 
of Environmental Health Sciences which contains information 
of drugs and drugs’ effects on diseases extracted from 

TABLe 2 | Top 10 related candidate diseases of ciprofloxacin, ceftriaxone, ofloxacin, ampicillin and cefotaxime.

Drug name Rank Disease name Description Rank Disease Description

ciprofloxacn 1 Pneumonia, Bacterial CTD 6 Gram-Positive Bacterial 
Infections

CTD

2 Salmonella Infections CTD 7 Eye Infections, Bacterial Literature (Marino 
et al., 2013)

3 Bacterial Infections CTD 8 Soft Tissue Infections CTD
4 Streptococcal Infections DrugBank 9 Enterobacteriaceae Infections CTD
5 Gram-Negative Bacterial 

Infections
CTD 10 Helicobacter Infections CTD

ceftriaxone 1 Gram-Negative Bacterial 
Infections

CTD 6 Haemophilus Infections CTD

2 Bacterial Infections CTD,
ClinicalTrials

7 Gram-Positive Bacterial 
Infections

CTD

3 Septicemia DrugBank 8 Skin Diseases, Infectious DrugBank
4 Respiratory Tract 

Infections
CTD 9 Wound Infection ClinicalTrials

5 Pseudomonas 
Infections

DrugBank 10 Eye Infections, Bacterial DrugBank

ofloxacin 1 Eye Infections, Bacterial ClinicalTrials,
DrugBank

6 Pseudomonas Infections CTD

2 Gram-Negative Bacterial 
Infections

DrugBank 7 Bacterial Infections CTD

3 Sinusitis CTD 8 Bacteroides Infections DrugBank
4 Streptococcal Infections CTD 9 Gram-Positive Bacterial 

Infections
CTD

5 Pneumonia, Bacterial CTD 10 Enterobacteriaceae Infections DrugBank
ampicillin 1 Pseudomonas 

Infections
unconfirmed 6 Proteus Infections CTD

2 Bacterial Infections CTD 7 Septicemia DrugBank
3 Gram-Positive Bacterial 

Infections
CTD 8 Streptococcal Infections CTD

4 Gram-Negative Bacterial 
Infections

CTD 9 Wound Infection CTD

5 Pneumonia, Bacterial CTD, ClinicalTrials 10 Enterobacteriaceae Infections DrugBank
cefotaxime 1 Respiratory Tract 

Infections
CTD, ClinicalTrials 6 Enterobacteriaceae Infections DrugBank

2 Pseudomonas 
Infections

DrugBank 7 Gram-Positive Bacterial 
Infections

CTD, DrugBank

3 Gram-Negative Bacterial 
Infections

CTD, DrugBank 8 Wound Infection DrugBank

4 Septicemia DrugBank 9 Skin Diseases, Infectious ClinicalTrials
5 Bacterial Infections CTD, ClinicalTrials 10 Osteomyelitis CTD, ClinicalTrials

(1) CTD refers to the Comparative Toxicogenomics Database (CTD), which contains a manually managed drug-disease association. (2) DrugBank refers to the drug-disease 
association held in the DrugBank database, which collects experimental information of the drug. (3) ClinicalTrials means that the association of drugs with the disease is recorded in 
the online database ClinicalTrials.gov. (4) literature refers to the literature supporting the association of drugs with the disease. (5) unconfirmed means that there is no evidence that 
the drug is associated with the disease.
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published literature. DrugBank is supported by the Health 
Research Institute of Canada, the Alberta Innovation-Health 
Solutions and Metabolic Innovation Center. Drugs’ clinical 
trial information can be found in DrugBank, which includes 
drugs and diseases in experiments.

For each of the five drugs, we ranked the predicted diseases 
according to the relevance scores in descending order. The 
top 10 ranked diseases are used for verification and listed in 
Table 2. Among all the 50 diseases, 31 disease-drug association 
information can be found in CTD, and 17 association 
information can be found in the DrugBank as shown in Table 2. 
The results demonstrated that the predicted candidate diseases 
are indeed associated with the corresponding drugs. Also, in the 
CTD database, the association between Ciprofloxacin and Eye 
Infections, Bacterial can be found in the literature. For the two 
diseases which cannot be found in CTD and DrugBank, one of 
them can be verified by ClinicalTrials.gov (https://clinicaltrials.
gov/) which records a wealth of clinical research information 
on various drugs and related diseases by National Institutes 
of Health (NIH) and the Food and Drug Administration 
(FDA). Therefore, there is only one disease candidate of 
drug ampicillin, which is Pseudomonas Infections, cannot be 
proved by the three databases and is labelled as unconfirmed in 
Table 2. The case studies demonstrated that our model can be 
used as an effective tool to predict the relations between drugs 
and diseases. At the same time, it has the capacity to provide 
computer-aided guidance for biologists in clinical trials.

The future direction for developing userful and powerful 
computerized prediction methods include establishing web-
servers to enable public assessibility (Cheng et al., 2017; Cheng 
et al., 2018; Xiao et al., 2019; Chou, 2019a; Chou, 2019b). Our 
future work include providing a web-server for the proposed 
model to increase the impact of computational model in 
bioinformatics, medical science and medicinal chemistry.

CONCLUSION
We present a novel HeteroDualNet model for drug-disease 
association prediction. Our model incorporates three kinds of 
drug features, a newly introduced intra-drug similarity based 

on correlations of drug-related diseases, and neighbouring 
information of drugs and diseases by constructing embedded 
drug-disease heterogenous matrices and dual branches in a 
deep neural network. The evaluation of public dataset and 
comparison with other four published models demonstrated 
the improved prediction performance in terms of ROC 
AUC, PR AUC, and recall rate at top k. Case studies of 
five drugs further proved the effectiveness of our model in 
finding potential relevant diseases of drugs as validated by 
database records or literature. Our model can be used as an 
effective  tool to predict the associations between drugs and 
diseases and provide computer-aided guidance for biologists 
in clinical trials.
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