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Abstract

CorNet is a web-based tool for the analysis of co-evolving residue positions in protein super-

family sequence alignments. CorNet projects external information such as mutation data

extracted from literature on interactively displayed groups of co-evolving residue positions

to shed light on the functions associated with these groups and the residues in them. We

used CorNet to analyse six enzyme super-families and found that groups of strongly co-

evolving residues tend to consist of residues involved in a same function such as activity,

specificity, co-factor binding, or enantioselectivity. This finding allows to assign a function to

residues for which no data is available yet in the literature. A mutant library was designed to

mutate residues observed in a group of co-evolving residues predicted to be involved in

enantioselectivity, but for which no literature data is available yet. The resulting set of muta-

tions indeed showed many instances of increased enantioselectivity.

Introduction

The enormous progress in sequencing technology has increased the number of available

sequences to hundreds of millions. For instance, the metagenome sequencing of just the bio-

logical diversity found in the Sargasso sea alone as reported by Craig Venter and coworkers[1]

identified 1.2 million new genes. Within the Global Ocean Survey (GOS) project another 6.1

million new gene sequences were found. As shown by Rusch et al. (2007)[2,3] 1,700 new pro-

tein families could be discovered in these databases. This rich source of information are a gold
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mine for the life sciences as these genes encode for a plethora of novel and mostly unexplored

enzymes useful for various areas such as medical science, pharmacy and biocatalysis[4].

During evolution, proteins undergo random mutations that leave their footprint in multiple

sequence alignments (MSA). Some amino acid residues will stay conserved, others are con-

served in groups of species, and yet others seem to mutate without restrictions. As a result we

observe in multiple sequence alignments a hierarchy of residue conservation, correlation, and

variation[5–7]. When residues are conserved within groups of sequences that share a certain

function but these residues differ between groups we observe correlated mutation behaviour

(also called co-evolution), and often such groups of residues are involved in a common func-

tion, such as specificity, co-factor binding, protein-protein interactions. We will call such

groups of co-evolving residues ‘networks’. CorNet is designed for the analysis of networks and

for the prediction of their roles in protein function.

Many attempts have been made to use correlation patterns for the prediction of protein

structures using information obtained from a MSA. Older methods all use what is now known

as mutual information. A series of CASP[8] experiments illustrated that mutual information

obtained from a MSA could not adequately predict protein structures. Recently a series of

developments[9–12], have caused a breakthrough in the use of correlated mutations for the ab
initio prediction of structures. Mutual information has often been related to function[13–16],

and distinguishing correlated mutations reflecting residue contacts from those reflecting func-

tions was the major problem faced when predicting protein structure from a MSA. These

problems are not encountered, though, when studying or optimizing protein function in fields

like protein engineering, chemical biology, or the analysis of disease causing mutations in the

human exome because the strongest correlations, and especially whole networks of correla-

tions often reflect a function[14].

Proteins have many functions including ligand and co-factor binding, regulation, signal-

ling, membrane embedding and catalysis. Each function requires that a series of residues work

together. Therefore, residues have not co-evolved in a pair-wise manner but rather as net-

works[17,18]. The concept of extracting correlated mutations from alignments is not new and

many methods have been described previously[5,6,13–16,19,20]. Several correlated mutation

analysis (CMA) software packages exist (e.g. ET[16], WHAT IF[21]) that cluster detected pairs

of residues into networks. Networks are often composed of sub-networks each containing resi-

due positions involved in one particular protein feature. A complicating factor in the assign-

ment of residues to functions is that they often contribute to multiple functions [22,23].

The function of a network cannot be determined from physicochemical characteristics of the

residues involved, but visual inspection of the 3D structure of the protein can reveal the function

of a network. Fig 1 shows examples of networks in four super-families that surround ligand- and

the cofactor binding pockets. Normally, though, the determination of function requires in vitro
or in vivo experiments, but often such experiments have already been performed in either the

molecule of interest or in a homolog and these results can often be extracted from the literature.

Besides that the amount of available literature often is overwhelming, a literature study for the

functional role of a residue can be complicated by the facts that residues often do not have the

same numbers in close homologs and that proteins do not have the same names in different

research fields. These problems have been solved in molecular class specific text-mining meth-

ods[24,25] that iterate between text analysis and validation using the MSA-based super-family

information system.

Six protein super-family systems were used to demonstrate the relation between correlated

mutation networks and mutation data that is available in the literature. These six super-fami-

lies were chosen because they could be made available to the public. We show that very differ-

ent functions can be the driving force behind the major network in a protein super-family.

Analysis of correlated mutation networks by literature mining
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Specificity is the driving force in two of the six super-families, whereas we observe that twice

co-factor binding, once activity, and once enantioselectivity lead to the strongest correlated

mutations. Furthermore, We show that randomly deleting a large number of sequences from

the input alignment hardly has an effect on the positions that make up the CorNet network.

However, deleting entire groups of sequences that are phylogenetically closely related result in

Fig 1. Visualisation of correlated mutation networks in the protein structures. In the boxes the correlated mutation networks are shown. Nodes

represent alignment positions. Node sizes indicate the number of edges. Nodes shown in cyan indicate residue positions for which keyword related mutation

data is available in the literature. Edge colours indicate the strength of the pair-wise correlation (yellow to red). The residues visualized in the structures

correspond with, and match colours with nodes in the network. a. Correlated mutation network of the isocitrate lyases (ICL) visualised in structure pdb-code:

1IGW. The cyan nodes in this network are related to the keyword ‘specificity’. b. Correlated mutation network of the alcohol dehydrogenases (ADH)

visualized in pdb-code: 1D1T that contains a substrate analog in the active site and the NAD co-factor (magenta). Position 41 that is the central hub in the

correlation network is also the centre of the 3D network and it is located between the NAD and the substrate-binding pocket. c. Correlated mutation network

of the amino acid oxidases (AAO) visualized in pdb-code: 1B37 that contains the FAD co-factor. This network consists of two sub-networks (blue surrounding

the FAD, red surrounding the substrate binding pocket). d. Correlated mutation network of the α/β-hydrolase fold enzymes (a-bH) visualized in pdb-code:

1VA4. This network consists of two sub-networks. The smaller sub-network is highly enriched with positions (cyan nodes) related to the keyword

‘enantioselectivity’.

https://doi.org/10.1371/journal.pone.0176427.g001
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CorNet networks consisting of different alignment positions. In fact, when using alignments

generated of carefully selected subsets of sequences the networks will reflect different functions

compared to networks obtained from the whole super-family. We also show that the enrich-

ment of residues involved in a certain function can be optimised by interactive modification of

correlation cut-off values (enrichment is defined as the fraction of residues in the network that

is related to the function relative to the fraction of residues related to that function in the

whole protein). Enrichment factors between five and ten are not uncommon.

To validate if residues that are connected in a CorNet network indeed share a common

function a targeted mutant library was designed for an α/β-hydrolases enzyme (the Pseudomo-
nas fluorescens esterase). We experimentally validated the relation between the major network

and the associated keyword ‘enantioselectivity’. The analysis of the residue distributions in this

network allowed us to design a small library consisting of only 72 variants of which 18%

showed a positive effect on enantioselectivity.

The explosion of readily available sequence- and mutation data is likely to make the type of

protein data analysis described in this work a standard tool for scientific research in protein

engineering and other protein related research fields.

Results

With the CorNet server the user can select parameters such as correlation scores or colour

schemes. The user can rapidly obtain information such as amino acid distributions at single

positions or pairs of positions. In the six systems for which we performed the bibliome deter-

mination, the user can select search terms in that bibliome and results can be presented as

scenes for visualisation of the CorNet data in a protein structure with the Yasara (www.yasara.

org) macromolecular structure visualizer (Fig 1 shows examples).

CorNet is connected to the web based CMA tool Comulator and can be used by uploading

an alignment to the embedded Comulator tool (www.bio-prodict.nl/comulator). CorNet is

also part of the 3DM protein super-family analysis suite. For several publicly available 3DM

systems, including the six 3DM databases described in this paper, the alignments, the CMA

results, the CorNet networks (including the connection to Yasara), and the mutation data

from the bibliome can be retrieved from www.3dm.bio-prodict.nl.

CorNet was tested on six protein super-families: alcohol dehydrogenases (ADH), amino

acid oxidase-like (AAO) proteins, RmlC-like cupin proteins (cupins), the phosphoenolpyr-

uvate mutase/isocitrate lyases (ICL), UDP glycosyltransferases (UDP-GT), and α/β-hydrolases

(a-bH). We used the Mutator tool[24] to extract from the literature the mutations associated

with a series of functions including selectivity, activity, agonist binding, regulation, post-trans-

lational modification, and for validation purposes a series of neutral terms such as stability, or

the words ‘the’ and ‘and’. In all six families we find that the strongest correlating network

clearly relates to a main functional aspect.

Structural location of correlated mutation networks

Fig 1 shows the structural position of the correlated mutation networks of four superfamilies.

Fig 1A and 1B shows the networks for the ICL and ADH superfamilies for which only a single

significant network is observed. The AAO and a-bH families reveal a series of significant net-

works and Fig 1C and 1D show their locations in the respective 3D structures. Fig 1 allows for

a series of observations. For example, there is a tendency for residue positions in the same net-

work to also be located roughly in the same area in the 3D structure, but high CMA scores do

not tend to relate to 3D contacts. In the AAO family all residues in the blue network are close

to the FAD while most residues in the red network are in or near the active site. In none of the
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six networks do we see that residues that seem central (a hub) in the network are central in

their 3D cluster too. The close spatial proximity of network residues seems caused simply by

the fact that functions, such as catalysis or co-factor binding, are performed by residues that

must lie around the active site or the co-factor. The conclusion that residues in a correlated

mutation network will be involved in the same function is corroborated by experimental muta-

tion studies for all of the six super-families studied here. These observations indicate that

strongly correlated mutations in multiple sequence alignments are a result of functional con-

straints rather than structural contacts.

Residue function determination by enrichment

To find the function of residues in a CorNet network literature-extracted mutation data related

to different keywords, such as ‘specificity’ and ‘co-factor’, were mapped on the network and

the overrepresentation (enrichment) of these keyword-related mutations inside the network is

determined by the calculation of enrichment score (Escores). The calculation of Escores is

described in the Materials and Methods section. Fig 2 shows for each of these keywords this

enrichment in relation to the correlation cut-offs. These enrichments are hard to quantify

because of a series of reasons that range from bias in the main research topic in a certain field

of the life sciences to low counting statistics caused by, for example, CMA networks reducing

to just two amino acid positions at the highest CMA values. Another effect is that researchers

tend to make mutations at ‘positions of interest’ and being interesting often is defined by liter-

ature describing mutations at that position in homologous proteins. We also observe large dif-

ferences in the amount of mutation data available per super-family. Originally, we arbitrarily

decided that mutations related to a selected keyword had to be observed in at least two inde-

pendent articles before we would accept it as real. For the ICL and Cupin super-families, this

‘two article’ cut-off had to be abandoned to obtain any results. We do not have enough datasets

available yet to start thinking about a relation between the number of available mutation arti-

cles, the length of the sequence, the number of sequences in the MSA, and the optimal cut-off

for this parameter.

Enrichment scores

We measured the enrichment for a series of control keywords to at least get a qualitative idea

about the significance of Escores. The control keywords ‘and’ and ‘the’ were selected because

one expects these words to be observed frequently but randomly in sentences that are picked-

up by the logical expressions that scan the literature for sentences that also contain the logical

expression for a particular mutation (e.g. P213S). The Escores for these control keywords

ranges between 0.00 and 2.02 in five of the super-families (Table 1). We also used the word

‘stability’ and ‘zinc‘ as control keywords. Table 1 shows the enrichments for these four control

keywords measured at a CMA value of 0.80. This value was chosen to ensure that the six

super-families contain enough nodes to prevent biased enrichment scores, which can result

from the fact that scientist tend to select ‘interesting’ positions to mutate. The Network of the

ICL super-family is surrounding the active site. Therefore, this biased selection of amino acids

results in enriched control keywords simply because there are only a limited number of experi-

mental mutations available.

Fig 2 shows for the six super-families the relation between mutations and a series of key-

words and their Escores.

ADH family. Multiple keywords are enriched for the alcohol dehydrogenase family net-

work (Fig 2A). At a correlation cut-off of 0.80 most of the positions in the network are located

in the active site and many of the residues at these positions will likely have more than one

Analysis of correlated mutation networks by literature mining
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Fig 2. Escores for a series of keywords related to mutations in the families as function of the correlated mutation

analysis cut-off. a. Keyword enrichments for the alcohol dehydrogenases (ADH). b. Keyword enrichments for the Amino acid

Analysis of correlated mutation networks by literature mining
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function. The difference between the keyword ‘activity’ and the joint-keyword ‘activity AND

increase’ should also be noted. Mutations reported in the literature combined with the key-

word ‘activity’ are far more evenly distributed over the alignment positions than mutations

combined with the keyword ‘activity AND increase’, which is much more enriched for align-

ment positions within the correlation network. This indicates that many of the positions that

can be mutated to increase the activity of these proteins are within the network.

AAO family. The amino acid oxidase Escores show that its Network is mainly enriched

for ‘FAD’, ‘co-factor’, and ‘specificity’. Fig 1C shows that the AAO network consists of two

sub-networks; the one surrounding the FAD cofactor (blue positions) and the other surround-

ing the substrate-binding pocket (red positions). The enrichments shown in Fig 2B are the

sum of the two sub-networks. In fact, mutations related to the keywords ‘FAD’ and ‘cofactor’

are more abundant in the blue sub-network and mutations related to the keyword ‘specificity’

are mostly detected in the red sub-network.

Cupin family. Fig 2C shows enrichment for specificity in correlating positions in the cupin

super-family Network. At a low cut-off this network shows a low enrichment for ‘activity AND

increase’, for ‘co-factor’ and for ‘specificity’. In contrast to the AAO correlation network, the

cupin Network is not divided into separate sub-networks. However, a closer investigation of the

positions leading to these enrichments revealed that the ‘specificity’ related positions are other

positions than the ‘cofactor’ and the ‘activity AND increase’ related positions. S1F Fig shows

this network in the 3D structure.

ICL family. In the ICL super-family, very high Escores are observed using ‘specificity’ as

keyword suggesting that specificity is the driving force causing these residues positions to

mutate simultaneously. Inspection of the 3D location of this network reveals that the residues

are mainly located in and around the active site (Fig 1A). Escores for the control keyword

‘and’, also illustrated in Fig 2D, show that this keyword is slightly over-represented in this fam-

ily. Apparently, the majority of the relatively small number of mutations made in proteins of

this family are located at positions surrounding the active site probably due to biased selection

of residues by scientists.

UDP-GT family. The joint-keyword ‘activity AND increased’ is clearly the enriched in

the UDP-GT protein super-family network (Fig 2E). Note that, like in the ADH family, the

oxidases (AAO). c. Keyword enrichments for the Cupins. d. Keyword enrichments for the isocitrate lyases (ICL). e. Keyword

enrichments for the UDP-Glycosyltransferases (UDP-GT). f. Keyword enrichments for a subset of the UDP-Glycosyltransferases

(UDP-GT) alignment. This subset is composed of all sequences that have a proline at 3D-number 218. g. Keyword enrichments

for the α/β-hydrolases (a-bH).

https://doi.org/10.1371/journal.pone.0176427.g002

Table 1. Enrichment scores for control keywordsa.

keyword and the stability zinc

ADH 1.15 1.18 2.02 –

AAO 1.16 1.15 1.94 0.00

Cupin 1.00 0.94 0.87 1.40

ICL 4.04 3.83 0.00 1.00

UDP-GT 1.54 1.53 0.00 0.00

a-bH 0.00 0.00 1.35 1.57

a The enrichments were calculated at a CMA cut-off of 0.80.

The keyword ‘zinc‘ is not shown for the ADH super-family because zinc is a co-factor in this family and thus

not a control keyword.

https://doi.org/10.1371/journal.pone.0176427.t001
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keyword ‘activity’ is hardly enriched in this network. Fig 2F shows that in a subset of the

UDP-GT super-family composed by sequences that have a proline at 218, ‘specificity’ clearly

has the highest Escore. This subset is discussed in more detail below. S1E Fig shows both the

main network and the network for the subset in the 3D structure.

a-bH family. In the α/β-hydrolase fold super-family CMA the keyword “enantioselectiv-

ity” is clearly enriched (Fig 2G). The Network consists of two sub-networks and most of the

mutations effecting enantioselectivity are located in one of the sub-networks (Fig 1D). For five

of the ten positions of this sub-network, mutations have been published that effected enantios-

electivity (shown in cyan in Fig 1D). To test if the other positions in this network are also

important for enantioselectivity a small mutant library was generated for the five non-anno-

tated positions (shown in green in Fig 1D). The positions of the second sub-network cluster

spatially, and are lightly enriched for the keyword ‘specificity’.

Mutant library

The results of an esterase mutation study (Table 2) clearly show the expected impact of the

selected correlated network positions on enantioselectivity: 17% of all variants exhibited an

improved enantioselectivity (data available in S1 Table) compared to wild-type esterase. Best

results were found after the combination of the best mutations obtained at positions 61 (G61S)

and 81 (K81H), which led to a 2–3 fold improvement in enantioselectivity.

A structural analysis of these two positions revealed that position 61 is in the active site

region of the esterase from Pseudomonas fluorescens (PFE) adjacent to the catalytic aspartic

acid, which suggests that a mutation at this position could influence selectivity[26] although

the risk is high that catalytic activity can be strongly affected. In contrast position 81 is located

on the surface of the protein, far away from the active site. Selection of this position without

the CorNet tool and 3DM would have been rather unlikely. The increase in the enantioselec-

tivity is clearly cumulative, although the two positions do not correlate directly to each other in

the network.

Co-evolution networks in alignment subsets

Which function is the underlying force behind a CMA network heavily depends on the input

alignment. The Networks of large alignments that cover a large evolutionary spread (e.g. a

complete super-family) is composed of different positions compared to a Network of subsets

of these alignments that cover only a phylogenetic sub-branch of the large alignment. To inves-

tigate the effects of selecting sub-branches on the location of CMA networks in the three-

dimensional structure several subgroups of the ADH super-family, the ICL super-family, and

the UDP-GT super-family were composed. In all three super-families, sub-alignments were

Table 2. Specific activities and apparent enantioselectivity for the top esterase variants.

Variant Specific activitya [mU/mg] Eapp
b

(R)-3PB-pNP (S)-3PB-pNP

Wild-type 1.44 (± 0.09) 0.30 (± 0.11) 5

K81H 3.22 (± 0.19) 0.54 (± 0.03) 6

G61S 4.48 (± 0.72) 0.47 (± 0.04) 10

G61S/K81H 6.86 (± 1.08) 0.51 (± 0.03) 13

a One unit corresponds to 1 μmol converted min-1 mg-1 protein.
b Eapp is the ratio of activity for the two enantiomer of (R)- and (S)-3PB-pNP.

https://doi.org/10.1371/journal.pone.0176427.t002
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generated by selecting a subgroup of sequences that have a residue conserved at the hub of the

main Network.

The Network of the ADH super-family alignment, for instance, contains a single network

and no clear sub-networks can be detected. This network is located in the centre of the active

site (red residues Fig 3) and surrounds the zinc ion that is essential for the catalytic activity.

Position 41 is a hub in this network (Fig 1B) and makes physical contact with the zinc ion

clearly indicated by the high Escore for ‘zinc’ (Fig 2A). The two main residues observed at

position 41 are Cys (present in 52.4% of the super-family sequences) and Asn (present in

37.8% of the sequences). A sub-alignment was generated using sequences having a cysteine at

alignment position 41. In this subset, position 41 is obviously fully conserved and thus no lon-

ger shows up in any correlated mutation network. We observe two new networks in this subset

(yellow in Fig 3). These are located surrounding the Network of the complete super-family

more in the second layer of the active site. Position 159 is now the main hub in the most exten-

sive network and position 159 mainly occupied by a Gly in the MSA. Using a subset of

sequences that have both a Cys at position 41 and a Gly at position 159 we obtain yet another

network (blue in Fig 3) positioned in the third layer around the active site. This sub-location of

the Networks in different layers around the active site suggests that they reflect different roles

(e.g. activity, specificity, dimerization, etc.) that the corresponding residues need to perform.

Unfortunately, for the ADH protein family no literature data is yet available that proves this

hypothesis and no function could be assigned to the sub-networks with the available literature

data.

The same experiment was performed on the ICL super-family. Position 157 is the main hub

of the Network in this super-family and proline is the most common residue at position 157.

Fig 2D shows that the main function underlying the Network of this super-family is specificity

and this network is located surrounding the substrate-binding pocket (Fig 1A). Although, also

for this family, not enough literature-derived mutation data are available to prove the function

of the residues in the Network that was generated for a subset containing only sequences with

a proline at 157, the network is located almost exclusively at the dimerization interface (Fig 4).

This experiment was repeated in the UPD-GT super-family of which the main network

shows a high Escore for the keyword “activity AND increase” (Fig 2E). Position 218 is the

main centre of the Network of this super-family and proline is the most common residue at

this position. An alignment was generated of all sequences that have a proline at position 218.

As shown in Fig 2F in the Network of this alignment the keyword “specificity” results in the

highest enrichment.

Correlation networks in random subsets. To define the minimal number of sequences

needed to perform CMA subsets of randomly selected sequences were generated for all six

superfamilies. For each superfamily a range of subsets was generated that contained between

0.5% and 60% of the superfamily sequences. For each subset the network positions were com-

pared to the network of the full alignment and an F-measure was calculated to determine the

similarity between the networks. These results (S1 File), show that an alignment of 500

sequences usually contain enough signal to result in a reliable CorNet network indicated by an

F-measure of 0.8 or higher.

Discussion

We describe the protein function—structure—CMA relations for six protein super-families,

which were validated using available mutation data from literature. For one of them, the a-bH

protein family, a smart mutant library consisting of only 72 variants was designed based on

CorNet network to validate the predicted effect on enantioselectivity. To show that positions
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in a co-evolution network share a common function this library was targeted only at nodes of

the network for which no literature mutation data was available describing effects on enantios-

electivity. Although the changes observed in enantioselectivity (2–3 fold) are not very large,

nearly 20% of the mutants in the library had an effect on enantioselectivity. Typically, random

generated libraries have a hit rate of about 1% (Reetz et. al. [27]). This result clearly shows that

the positions in a CorNet network are often functionally related. Therefore, mutation

Fig 3. Alcohol dehydrogenase family structure 1CDO-A with CMA network positions of three different

alignments visualized. The red residues represent the CMA positions for the complete super-family

alignment. The yellow residues represent a network generated for a sub-alignment composed of sequences

with a cysteine on 3D-number 41. The blue residues reflect a Network generated for a sub-sub-alignment

composed of sequences with a cysteine at position 41 and a glycine at position 159. The catalytic zinc ion is

shown in magenta.

https://doi.org/10.1371/journal.pone.0176427.g003
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information that is available for nodes in a CorNet network can be used to predict the effects

of mutating the non-annotated nodes. This experiment was not performed to create a highly

enantioselective enzyme (in that case nodes for which effects on enantioselectivity were already

published should have been included), but the goal of this experiment was to show that CorNet

can be used to find novel mutation hotspots not reported in literature before. In fact, in a

recent study we generated a highly selective PFE by mutating a CorNet position for which

mutational data was available in the literature [28].

A CMA network, and the function(s) it reflects, depend on the sequences in the alignment.

This work shows that not the number of sequences in the alignment, but the evolutionary

spread of the aligned sequences is the determining factor for the composition of a CMA net-

work. A large evolutionary spread among the aligned sequences tend to result in a network

composed of positions near the active site (i.e. residues performing the main task of the pro-

tein). An alignment based on a subset of sequences with a smaller evolutionary spread (i.e. by

demanding that one functionally important residue is conserved throughout the subset) results

in a correlated mutation network located in the second or third layer of residues (i.e. residues

involved in more specific functions). This phenomenon was nicely demonstrated by the differ-

ence of enrichments scores in the UDP-GT protein family, where in the full alignment “activ-

ity AND increase” resulted in the highest Escore whereas “specificity” scored highest in much

smaller subset of the alignment (where P218 is conserved). Rules for determining the best set

of input sequences that will result in a Network optimized for a specific protein feature, still

remains to be determined. The alignments used in this work were, in fact, automatically gener-

ated and no filtering or any form of optimizing was conducted. This shows not only that this

method is robust but also that there is still much room for further developments, improve-

ments, and novel discoveries in the area of CMA network related research. The fact that the

maximum Escores differ between different super-families and for different protein features

suggests that the alignments, and especially the selection of sequences to be included, can be

Fig 4. Isocytrate lyases family structure 1DQU-A with CMA networks and dimer interface visualized. a. The red residues represent the Network for

the complete super-family alignment. The blue residues represent the network for an alignment subset that contains a proline on 3D-number 157. b. The

purple residues represent the 3D-positions that make an inter-molecular contact in most of the 70 available structures of the ICL family.

https://doi.org/10.1371/journal.pone.0176427.g004
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optimized even further. The accuracy of the type of analysis conducted is this work increases

when more data is available for a super-family as indicated by high Escores of control key-

words in the rather small ICL super-family. Together with the explosion of sequence- and

mutation data that is becoming readily available we believe that the type of protein data analy-

sis described in this work might become a standard tool for protein engineering.

Materials and methods

Protein families

The relation between correlation networks and information from the bibliome was analysed

for six super-families. ADH: Alcohol dehydrogenases catalyse the oxidation of alcohols by the

reduction of nicotinamide adenine dinucleotide. AAO: Amino acid oxidases are FAD-binding

proteins. This family consists of two sub-families that catalyse D-amino acid and L-amino acid

conversion, respectively. These two AAO sub-families bind their FAD differently. Cupin: The

very large RmlC-like cupin family comprises a wide range of enzymes that can convert many

different substrates. Cupins show a large variety of reaction mechanisms. The cupins are the

most diverse protein family known today covering 17 enzyme classes and even other types of

proteins such as seed storage globulins and multi-domain transcription factors[29]. ICL: The

phosphoenolpyruvate mutase/isocitrate lyases super-family contains several enzyme families

that act on alpha-oxycarboxylate substrates. UDP-GT: The UDP-Glycosyltransferases protein

family contains sugar-acting enzymes that can act on different sugars and perform different

reactions (synthases, transferases, phosphorylases). a-bH: The α/β-hydrolase fold super-family

contains a wide range of proteins including proteases, esterases and lipases[30].

For each of these six families structure based MSAs were produced, and the literature was

scanned for mutations. Table 3 lists the number of articles, sequences, structures, core align-

ment positions, and mutations found for each of the six protein super-families.

The CMA scores were determined for all pairs of alignment positions in each of the six fami-

lies. Mutual information was calculated rather than the direct information that has been described

[9–12]. Correlation scores are obtained using the previously described Comulator software[14].

Comulator uses a method known as a statistical coupling analysis[31,32] to assign correlation

scores. Comulator was used because this method is a robust CMA algorithm that was specifically

developed to handle large structure based superfamily alignments that consist of thousands of

proteins and often contain many different protein functions.

Cornet features

The CMA network visualization tool was built using cytoscape.js (a JavaScript graph visualiza-

tion library)[33] and jquery (user interface libraries). In this HTML based network viewer

nodes represent alignment positions (with the MSA position number indicated) and edges are

coloured as function of the pairwise CMA values. The nodes are hyperlinked to underlying

Table 3. Sequences, structures, and mutations found for the six super-families.

Name Sequences Core alignment positions Structures Articles scanned Mutation data extracted

ADH 14696 353 447 15144 10437

AAO 12155 253 356 14442 6203

Cupin 1650 43 338 53400 4362

ICL 3019 170 70 2013 160

UDP-GT 36402 313 475 26919 7610

a-bH 59904 88 1665 60926 60755

https://doi.org/10.1371/journal.pone.0176427.t003
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data stored in the database so that, for example, the amino acid distribution of an alignment

position or a pair of correlating positions can be obtained rapidly.

The user can interactively choose correlation cut-offs, colours for groups of residue posi-

tions, and residue positions can be coloured as function of their annotation. CorNet can write

the resulting colours in a YASARA scene so that results can be visualised with YASARA, a pro-

tein structure visualisation tool (Fig 1). When annotation queries are performed, the enrich-

ment of the search term is determined on the fly.

Mutation extraction

The Mutator software[24] was used for the extraction of mutations from the literature. This

software searches in PubMed with words like ‘mutation’, ‘SNP’ (Single Nucleotide Polymor-

phism), ‘substitution’, or ‘recombinant’ combined with family-specific keywords (and their

synonyms) like names of family members, their gene names, names of diseases known to be

related to members of the family, or generic family names. Most names are retrieved from the

Swiss-Prot[34] protein entries available in the MSA. We subsequently scan these articles for

mutation information related to the six super-families. Each sentence that contained a muta-

tion (i.e. terms like S127P, Glu422Lys or “Trp58 was mutated to Ala”) was analysed for the

presence of a series of words such as ‘specificity’, ‘activity’, ‘cofactor’, etc. A residue position is

considered related to a keyword if the combination of mutation and keyword is observed in

the same sentence in at least two articles that describe a mutation at the same residue position

in a member of the family.

3DM

3DM was used to generate the structure bases multiple sequence alignments (MSAs) for the

six super-families[35]. In summary, structures are superposed with WHAT IF [21] to generate

an initial alignment that is then used to guide the alignment of all sequences for which no

structure data is available. 3DM allows for the generation of alignments for subgroups of

sequences. Such sub-alignments were generated for the UPD- and ADH protein families.

These sub-alignments are composed of all sequences that have the most abundant residue at

the position that forms the centre of the Network. Correlated mutation analysis is performed

as described before[14]. A method known as statistical coupling analysis[32] is used to detect

pairs of residues in the alignment that mutate simultaneously.

3D numbers

CorNet uses a super-family specific residue numbering scheme for all sequences and structures

in the alignment. Structurally equivalent residues get the same numbers, called 3D-numbers,

which are also used for the corresponding sequence alignment positions. 3D-numbering

schemes are used throughout this paper, and in the interactive version of CorNet. The princi-

ple of 3D- numbers and the underlying structure based multiple sequence alignment have

been described[35] and is illustrated in Fig 5. Structurally variable sites such as residues that

reside in loops are not included in the structure based MSA and thus are not included in the

correlation analyses. In practice, though, functionally important residues normally are located

in the structurally conserved regions of proteins.

Escore and P-values

The keyword search option enables the user to automatically select mutations for which that

keyword is part of the annotation and to map these on the network. The overrepresentation of
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a keyword for residues in a network is expressed as the enrichment-score (Escore):

Escore ¼ ðKn=KtÞ � ðNt=NnÞ

Equation 1. Nn = number of alignment positions in the network, Nt = total number of

alignment positions, Kn = number of network positions for which the keyword m was

observed, Kt = total number of positions for which keyword m was observed.

CorNet offers the user to define a cut-off (Nmut), which can be selected interactively; the

default is 2. The keyword must be observed with the same 3D residue position in at least Nmut

mutation studies for different proteins in order to be accepted.

Library design

The design of the mutant library composed of 72 variants was based on a 3DM analysis of the

respective positions, which led to the incorporation of the four most frequent amino acids at

the networks positions (Table 4): a triple mutant library was designed to include the combina-

torial effects of those positions that either are connected with more than one node with a

known effect on enantioselectivity (i.e. nodes 27 and 61, Fig 1D) or with nodes that have been

more frequently mutated according to literature (i.e. node 14, Fig 1D). The remaining two

positions (i.e. nodes 59 and 81) were randomized independently.

Mutant libraries and enantioselectivity. Libraries of the esterase from Pseudomonas
fluorescens (PFE) were constructed by QuikChange mutagenesis. In the case of the triple

mutant library three consecutive reactions were needed. In each case the following reaction

Fig 5. Example to illustrate the use of 3D-numbers. We are interested in histidine 22 in the human sequence, however mutation related information from

the bibliome is only available for the mouse homologous sequence. In the main text we find a description of the effect of a mutation of histidine 49 to an

alanine. This histidine residue is in the structure at equivalent position of the human histidine-22 and therefore shares the same 3D number (17).

https://doi.org/10.1371/journal.pone.0176427.g005
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mixture was prepared: sterilized deionized H2O (41 μL), Pfu buffer (10x, 5 μL), dNTP (1 μL, 10

mM each), plasmid pJOE2792.1 (1 μL, 50 nmol μL-1) containing the gene encoding PFE[36],

mixture of forward and reverse primer mixture (1 μL, 12.5 nmol μL-1), Pfu+ DNA Polymerase

(0.2 μL). The so prepared mixture was then split in two different PCR tubes with equal amount

of volumes and used for a PCR at the following conditions: 1) 95˚C, 300 s; 2) 30 cycles: 95˚C,

30 s; 50 or 65˚C, 30 s; 72˚C 210 s; 3) 72˚C, 480 s. Afterwards, the presence of the PCR product

was verified on a 1% agarose gel and finally DpnI (0.5 μl) was added to remove the template.

Digestion of the most abundant product was performed for 2 h at 37˚C followed by denatur-

ation of DpnI at 80˚C for 20 minutes. Chemo-competent E. coli cells (Top10) were trans-

formed with the PCR product for plasmid amplification and quality library evaluation[37].

Once the randomization state of the mutated position was verified by sequencing, the mixture

of circularized plasmids was used for transformation in chemo-competent E.coli cells (BL21

DE3) and plated onto LBAMP-plates. Clones were picked with sufficient oversampling (3-fold)

to ensure statistically a 95% coverage of the library[38].

Primers:

1afw—5’-GGTGTTGTKGAGCCACGGTTGGCTACTGG-3’,

1bfw—5’-GGTGTTGTWTAGCCACGGTTGGCTACTGG-3’,

1arv—5’-CGTGGCTCMACAACACCGGTTTACCGCTGC-3’,

1brv—5’CGTGGCTAWACAACACCGGTTTACCGCTGC-3’,

2afw—5’-CCTCAAGGAGGTGGBCCTGGTGGGCTTCTCC-3’,

2bfw—5’-CCTCAAGGAGGTGACCCTGGTGGGCTTCTCC-3’,

2arv—5’-GGAGAAGCCCACCAGGVCCACCTCCTTGAGG-3’,

2brv—5’-GGAGAAGCCCACCAGGGTCACCTCCTTGAGG-3’,

3afw—5’-CCACCCTGGTGVTTCATGGCGATGG-3’,

3bfw—5’-CCACCCTGGTGGGTCATGGCGATGG-3’,

3arv—5’-CCATCGCCATGAABCACCAGGGTGG-3’,

3brv—5’-CCATCGCCATGACCCACCAGGGTGG-3’,

4afw—5’-GTGATCCATGSCGATGGCGACC-3’,

4bfw—5’-GTGATCCATARCGATGGCGACC-3’,

Table 4. 3D positions selected, codons used for library design and corresponding encoded amino

acids.

3D position Codons Amino acids encoded

14 TKG/TWT L,W,F,Y

27 GBC/ACC V,A,G,T

59 VTT/GGT V,I,L,G

61 GSC/ARC G,A,N,S

81 YAT/CGT/GTT H,Y,R,V

Residues in bold correspond to wild-type esterase.

https://doi.org/10.1371/journal.pone.0176427.t004
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4arv—5’-GGTCGCCATCGSCATGGATCAC-3’,

4brv—5’-GGTCGCCATCGYTATGGATCAC-3’,

5afw—5’-CGAACTGYATGTGTACAAGGACG-3’,

5bfw—5’-CGAACTGCGTGTGTACAAGGACG:-3’,

5cfw—5’-CGAACTGGTTGTGTACAAGGACG-3’,

5arv—5’-CGTCCTTGTACACATRCAGTTCG-3’,

5brv—5’-CGTCCTTGTACACACGCAGTTCG-3’,

5crv—5’-CGTCCTTGTACACAACCAGTTCG-3’,

6afw—5’-GCCGAACTGCATGTGTACAAGGACGCGCCCCACG-3’,

6arv—5’-CCTTGTACACATGCAGTTCGGCGCCCTTGATCAAC-3’,

7afw—5’-GGTGGTGCATAGCGATGGCGACCAGATCG-3’,

8arv—5’-CGCTATGCACCACCAGGGTGGGTACGTC-3’.

The primers series 1, 2 and 4 were used for the randomization of positions 14, 27 and 61,

respectively, in the triple mutant library. Primers series 3 and 5 were used for the independent

randomizations at positions 59 and 81 respectively. Primers series 6 and 7 were used for the cre-

ation of the single mutants derived from the combination of the best hits at each network node.

For protein expression, the transformants were grown on agar plates, picked and inoculated

into microtiter plates containing 200 μL LBAMP. Incubation was performed overnight at 37˚C

and 500 rpm. The following day the overnight culture (50 μL) was transferred into deep-well

blocks containing 1 mL TBAMP and incubated for 3 h at 37˚C at 700 rpm. Gene expression was

induced with L-rhamnose solution (final concentration 0.2% (w/v)). The libraries were incu-

bated for an additional 16 h at 30˚C, 700 rpm. For disruption, cells were harvested by centrifuga-

tion (15 min, 4355 g and 4˚C) and resuspended in 300 μL lysis buffer containing 1% Bugbuster

solution for 1 h at 37˚C at 700 rpm followed by centrifugation for 45 min at 4355 g, 4˚C. The

crude cell extract was transferred into a new microtiter plate and stored until usage at 4˚C. For

each variant the crude cell lysate was split into two microtiter plates containing phosphate buffer

(50 mM, pH 7.5). Enantioselectivity measurements were performed in microtiter plates (MTP)

first with crude cell lysate using optically pure (R)- and (S)-3-phenylbutyric acid-p-nitropheny-

lesters (0.2 mM final concentration in 20% acetonitrile, synthesized as described previously[39])

in two separate wells of the MTP for each variant following for 1 h the increase in absorbance at

410 nm from the released p-nitrophenolate. From the difference in the rate of the hydrolysis of

the two enantiomers, the apparent enantioselectivity was determined as described previously

[39]. Variants showing improved properties in this initial screening were produced on larger

scale, His-tag purified using TALON beads and reanalyzed for altered enantioselectivity.

Supporting information

S1 Table. Complete list of the screened mutants with respective ‘BLANK’-wells (no

enzyme) and ‘wt’-wells (containing wild-type enzyme).

(DOCX)

S1 Fig. Visualisation of correlated mutation networks in the protein structures. In the

boxes the correlated mutation networks are shown. Nodes represent alignment positions.

Node sizes indicate the number of edges. Nodes shown in cyan indicate residue positions for

Analysis of correlated mutation networks by literature mining

PLOS ONE | https://doi.org/10.1371/journal.pone.0176427 May 18, 2017 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176427.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176427.s002
https://doi.org/10.1371/journal.pone.0176427


which keyword related mutation data is available in the literature. Edge colours indicate the

strength of the pair-wise correlation (yellow to red). The residues visualized in the structures

correspond with, and match colours with nodes in the network. a. Correlated mutation net-

work of the isocitrate lyases (ICL) visualised in structure pdb-code: 1IGW. The cyan nodes in

this network are related to the keyword ‘specificity’. b. Correlated mutation network of the

alcohol dehydrogenases (ADH) visualized in pdb-code: 1D1T that contains a substrate analog

in the active site and the NAD co-factor. Position 41 that is the central hub in the correlation

network is also the centre of the 3D network and it is located between the NAD and the sub-

strate-binding pocket. c. Correlated mutation network of the amino acid oxidases (AAO) visu-

alized in pdb-code: 1B37 that contains the FAD co-factor. This network consists of two sub-

networks (blue surrounding the FAD, red surrounding the substrate binding pocket). d. Cor-

related mutation network of the α/β-hydrolase fold enzymes (a-bH) visualized in pdb-code:

1VA4. This network consists of two sub-networks. The smaller sub-network is highly enriched

with positions (cyan nodes) related to the keyword ‘enantioselectivity’. e. Correlated mutation

network of the UDP-Glycosyltransferases (UDP-GT) visualized in pdb-code: 3S28. The red

network results from the full alignment. The blue network results from a subset of the align-

ment. This subset is composed of all sequences that have a proline at 3D-number 218. f. Corre-

lated mutation network of the Cupins visualized in pdb-code: 1CAU.

(TIFF)

S1 File. File containing accuracy and F-measure scores for the different samples of

sequences selected from the alignments.

(XLSX)

Author Contributions

Conceptualization: TB HJ RJ BV.

Data curation: TB RK.

Formal analysis: TB.

Funding acquisition: HJ UB.

Investigation: TB KS AN TD YT TT RK.

Methodology: TB GT BV.

Project administration: HJ.

Resources: HJ YT TT UB TD BN.

Supervision: HJ PS UB GV.

Validation: TB AN YT.

Visualization: TB.

Writing – original draft: TB GT.

Writing – review & editing: TB GT AN.

References
1. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. Environmental genome

shotgun sequencing of the Sargasso Sea. Science. 2004; 304: 66–74. https://doi.org/10.1126/science.

1093857 PMID: 15001713

Analysis of correlated mutation networks by literature mining

PLOS ONE | https://doi.org/10.1371/journal.pone.0176427 May 18, 2017 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176427.s003
https://doi.org/10.1126/science.1093857
https://doi.org/10.1126/science.1093857
http://www.ncbi.nlm.nih.gov/pubmed/15001713
https://doi.org/10.1371/journal.pone.0176427


2. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II

Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol.

2007; 5: e77. https://doi.org/10.1371/journal.pbio.0050077 PMID: 17355176

3. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, et al. The Sorcerer II Global

Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol. 2007; 5: e16. https://

doi.org/10.1371/journal.pbio.0050016 PMID: 17355171

4. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third

wave of biocatalysis. Nature. 2012; 485: 185–194. https://doi.org/10.1038/nature11117 PMID:

22575958

5. Kowarsch A, Fuchs A, Frishman D, Pagel P. Correlated Mutations: A Hallmark of Phenotypic Amino

Acid Substitutions. PLoS Comput Biol. 2010; 6: e1000923. https://doi.org/10.1371/journal.pcbi.

1000923 PMID: 20862353

6. Oliveira L, Paiva ACM, Vriend G. Correlated mutation analyses on very large sequence families. Chem-

BioChem. 2002; 3: 1010–1017. https://doi.org/10.1002/1439-7633(20021004)3:10<1010::AID-

CBIC1010>3.0.CO;2-T PMID: 12362367

7. Oliveira L, Paiva PB, Paiva ACM, Vriend G. Identification of functionally conserved residues with the

use of entropy-variability plots. Proteins. 2003; 52: 544–552. https://doi.org/10.1002/prot.10490 PMID:

12910454

8. Moult J, Pedersen JT, Judson R, Fidelis K. A large-scale experiment to assess protein structure predic-

tion methods. Proteins. 1995; 23: ii–v. https://doi.org/10.1002/prot.340230303 PMID: 8710822

9. Burger L, van Nimwegen E. Disentangling direct from indirect co-evolution of residues in protein align-

ments. PLoS Comput Biol. 2010; 6: e1000633. https://doi.org/10.1371/journal.pcbi.1000633 PMID:

20052271

10. Jones DT, Buchan DWA, Cozzetto D, Pontil M. PSICOV: precise structural contact prediction using

sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics. 2012; 28:

184–190. https://doi.org/10.1093/bioinformatics/btr638 PMID: 22101153

11. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, et al. Protein 3D structure com-

puted from evolutionary sequence variation. PLoS ONE. 2011; 6: e28766. https://doi.org/10.1371/

journal.pone.0028766 PMID: 22163331

12. Marks DS, Hopf TA, Sander C. Protein structure prediction from sequence variation. Nat Biotechnol.

2012; 30: 1072–1080. https://doi.org/10.1038/nbt.2419 PMID: 23138306

13. Folkertsma S, van Noort P, Van Durme J, Joosten H- J, Bettler E, Fleuren W, et al. A family-based

approach reveals the function of residues in the nuclear receptor ligand-binding domain. J Mol Biol.

2004; 341: 321–335. https://doi.org/10.1016/j.jmb.2004.05.075 PMID: 15276826

14. Kuipers RKP, Joosten H-J, Verwiel E, Paans S, Akerboom J, van der Oost J, et al. Correlated mutation

analyses on super-family alignments reveal functionally important residues. Proteins. 2009; 76: 608–

616. https://doi.org/10.1002/prot.22374 PMID: 19274741

15. Leferink NGH, Fraaije MW, Joosten H-J, Schaap PJ, Mattevi A, van Berkel WJH. Identification of a

gatekeeper residue that prevents dehydrogenases from acting as oxidases. J Biol Chem. 2009; 284:

4392–4397. https://doi.org/10.1074/jbc.M808202200 PMID: 19088070

16. Wilkins AD, Bachman BJ, Erdin S, Lichtarge O. The use of evolutionary patterns in protein annotation.

Curr Opin Struct Biol. 2012; 22: 316–325. https://doi.org/10.1016/j.sbi.2012.05.001 PMID: 22633559

17. Proctor EA, Kota P, Demarest SJ, Caravella JA, Dokholyan NV. Highly covarying residues have a func-

tional role in antibody constant domains. Proteins. 2013; 81: 884–895. https://doi.org/10.1002/prot.

24247 PMID: 23280585

18. Sreekumar J, ter Braak CJF, van Ham RCHJ, van Dijk ADJ. Correlated mutations via regularized multi-

nomial regression. BMC Bioinformatics. 2011; 12: 444. https://doi.org/10.1186/1471-2105-12-444

PMID: 22082126

19. Gouldson PR, Dean MK, Snell CR, Bywater RP, Gkoutos G, Reynolds CA. Lipid-facing correlated

mutations and dimerization in G-protein coupled receptors. Protein Eng. 2001; 14: 759–767. PMID:

11739894
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