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Abstract
Background  Through the systematic large-scale profiling of metabolites, metabolomics provides a tool for biomarker dis-
covery and improving disease monitoring, diagnosis, prognosis, and treatment response, as well as for delineating disease 
mechanisms and etiology. As a downstream product of the genome and epigenome, transcriptome, and proteome activity, 
the metabolome can be considered as being the most proximal correlate to the phenotype. Integration of metabolomics data 
with other -omics data in multi-omics analyses has the potential to advance understanding of human disease development 
and treatment.
Aim of review  To understand the current funding and potential research opportunities for when metabolomics is used in 
human multi-omics studies, we cross-sectionally evaluated National Institutes of Health (NIH)-funded grants to examine the 
use of metabolomics data when collected with at least one other -omics data type. First, we aimed to determine what types 
of multi-omics studies included metabolomics data collection. Then, we looked at those multi-omics studies to examine how 
often grants employed an integrative analysis approach using metabolomics data.
Key scientific concepts of review  We observed that the majority of NIH-funded multi-omics studies that include metabolomics 
data performed integration, but to a limited extent, with integration primarily incorporating only one other -omics data type. 
Some opportunities to improve data integration may include increasing confidence in metabolite identification, as well as 
addressing variability between -omics approach requirements and -omics data incompatibility.

Keywords  Metabolomics · Multi-omics · Data integration · NIH funding

1  Introduction

The application of high-throughput profiling techniques 
to interrogate the genome, epigenome, transcriptome, pro-
teome, metabolome, and microbiome has supported detailed 
molecular examinations into human health and disease (Hasin 
et al., 2017). While earlier -omics studies focused on a single 
-omics profile to characterize associations between biologi-
cal molecules occurring within that profile and a phenotype, 
more recent advances in profiling techniques and technolo-
gies have brought about an expansion into research that lever-
ages integration of multiple -omics data (Cavill et al., 2016). 
Multi-omics studies aim to combine data generated from 
different -omics technologies together to gain understanding 
of how different -omics signatures relate to one another, and 
the direction of those interactions (Sun & Hu, 2016). They 
improve our understanding of the basic underlying biology and 
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systems-level and physiological processes by using a compre-
hensive approach to investigate human health systems (Cavill 
et al., 2016).

One -omics technology with possible utility in multi-omics 
studies is metabolomics. Metabolomics is the systematic large-
scale study of the small molecular weight products of metabo-
lism that provides a tool for biomarker discovery and improv-
ing disease monitoring, diagnosis, prognosis, and treatment 
response, as well as for delineating disease mechanisms and 
etiology (Liesenfeld et al., 2013; Nicholson & Lindon, 2008; 
Patti et al., 2012). Systemic metabolite repertoire is affected 
by both external exposures and physiological activity, which 
includes exogenous environmental factors and endogenous 
processes occurring at higher biochemical levels (Fiehn, 
2002; Tzoulaki et al., 2014). As a downstream product of the 
genome and epigenome, transcriptome, and proteome activity, 
the metabolome can be considered as being the most proximal 
correlate to the phenotype (Fiehn, 2002). Thus, when included 
in multi-omics and integrative study designs, metabolomics 
can complement upstream -omics data to provide highly 
informative biochemical insights into diseases and other physi-
ological endpoints (Jendoubi, 2021; Worheide et al., 2021). 
Figure 1 demonstrates how different -omics profiles relate to 
one another, the exposome, and phenotype.

In order to better understand the applications and poten-
tial limitations of human studies employing multi-omic 
data collection that includes metabolomics, we evaluated 
National Institutes of Health (NIH)-funded grants for use 
of metabolomics data with data of another -omics type. The 
objective of this study was two-fold. First, we aimed to 
determine what types of multi-omics studies, defined as 
studies that collect more than one -omics data type, included 
metabolomics data collection. Then, we looked at those 
multi-omics studies to examine how often grants employed 
an integrative analysis approach using metabolomics data. 
To achieve this objective, we described  the  funding by 
type of award, disease phenotype, biospecimen type, and 
whether other -omics data were integrated with metabo-
lomics data. This analysis is intended to help identify limita-
tions for the inclusion of metabolomics data in multi-omics 
research, including whether these data were being integrated 
with other -omics data. Understanding how metabolomics 
data is currently being leveraged in an integrative multi-
omics manner can inform future directions of the field that 
could lead to improving the diagnosis and prognosis of 
disease.

2 � Methods

The  au t ho r s  o f  t h i s  s t udy  i nc luded  NIH-
funded  grants  employing metabolomics in multi-
omics analyses that were active on May 8, 2019 in the 

analysis presented in this manuscript. The authors ana-
lyzed the grants portfolio using NIH’s Query View Report 
(QVR) software. Grants were  identified  as relevant  if 
they contained one or more of the metabolomics terms 
from the first column in Table 1 and one or more of the 
search terms from at least one of the subsequent columns 
in Table 1. This search resulted in the identification of 562 
grants. Grants were then screened to determine if they 
met the following inclusion criteria: (1) the project uses 
human biospecimens either newly collected in the study 
grant or uses previously collected samples, (2) metabo-
lomics  analysis is performed on the human  biospeci-
mens,  and  (3)  the project performs hypothesis-driven 
metabolomics  research as part of a defined analytical 

Fig. 1   Overview of how various -omics sciences interact with one 
another, the environment, and phenotype. Epigenomics is portrayed 
as spanning the several -omics sciences to demonstrate that in addi-
tion to environmental exposures, physiological activity occurring 
at genomic, transcriptomic, and proteomic levels influence epig-
enomic status. Commensal microorganisms residing within (gut and 
other organs) and on (skin) the human body, collectively known as 
the  microbiome, are largely influenced by host-microbe interactions 
that reflect in the microbiomic compositional and functional profiles
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plan. Grants that used existing metabolomics data were 
included in the analysis. For the purpose of this study, we 
aimed to be inclusive of a broad range of metabolomics 
grants and included both untargeted metabolite profiling 
(global approach) and semi-targeted profiling (up to 400 
metabolites) in our definition of metabolomics (Dunn 
et al., 2011). Targeted analyses examining typically less 
than 20 metabolites which are related in function or class 
were not considered metabolomics (Dunn et al., 2011). 
During the data extraction, we determined that 330 grants 
fully met the inclusion criteria and were included in the 
study.

The authors of this manuscript worked in pairs to 
review the abstracts and specific aims of all grants and 
extracted data  including disease phenotype,  biospeci-
men  type,  -omics  data types collected, and whether 
metabolomics data were integrated with other -omics data 
types. Grants were denoted as performing integration if 
they specified that metabolomics data would be analyzed 
with data from at least one other -omics analysis. Discord-
ance between authors’ answers was flagged using SAS 9.4 
following data extraction. We resolved all discordance first 
between the reviewer pairs and then through a group discus-
sion consisting of all manuscript authors when the reviewer 
pairs could not reach consensus. Additionally, during this 
review phase, grants were verified for whether they included 
multi-omic data collection, which was defined as collect-
ing at least one additional data type (genomics, epigenom-
ics, transcriptomics, proteomics, or microbiomics). Grants 
that collected metabolomics data only were excluded from 
the analysis. Through the data extraction, we determined 
that 197 grants met our inclusion criteria of performing 
multi-omics analyses that include metabolomics data col-
lection and 123 of these grants used an integrative analysis 
approach.

A summary of the methods followed for generating the 
analyzed portfolio is presented in Fig. 2. All analyses were 

performed using Excel Version 2108. Figures 4a, 4b, 5a, and 
5c were created in Excel Version 2108. R Studio Version 
1.3.1093 was used to create Fig. 3 and Online Resource 2.

3 � Results

The grant search strategy identified 562 grants. After screen-
ing grants by applying our inclusion and exclusion criteria, 
197 of the 562 originally identified grants were included 
in the analysis.  Research Grants (R series) comprised 
67% (n = 132) of the grants (data not shown). Cooperative 
Agreements (U series) (n = 34, 17%) were the next most 
common grants, followed by Career Development Awards 
(K series) (n = 19, 10%) (data not shown). A description 
of award types is listed in Online Resource 1. The major-
ity of NIH-funded multi-omics grants with a metabolomics 
component focused on diabetes and other metabolic diseases 
(n = 27, 14%) (Fig. 3). The next most commonly studied dis-
ease state was cardiovascular disease (n = 25, 13%), followed 
by cancer (n = 23, 12%) and child and human development 
(n = 19, 10%) (Fig. 3).

A variety of biospecimens (biological fluids, solid tis-
sue, or exfoliated cells) were used for different -omics analy-
ses. The type of biospecimen used for analysis varied based 
on the -omics technology employed (Figs. 4a and 4b). For 
metabolomics analyses, plasma and serum  were  pri-
marily used (n = 78, 40%) (Fig.  4a). Tissue  was  most 
commonly  used  in genomics (n = 11, 12%), epigenom-
ics (n = 5, 23%), and transcriptomics analyses (n = 18, 23%) 
(Fig. 4b). For proteomics analyses, tissue was primarily used 
(n = 10, 25%), followed by plasma and serum biospecimens 
(n = 9, 23%) (Fig. 4b). Stool samples were the most com-
mon biospecimen used in grants performing microbiomics 
analyses (n = 51, 65%) (Fig. 4b).

The majority of grants that collected multi-omics 
data used an integrative analysis approach that included 

Table 1   Grant portfolio search criteria

One or more terms from 
column 1

One or more terms from at least one other column 2–6

Metabolomics Genomics Epigenomics Transcriptomics Proteomics Microbiome

Metabolomic(s)
Metabolome
Metabonomic(s)
Metabonome
Metabolic profile
Metabolite profile
Metabolic signature

Genome
Genomic(s)
Genetic(s)
Gene(s)
SNP(s)
Mutation
DNA
RNA
Variant(s)
Loci
Locus

Epigenome
Epigenomic(s)
Epigenetic(s)
Methylation
CpG island
miRNA

Transcriptome
Transcriptomic(s)
TWAS

Proteome
Proteomic(s)

Microbiome
Microbiota
Microbial
Microbe(s)
Bacteria
Bacterial
Virus
Viral
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metabolomics data (n = 123, 62%). There were 77 (39%) 
grants that integrated metabolomics data with data from 
one other -omics approach, 29 (15%) grants that integrated 
metabolomics data with data from two additional -omics 
approaches, 14 (7%) grants that integrated metabolomics 
data with data from three additional -omics approaches, and 
3 (2%) grants that integrated metabolomics data with data 
from four additional -omics approaches (Fig. 5a). No grants 
in the examined portfolio integrated data across all six of 
the -omics approaches investigated in this paper: genomics, 
epigenomics, transcriptomics, proteomics, metabolomics, 
and microbiomics.

Figure  5b  shows a Venn diagram detailing the 
-omics combinations in the 123 NIH-funded multi-omics 
grants integrating data with metabolomics data. The major-
ity of grants that integrated -omics data combined metab-
olomics data with genomics data (n = 56, 46%). The next 
most frequent -omics data that were integrated with metabo-
lomics data were transcriptomics data (n = 49, 40%), fol-
lowed by microbiomics data (n = 48, 39%). Metabolomics 

data were integrated with epigenomics data at the lowest 
rate (n = 14, 11%). Of the 77 grants that integrated metabo-
lomics data with only one other -omics data type, all pos-
sible pairs were represented (i.e., metabolomics and genom-
ics, metabolomics and epigenomics, metabolomics and 
transcriptomics, metabolomics and proteomics, and metab-
olomics and microbiomics); most of these grants investi-
gated metabolomics and genomics jointly (n = 29, 24%). 
For grants integrating metabolomics data with two other 
-omics data types, there were seven combinations repre-
sented: metabolomics with genomics and epigenomics 
(n = 2, 2%), genomics and transcriptomics (n = 7, 6%), 
genomics and proteomics (n = 2, 2%), genomics and micro-
biomics (n = 4, 3%), transcriptomics and proteomics (n = 5, 
4%), transcriptomics and microbiomics (n = 8, 7%), and pro-
teomics and microbiomics (n = 1, 1%). For grants integrating 
metabolomics data with three other -omics data types, there 
were also seven combinations represented. The combina-
tions most represented in this category were the integra-
tion of metabolomics data with genomics, epigenomics, and 
transcriptomics data (n = 3, 2%), as well as the integration 
of metabolomics data with genomics, transcriptomics, and 
proteomics data (n = 3, 2%). Three grants (2%) integrated 
metabolomics data with genomics, epigenomics, transcrip-
tomics, and proteomics data jointly. This was the maximum 
combination represented where metabolomics data were 
integrated with four other -omics data types.

For the 123 grants that used an integrative analysis 
approach that included metabolomics data, most grants 
were Research Grants (n = 84, 68%), followed by Coopera-
tive Agreements (n = 20, 16%) and then Career Develop-
ment Awards (n = 12, 10%) (data not shown). The majority 
of grants that integrated -omics data focused on diabetes and 
other metabolic diseases (n = 18, 15%) (Fig. 5c). Cardiovas-
cular disease was the next most common disease outcome 
represented in grants that integrated -omics data (n = 15, 
12%), followed by child and human development (n = 12, 
10%) and cancer (n = 12, 10%) as the third most common, 
and infectious disease (n = 11, 9%) and lung disease (n = 11, 
9%) as the fourth most common (Fig. 5c). Additional data 
on the full breakdown of topic areas studied by grants that 
integrated -omics data are given in Online Resource 2.

The data used to conduct this portfolio analysis can be 
found in Online Resource 3.

4 � Discussion

The metabolome reflects the downstream products of mul-
tiple interactions between genes, transcripts, proteins, and 
metabolites (Fig. 1); therefore, we included in this analy-
sis genomics, transcriptomics, and proteomics. We also 
included epigenomics, which captures the transgenerational 

Fig. 2   A summary of the methods followed for generating the ana-
lyzed portfolio of NIH-funded grants
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and environmental impact on the genome, and microbiom-
ics to capture microbial composition and function and their 
metabolites to comprehensively examine the types of -omics 
data that are being integrated with metabolomics data to 
study disease in humans. Pinu et al. (2019) explained that the 
analytical and data integration components that are critical 
to metabolomics studies are compatible with genomics, tran-
scriptomics, and proteomics studies. The metabolome being 
in close proximity to cellular or tissue phenotypes provides 
what the authors term a ‘common denominator’ to multi-
omics study design, including guidelines for sample collec-
tion, handling and processing, and experimental analyses 
(Pinu et al., 2019). In turn, knowledge of metabolomics by 
researchers focusing on other -omics or multi-omics stud-
ies may offer the opportunity to improve studies using an 

integrated -omics approach. Therefore, understanding the 
characteristics of multi-omics studies that include metabo-
lomics data analyses will allow a better understanding of the 
current state of the field.

The majority proportion of grants were Research Grants, 
representing 67% of multi-omics grants in the examined 
portfolio. Though Career Development Awards represented 
the third most common grant program type, they represented 
only 10% of grants. Increased funding to support early career 
investigators could provide a mechanism for trainees to mas-
ter the technical and analytical skills required for conducting 
multi-omics approaches. However, it may not be feasible to 
expect early career investigators to become experts in all 
of the complex technical and analytical skills used across 
the multiple -omics sciences. The conduct of these studies 

Fig. 3   Circle packing chart displays the percentage of NIH-funded grants employing metabolomics in multi-omics studies in the disease state 
studied
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is likely better suited for grants with budgets that can accom-
modate the various expertise needed to manage the diverse 
sampling requirements, analytical platforms, pre-processing 
methods, data structure, and data analysis methods required 
in multi-omics studies.

Of the 123 grants that used an integrative analysis 
approach, genomics data were integrated more than any 
other type of -omics data in these grants. Genomics can 
identify genetic variants associated with disease, but inte-
gration of genomics data with metabolomics data can help 
narrow the causal mechanisms of the identified variants by 
explicating the functionality of disease-associated genetic 
variants (Karczewski & Snyder, 2018). The next most com-
mon -omics data that were integrated with metabolomics 
data were transcriptomics data, followed by microbiomics 
data. Transcriptomics can cross-sectionally measure levels 
of gene expression in a cell or organism and does so at an 
intermediate level from phenotype (Karczewski & Snyder, 
2018). A combined analysis of metabolomics data with tran-
scriptomics data from the same sources may reveal func-
tional mechanisms that link genes to phenotype (Chu et al., 
2019). Microbiomics allows characterization of microbiome 
compositional profiles that may be associated with disease 
(Hasin et al., 2017). However, a limitation of microbiome 
profiling is the difficulty in discerning precisely how the 
microbiome is directionally related to a phenotype (Karc-
zewski & Snyder, 2018). Furthermore, microbiome data 
collected to date usually covers only bacteria and does not 
include fungi, archaea, and bacteriophages, which com-
prise the whole microbiota. Metabolomics can complement 
microbiomics to help tease out time relationships between 

the two disciplines, especially when longitudinal sampling 
is practiced and short measurement intervals are used (Chu 
et al., 2019). Increased integration of metabolomics data 
with other -omics data presents an opportunity for identify-
ing causal and functional interpretations of disease.

The majority of multi-omics grants in the examined port-
folio integrated metabolomics data with other -omics data, 
but to a limited degree. When grants integrated metabo-
lomics data with other -omics data, integration was more 
likely to be with only one other -omics approach. This result 
suggests that there are challenges with integrating various 
layers of -omics data in multi-omics analyses or that the 
original study design may not support multi-omics research 
questions beyond integration of two types of -omics data. 
To broaden integration to include more -omics data types, 
various barriers need to be overcome. One challenge compli-
cating successful data integration across -omics disciplines 
is that -omics data are difficult to reproduce and compare 
because -omics data are noisy, heterogeneous, and largely 
qualitative (Pinu et al., 2019; Subramanian et al., 2020). 
For example, batch effects of the sample runs contribute to 
-omics data heterogeneity and can confound integration of 
multi-omics data. Researchers should select a data integra-
tion strategy (e.g., composite network approach, simultane-
ous integration) that best addresses heterogeneity between 
multi-omics datasets in their study (Worheide et al., 2021). 
Furthermore, inherent challenges with metabolomics data 
may limit wider integration of multi-omics data since inte-
grative analyses compound the issues of each -omics data 
type included in a multi-omics set. At this time, only a 
small percentage of metabolomics data is decipherable and 

Fig. 4   a Bar graph displays commonly used biospecimen types for 
metabolomics analyses that were specified in the abstract and spe-
cific aims of NIH-funded grants employing metabolomics in multi-
omics studies. Some grants are represented by multiple data points 
because a single study may have used more than one biospecimen 
type for metabolomics analyses. b Bar graph shows the breakdown 

of biospecimen types used for genomics, epigenomics, transcriptom-
ics, proteomics, and microbiomics analyses that were specified in the 
abstract and specific aims of NIH-funded grants employing metabo-
lomics in multi-omics studies. Some grants are represented by multi-
ple data points because a single study may have used more than one 
biospecimen type for each -omics technology
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well-annotated based on publicly available databases (Dunn 
et al., 2013; Mahieu & Patti, 2017). Although many NIH 
studies deposit metabolomics data in the National Metabo-
lomics Data Repository (NMDR), formerly Metabolomics 
Workbench, the data lack the level of standardization that 
may be required to include metabolomics into multi-omics 
studies (NIH Common Fund's National Metabolomics Data 
Repository; Smirnov et al., 2021). Additionally, NMDR does 
not currently accept controlled data, which limits the deposi-
tion of clinical and epidemiological studies. This has resulted 
in some NIH-funded clinical and epidemiological studies 
depositing metabolomics data into the controlled-access 

database of Genotypes and Phenotypes (dbGaP), which was 
designed to accept genotype and related phenotype data and 
is not standardized for metabolomics data. However, most 
data repositories are not designed to hold multi-omics data. 
Thus, for multi-omics studies using existing data, it is chal-
lenging for researchers to access data that reside in different 
locations or databases and work with multiple datasets in an 
accessible and convenient manner. It is especially difficult to 
access sample-level-matched multi-omics datasets, assum-
ing that this is even possible (Tarazona et al., 2021). As for 
the challenge of unidentified metabolites in metabolomics 
data, improved compound identification and characterization 

Fig. 5   a Pie chart depicts the percentage of NIH-funded grants in 
which metabolomics data were integrated with other -omics data in 
multi-omics studies, including genomics, epigenomics, transcriptom-
ics, proteomics, and/or microbiomics data. No grants integrated all 
six -omics data types in the multi-omics set. b Venn diagram displays 
the number of NIH-funded grants employing metabolomics in multi-
omics and integrative analysis approaches where metabolomics data 

were integrated with -omics data from one or more additional -omics 
technologies, including genomics, epigenomics, transcriptomics, pro-
teomics, and/or microbiomics. c Bar graph depicts the percentage of 
NIH-funded grants employing metabolomics in multi-omics stud-
ies where metabolomics data were integrated with one or more other 
-omics data in the top four diseases studied
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efforts increase confidence in metabolite identity (Chal-
eckis et al., 2019; Dunn et al., 2013). Enhanced confidence 
in metabolite identity and accuracy of metabolomics data 
will encourage efforts to integrate other -omics data with 
metabolomics data (Creek et al., 2014; Jendoubi, 2021). The 
NIH Common Fund Metabolomics Compound Identification 
Program is currently addressing several of these issues for 
metabolite chemical and bioinformatic analysis (National 
Institutes of Health Common Fund). There are several com-
mercial entities such as Metabolon and Nightingale that pro-
vide metabolite identification as part of their metabolomics 
analysis services. Similar complementary and robust efforts 
are currently underway in the metabolomics research com-
munity for compound identification, making further strides 
in the progress. More broadly, improving the availability and 
use of reference standards, quality control measures, and 
access to standardized operating protocols can ensure that 
data generated from -omics approaches are of high validity 
and quality (Pinu et al., 2019). Measuring -omics data in 
a quantitative manner is expected to promote multi-omics 
data integration since quantitative -omics measurements can 
obtain greater analytical precision and accuracy compared 
to non-quantitative measurements, helping to assure study 
reproducibility and comparability in multi-omics studies 
(Pinu et al., 2019). While there are a few considerations 
regarding quantitative metabolomics, such as biological var-
iability, sample preparation, choice of analytical platforms, 
and data analysis approaches, efforts have been underway 
to address these important aspects. For example, advance-
ments in the technological approaches, such as ultra-high-
resolution mass spectrometry and use of internal standards 
when possible, have significantly aided in improvements 
with regards to quantitative metabolite measurements (Perez 
de Souza et al., 2021). Multi-omics data integration can fur-
ther be facilitated through collection of sufficient meta-data 
on samples, information essential for making biologically 
pertinent and contextually correct interpretations of results 
(Pinu et al., 2019). Furthermore, there is a need for improved 
open-source pathway databases and updated network models 
for the generation of clear connections between multi-omics 
data levels (Eicher et al., 2020). Additionally, another limita-
tion of multi-omics analysis is that it is resource intensive 
to integrate data, such that the relative effort and resources 
required for data integration greatly exceeds that of data 
generation with each additional -omics type included in a 
multi-omics set (Palsson & Zengler, 2010). The need for 
increased effort and resources can be attributed to the con-
siderable obstacles that must be overcome during the search 
for meaningful associations in multi-omics studies. Tarazona 
et al. (2021) explains some of these challenges that limit 
our ability to integrate high-throughput -omics data, specifi-
cally (1) heterogeneity across various technologies used to 
collect -omics data, (2) imputation of missing values, (3) 

challenges related to interpretation of multilayered systems 
models, and (4) issues associated with data annotation and 
storage and computational resources. Furthermore, study 
design considerations are imperative for the data integra-
tion steps as this has direct implications on the data analysis 
(Cavill et al., 2016).

Diabetes and other metabolic diseases, cancer, cardiovas-
cular disease, and child and human development being the 
most studied topic areas was an expected result as the focus 
of this paper was to identify grants with a known metabo-
lomic focus and each of these outcomes involve changes to 
cellular metabolism pathways. Diabetes, cancer, and cardio-
vascular disease are also among the leading causes of death 
in the United States (Kochanek et al., 2020). As high priority 
research areas, there are likely to be more resources (cohorts, 
biospecimens, and -omics data) available to be leveraged 
for studying these outcomes compared to outcomes with 
less extensive disease burden. When looking at the subset 
of grants integrating other -omics data with metabolomics 
data, diabetes and other metabolic diseases, cardiovascular 
disease, cancer, and child and human development remained 
in the top three most commonly studied outcomes. Genom-
ics data were most commonly leveraged alongside metabo-
lomics data in the grants that integrated -omics data and 
focused on diabetes and cardiovascular disease (data not 
shown). Transcriptomics data were most often integrated 
with metabolomics data in the integrated grants studying 
cancer (data not shown). When the focus was on child and 
human development, microbiomics data were more often 
combined with metabolomics data than other -omics data 
(data not shown).

Further examining those studies that integrated other 
-omics data with metabolomics data, we observed lung 
disease and infectious disease emerge as top topic areas 
studied in these grants. In these studies investigating lung 
disease, we primarily saw integration of metabolomics data 
with transcriptomics data and with genomics data (data not 
shown). Among studies that have examined lung disease 
using a data integration approach, transcriptomics data being 
a component has revealed new candidate causal genes for 
chronic obstructive pulmonary disease, as well as helped 
provide a more detailed and explanatory image of asthma 
biology (Kelly et al., 2018; Lamontagne et al., 2018). The 
integration of genomics data with metabolomics data to 
study asthma has enabled identification of novel predictors 
of asthma control (McGeachie et al., 2015). In the inte-
grated grants examining infectious disease, metabolomics 
data were primarily integrated with transcriptomics data. 
The application of integrated transcriptomics and metabo-
lomics data analyses to study Epstein-Barr virus infection 
has revealed selective therapeutic targets for treating lym-
phoid cancers associated with the virus (Lamontagne et al., 
2021). A possible opportunity, then, is to learn from studies 
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integrating multiple -omics data to study these disease areas. 
We may be able to apply knowledge gained about multi-
omics data integration to other disease states to elucidate 
disease mechanisms.

Plasma and serum were primarily used in metabolomics 
analyses. It is advantageous to use plasma and serum for 
studies investigating the metabolome because blood contains 
metabolites from tissues throughout the body, which enables 
metabolomics performed on these specimens to provide an 
integrative snapshot of overall metabolic status in the human 
body (Chetwynd et al., 2017; Turi et al., 2018). Stool was 
typically examined for microbiomics studies. This was an 
expected result as most of the current human microbiome 
studies have focused on the gut. Analyzing stool biospeci-
mens allows for insight into host-microbe chemical interac-
tions in the gut, and a snapshot of endogenously occurring 
metabolites from both host and gut microbiota (Turi et al., 
2018). For epigenomics, genomics, and transcriptomics 
studies, tissue was the most common biospecimen speci-
fied. Changes in an individual’s epigenome are reflected 
in spatiotemporal and compartmental changes observed in 
their tissues (Relton & Davey Smith, 2012; Verma et al., 
2014). The same is true for an individual’s transcriptomic 
status. Using tissue as the biospecimen for epigenomics and 
transcriptomics studies provides region-specific information 
corresponding to the sampled tissue. Tissue is a preferred 
biospecimen for genomics as well. Plasma, serum, and tis-
sue biospecimens were the top biospecimens specified for 
proteomics studies in the portfolio. Plasma and serum are 
rich in circulating protein markers (e.g., alternative splic-
ing isoforms, chemical modifications, protein cleavages, 
altered complexes, and altered dynamics of protein sorting 
and release) from many tissues in the body, which can pro-
vide researchers a global view of an individual’s proteomic 
state and correlated health status (Taguchi & Hanash, 2013). 
Additionally, since the proteome is sensitive to changes at 
the epigenome and transcriptome levels, proteomic state 
varies spatiotemporally in a tissue-specific manner as well, 
making tissue a favorable biospecimen choice for local-
ized proteomics analyses. The preference for using plasma, 
serum, and stool in multi-omics studies may point to an 
objective of researchers to use less or non-invasively col-
lected biospecimens for -omics investigations. Plasma, 
serum, and stool are also relatively easy to store long-term 
and researchers can reliably obtain these biospecimens in 
large quantities. Procuring tissue samples is more invasive, 
though necessary for conducting epigenomics and transcrip-
tomics studies.

In the NIH grants portfolio examined, we observed that 
grants leverage different biospecimens for various -omics 
approaches. Variation in preferred biospecimen for each 
-omics type (e.g., choice of biospecimen for genomics stud-
ies may not be well-suited for proteomics or transcriptomics 

studies) is an example of multi-omics incompatibility that 
poses a challenge for integrated data analyses; it is not 
always possible or appropriate to generate multi-omics data 
from a single biospecimen type (Pinu et al., 2019; Worheide 
et al., 2021). Additionally, -omics technologies differ in their 
analytical platforms (Horgan & Kenny, 2011; Sun & Hu, 
2016). For instance, transcriptomics is performed through 
microarray and RNA sequencing analytical techniques, 
whereas metabolomics is generally performed through 
nuclear magnetic resonance spectroscopy and chromatog-
raphy-mass spectrometry. Using different biospecimens in 
combination, then, requires thoughtful experimental design. 
One recommendation is to plan appropriately for all -omics 
analyses included in a multi-omics study and prioritize 
study design elements such as longitudinal sample collec-
tion, biospecimens and volumes, measurement standards, 
analytical platforms, and other experimental considerations 
accordingly.

This cross-sectional evaluation of the NIH grants port-
folio suggests some potential opportunities to expand the 
use of metabolomics data in multi-omics studies that use 
data integration approaches, as well as a few challenges. 
Integration of other -omics data with metabolomics data has 
potential to help researchers elucidate disease mechanisms 
through identifying causal determinations and functional 
interpretations of disease. Integration may also help improve 
the sensitivity of biomarkers identified via metabolomics 
methods. However, challenges in metabolomics research 
can create barriers for successful multi-omics data integra-
tion. The result that most multi-omics grants in our portfolio 
did not integrate metabolomics data beyond incorporating 
one additional -omics data type suggests that integration 
of increasingly more complex data is a current challenge 
and an impediment in the field. On July 22, 2020 the NIH 
released Funding Opportunity Announcements (PAR-20-
276 and PAR-20-277) to support secondary and integra-
tive analyses on existing genomics datasets for elucidating 
cancer outcomes, encouraging investigators to find new and 
innovative ways to use previously collected data (National 
Institutes of Health, 2020a, 2020b). In a similar vein, per-
haps some attention can be directed toward understanding 
how already established -omics datasets are being leveraged 
and integrated together. Data compatibility is also an issue 
as -omics data are widely variable and -omics approaches 
vary in their methods, biospecimen requirements, validated 
standard availability, and analytic techniques. Our analysis 
presents a future opportunity for greater investment of train-
ing and career development awards in multi-omics research.

Limitations to this study include that we only examined 
data from NIH grants and these data may not be a direct 
reflection of what is currently published in the literature. 
However, these data show various applications of multi-
omics approaches to study human health and disease in 
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the examined NIH grants portfolio, funded by one federal 
agency in the United States. These data are also useful 
for understanding the support for integration of metabo-
lomics data as a component of multi-omics studies, while 
also highlighting areas of potential opportunity that may 
benefit from further investment to confront or overcome 
challenges present in the field.

NIH-funded multi-omics studies that include metabo-
lomics performed integration to a limited extent by pri-
marily incorporating only one other -omics data type. A 
number of challenges need to be addressed for metabo-
lomics data to be more widely analyzed in multi-omics 
studies, including increasing confidence in metabolite 
identification, addressing -omics data incompatibility, 
overcoming resource requirements for integrating multi-
ple -omics data, selecting appropriate study designs that 
support multi-omics research, and addressing variability 
between -omics approach requirements.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11306-​022-​01878-8.

Acknowledgements  We thank Katie Kortokrax for helping to create 
and format the figures in this manuscript.

Author contribution  MH, PM, HLN, SAR, MV, and KAZ conceived 
and designed the study. SR conducted the grant search. BNC, RB, MH, 
PM, HLN, SAR, MV, and KAZ performed the data extraction. CTY 
analyzed the data. CTY wrote the manuscript. All authors read, revised, 
and approved the manuscript.

Funding  No funding was received to assist with the preparation of 
this manuscript.

Data availability  The data used to conduct this portfolio analysis can 
be found in the supplementary material, Online Resource 3.

Code availability  Not applicable.

Declarations 

Conflict of interest  All authors certify that they have no affiliations 
with or involvement in any organization or entity with any financial 
interest or non-financial interest in the subject matter or materials dis-
cussed in this manuscript.

Ethics approval  This article does not contain any studies with human 
and/or animal participants performed by any of the authors.

Informed consent  Not applicable.

Consent for publication  Not applicable.

Disclaimer  The data in this publication have only been vetted by the 
authors, and no additional experts at other NIH Institutes and Centers 
have reviewed the content presented. These data do not represent offi-
cial NIH data, and this analysis was not performed to inform the NIH 
on this scientific area. Rather, the portfolio analysis was used for the 
purpose of informing the authors from the National Cancer Institute, 

the National Institute of Diabetes and Digestive and Kidney Diseases, 
and the NIH Office of Nutrition Research.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Cavill, R., Jennen, D., Kleinjans, J., & Briede, J. J. (2016). Transcrip-
tomic and metabolomic data integration. Briefings in Bioinformat-
ics, 17(5), 891–901. https://​doi.​org/​10.​1093/​bib/​bbv090

Chaleckis, R., Meister, I., Zhang, P., & Wheelock, C. E. (2019). Chal-
lenges, progress and promises of metabolite annotation for LC-
MS-based metabolomics. Current Opinion in Biotechnology, 55, 
44–50. https://​doi.​org/​10.​1016/j.​copbio.​2018.​07.​010

Chetwynd, A. J., Dunn, W. B., & Rodriguez-Blanco, G. (2017). Col-
lection and preparation of clinical samples for metabolomics. 
Advances in Experimental Medicine and Biology, 965, 19–44. 
https://​doi.​org/​10.​1007/​978-3-​319-​47656-8_2

Chu, S. H., Huang, M., Kelly, R. S., Benedetti, E., Siddiqui, J. K., 
Zeleznik, O. A., Pereira, A., Herrington, D., Wheelock, C. E., 
Krumsiek, J., McGeachie, M., Moore, S. C., Kraft, P., Mathe, 
E., Lasky-Su, J., Consortium of Metabolomics Studies Statistics 
Working Group. (2019). Integration of metabolomic and other 
omics data in population-based study designs: An epidemiological 
perspective. Metabolites. https://​doi.​org/​10.​3390/​metab​o9060​117

Creek, D. J., Dunn, W. B., Fiehn, O., Griffin, J. L., Hall, R. D., Lei, Z. 
T., Mistrik, R., Neumann, S., Schymanski, E. L., Sumner, L. W., 
Trengove, R., & Wolfender, J. L. (2014). Metabolite identifica-
tion: Are you sure? And how do your peers gauge your confi-
dence? Metabolomics, 10(3), 350–353. https://​doi.​org/​10.​1007/​
s11306-​014-​0656-8

Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Grif-
fin, J. L. (2011). Systems level studies of mammalian metabo-
lomes: The roles of mass spectrometry and nuclear magnetic reso-
nance spectroscopy. Chemical Society Reviews, 40(1), 387–426. 
https://​doi.​org/​10.​1039/​b9067​12b

Dunn, W. B., Erban, A., Weber, R. J. M., Creek, D. J., Brown, M., 
Breitling, R., Hankemeier, T., Goodacre, R., Neumann, S., 
Kopka, J., & Viant, M. R. (2013). Mass appeal: Metabolite 
identification in mass spectrometry-focused untargeted metabo-
lomics. Metabolomics, 9(1), S44–S66. https://​doi.​org/​10.​1007/​
s11306-​012-​0434-4

Eicher, T., Kinnebrew, G., Patt, A., Spencer, K., Ying, K., Ma, Q., 
Machiraju, R., & Mathe, A. E. A. (2020). Metabolomics and 
multi-omics integration: A survey of computational methods and 
resources. Metabolites. https://​doi.​org/​10.​3390/​metab​o1005​0202

Fiehn, O. (2002). Metabolomics—the link between genotypes and phe-
notypes. Plant Molecular Biology, 48(1–2), 155–171. https://​doi.​
org/​10.​1007/​978-​94-​010-​0448-0

Hasin, Y., Seldin, M., & Lusis, A. (2017). Multi-omics approaches 
to disease. Genome Biology, 18(1), 83. https://​doi.​org/​10.​1186/​
s13059-​017-​1215-1

https://doi.org/10.1007/s11306-022-01878-8
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/bib/bbv090
https://doi.org/10.1016/j.copbio.2018.07.010
https://doi.org/10.1007/978-3-319-47656-8_2
https://doi.org/10.3390/metabo9060117
https://doi.org/10.1007/s11306-014-0656-8
https://doi.org/10.1007/s11306-014-0656-8
https://doi.org/10.1039/b906712b
https://doi.org/10.1007/s11306-012-0434-4
https://doi.org/10.1007/s11306-012-0434-4
https://doi.org/10.3390/metabo10050202
https://doi.org/10.1007/978-94-010-0448-0
https://doi.org/10.1007/978-94-010-0448-0
https://doi.org/10.1186/s13059-017-1215-1
https://doi.org/10.1186/s13059-017-1215-1


An evaluation of the National Institutes of Health grants portfolio: identifying opportunities…

1 3

Page 11 of 12  29

Horgan, R. P., & Kenny, L. C. (2011). “Omic” technologies: Genom-
ics, transcriptomics, proteomics and metabolomics. Obstetrician 
& Gynaecologist, 13(3), 189–195. https://​doi.​org/​10.​1576/​toag.​
13.3.​189.​27672

Jendoubi, T. (2021). Approaches to integrating metabolomics and 
multi-omics data: A primer. Metabolites. https://​doi.​org/​10.​3390/​
metab​o1103​0184

Karczewski, K. J., & Snyder, M. P. (2018). Integrative omics for health 
and disease. Nature Reviews Genetics, 19(5), 299–310. https://​doi.​
org/​10.​1038/​nrg.​2018.4

Kelly, R. S., Chawes, B. L., Blighe, K., Virkud, Y. V., Croteau-Chonka, 
D. C., McGeachie, M. J., Clish, C. B., Bullock, K., Celedon, J. 
C., Weiss, S. T., & Lasky-Su, J. A. (2018). An integrative tran-
scriptomic and metabolomic study of lung function in children 
with asthma. Chest, 154(2), 335–348. https://​doi.​org/​10.​1016/j.​
chest.​2018.​05.​038

Lamontagne, M., Berube, J.C., Obeidat, M., Cho, M.H., Hobbs, B.D., 
Sakornsakolpat, P., de Jong, K., Boezen, H.M., The International 
COPD Genetics Consortium, Nickle, D., Hao, K., Timens, W., 
van den Berge, M., Joubert, P., Laviolette, M., Sin, D.D., Pare, 
P.D. & Bosse, Y. (2018). Leveraging lung tissue transcriptome 
to uncover candidate causal genes in COPD genetic associations. 
Human Molecular Genetics, 27(10), 1819–1829. https://​doi.​org/​
10.​1093/​hmg/​ddy091

Lamontagne, R. J., Soldan, S. S., Su, C., Wiedmer, A., Won, K. J., Lu, 
F., Goldman, A. R., Wickramasinghe, J., Tang, H.-Y., Speicher, 
D. W., Showe, L., Kossenkov, A. V., & Lieberman, P. M. (2021). 
A multi-omics approach to Epstein-Barr virus immortalization 
of B-cells reveals EBNA1 chromatin pioneering activities target-
ing nucleotide metabolism. PLoS Pathogens, 17(1), e1009208–
e1009208. https://​doi.​org/​10.​1371/​journ​al.​ppat.​10092​08

Liesenfeld, D. B., Habermann, N., Owen, R. W., Scalbert, A., & Ulrich, 
C. M. (2013). Review of mass spectrometry-based metabolomics 
in cancer research. Cancer Epidemiology, Biomarkers & Preven-
tion, 22(12), 2182–2201. https://​doi.​org/​10.​1158/​1055-​9965.​
EPI-​13-​0584

Mahieu, N. G., & Patti, G. J. (2017). Systems-level annotation of a 
metabolomics data set reduces 25 000 features to fewer than 1000 
unique metabolites. Analytical Chemistry, 89(19), 10397–10406. 
https://​doi.​org/​10.​1021/​acs.​analc​hem.​7b023​80

McGeachie, M. J., Dahlin, A., Qiu, W., Croteau-Chonka, D. C., Savage, 
J., Wu, A. C., Wan, E. S., Sordillo, J. E., Al-Garawi, A., Martinez, 
F. D., Strunk, R. C., Lemanske, R. F., Liu, A. H., Raby, B. A., 
Weiss, S., Clish, C. B., & Lasky-Su, J. A. (2015). The metabo-
lomics of asthma control: A promising link between genetics and 
disease. Immunity Inflammation and Disease, 3(3), 224–238. 
https://​doi.​org/​10.​1002/​iid3.​61

Nicholson, J. K., & Lindon, J. C. (2008). Systems biology: Meta-
bonomics. Nature, 455(7216), 1054–1056. https://​doi.​org/​10.​
1038/​45510​54a

Palsson, B., & Zengler, K. (2010). The challenges of integrating multi-
omic data sets. Nature Chemical Biology, 6(11), 787–789. https://​
doi.​org/​10.​1038/​nchem​bio.​462

Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Innovation: Metabo-
lomics: The apogee of the omics trilogy. Nature Reviews Molecu-
lar Cell Biology, 13(4), 263–269. https://​doi.​org/​10.​1038/​nrm33​
14

Perez de Souza, L., Alseekh, S., Scossa, F., & Fernie, A. R. (2021). 
Ultra-high-performance liquid chromatography high-resolu-
tion mass spectrometry variants for metabolomics research. 
Nature Methods, 18(7), 733–746. https://​doi.​org/​10.​1038/​
s41592-​021-​01116-4

Pinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, 
S., Schirra, H. J., & Wishart, D. (2019). Systems biology and 

multi-omics integration: Viewpoints from the metabolomics 
research community. Metabolites. https://​doi.​org/​10.​3390/​metab​
o9040​076

Relton, C. L. & Davey Smith, G. (2012). Is epidemiology ready for 
epigenetics? International Journal of Epidemiology, 41(1), 5–9. 
https://​doi.​org/​10.​1093/​ije/​dys006

Smirnov, A., Liao, Y., Fahy, E., Subramaniam, S., & Du, X. (2021). 
ADAP-KDB: A spectral knowledgebase for tracking and prior-
itizing unknown GC-MS spectra in the NIH’s metabolomics data 
repository. Analytical Chemistry, 93(36), 12213–12220. https://​
doi.​org/​10.​1021/​acs.​analc​hem.​1c003​55

Subramanian, I., Verma, S., Kumar, S., Jere, A., & Anamika, K. (2020). 
Multi-omics data integration, interpretation, and its application. 
Bioinformatics and Biology Insights, 14, 1177932219899051. 
https://​doi.​org/​10.​1177/​11779​32219​899051

Sun, Y. V., & Hu, Y. J. (2016). Integrative analysis of multi-omics data 
for discovery and functional studies of complex human diseases. 
Advances in Genetics, 93, 147–190. https://​doi.​org/​10.​1016/​bs.​
adgen.​2015.​11.​004

Taguchi, A., & Hanash, S. M. (2013). Unleashing the power of prot-
eomics to develop blood-based cancer markers. Clinical Chem-
istry, 59(1), 119–126. https://​doi.​org/​10.​1373/​clinc​hem.​2012.​
184572

Tarazona, S., Arzalluz-Luque, A., & Conesa, A. (2021). Undisclosed, 
unmet and neglected challenges in multi-omics studies. Nature 
Computational Science, 1(6), 395–402. https://​doi.​org/​10.​1038/​
s43588-​021-​00086-z

Turi, K. N., Romick-Rosendale, L., Ryckman, K. K., & Hartert, T. V. 
(2018). A review of metabolomics approaches and their applica-
tion in identifying causal pathways of childhood asthma. Journal 
of Allergy and Clinical Immunology, 141(4), 1191–1201. https://​
doi.​org/​10.​1016/j.​jaci.​2017.​04.​021

Tzoulaki, I., Ebbels, T. M., Valdes, A., Elliott, P., & Ioannidis, J. P. 
(2014). Design and analysis of metabolomics studies in epide-
miologic research: A primer on -omic technologies. American 
Journal of Epidemiology, 180(2), 129–139. https://​doi.​org/​10.​
1093/​aje/​kwu143

Verma, M., Rogers, S., Divi, R. L., Schully, S. D., Nelson, S., Joseph, 
S. L., Ross, S. A., Pilch, S., Winn, D. M., & Khoury, M. J. (2014). 
Epigenetic research in cancer epidemiology: trends, opportunities, 
and challenges. Cancer Epidemiology, Biomarkers & Prevention, 
23(2), 223–233. https://​doi.​org/​10.​1158/​1055-​9965.​EPI-​13-​0573

Worheide, M. A., Krumsiek, J., Kastenmuller, G., & Arnold, M. 
(2021). Multi-omics integration in biomedical research: A metab-
olomics-centric review. Analytica Chimica Acta, 1141, 144–162. 
https://​doi.​org/​10.​1016/j.​aca.​2020.​10.​038

Kochanek, K. D., Xu, J. & Arias, E. (2020). Mortality in the United 
States, 2019, NCHS Data Brief, pp. 1–8.

National Institutes of Health. Grants and Funding: Types of Grant Pro-
grams. Retrieved February 22, 2022, from https://​grants.​nih.​gov/​
grants/​fundi​ng/​fundi​ng_​progr​am.​htm

National Institutes of Health. (2020a). PAR-20–276. Secondary analy-
sis and integration of existing data to elucidate the genetic archi-
tecture of cancer risk and related outcomes (R01 Clinical Trial 
Not Allowed). Retrieved February 22, 2022, from https://​grants.​
nih.​gov/​grants/​guide/​pa-​files/​PAR-​20-​276.​html

National Institutes of Health. (2020b). PAR-20–277. Secondary analy-
sis and integration of existing data to elucidate the genetic archi-
tecture of cancer risk and related outcomes (R21 Clinical Trials 
Not Allowed). Retrieved February 22, 2022, from https://​grants.​
nih.​gov/​grants/​guide/​pa-​files/​PAR-​20-​277.​html

National Institutes of Health Common Fund. Metabolomics: Program 
snapshot. Retrieved February 22, 2022, from https://​commo​nfund.​
nih.​gov/​metab​olomi​cs

https://doi.org/10.1576/toag.13.3.189.27672
https://doi.org/10.1576/toag.13.3.189.27672
https://doi.org/10.3390/metabo11030184
https://doi.org/10.3390/metabo11030184
https://doi.org/10.1038/nrg.2018.4
https://doi.org/10.1038/nrg.2018.4
https://doi.org/10.1016/j.chest.2018.05.038
https://doi.org/10.1016/j.chest.2018.05.038
https://doi.org/10.1093/hmg/ddy091
https://doi.org/10.1093/hmg/ddy091
https://doi.org/10.1371/journal.ppat.1009208
https://doi.org/10.1158/1055-9965.EPI-13-0584
https://doi.org/10.1158/1055-9965.EPI-13-0584
https://doi.org/10.1021/acs.analchem.7b02380
https://doi.org/10.1002/iid3.61
https://doi.org/10.1038/4551054a
https://doi.org/10.1038/4551054a
https://doi.org/10.1038/nchembio.462
https://doi.org/10.1038/nchembio.462
https://doi.org/10.1038/nrm3314
https://doi.org/10.1038/nrm3314
https://doi.org/10.1038/s41592-021-01116-4
https://doi.org/10.1038/s41592-021-01116-4
https://doi.org/10.3390/metabo9040076
https://doi.org/10.3390/metabo9040076
https://doi.org/10.1093/ije/dys006
https://doi.org/10.1021/acs.analchem.1c00355
https://doi.org/10.1021/acs.analchem.1c00355
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1016/bs.adgen.2015.11.004
https://doi.org/10.1016/bs.adgen.2015.11.004
https://doi.org/10.1373/clinchem.2012.184572
https://doi.org/10.1373/clinchem.2012.184572
https://doi.org/10.1038/s43588-021-00086-z
https://doi.org/10.1038/s43588-021-00086-z
https://doi.org/10.1016/j.jaci.2017.04.021
https://doi.org/10.1016/j.jaci.2017.04.021
https://doi.org/10.1093/aje/kwu143
https://doi.org/10.1093/aje/kwu143
https://doi.org/10.1158/1055-9965.EPI-13-0573
https://doi.org/10.1016/j.aca.2020.10.038
https://grants.nih.gov/grants/funding/funding_program.htm
https://grants.nih.gov/grants/funding/funding_program.htm
https://grants.nih.gov/grants/guide/pa-files/PAR-20-276.html
https://grants.nih.gov/grants/guide/pa-files/PAR-20-276.html
https://grants.nih.gov/grants/guide/pa-files/PAR-20-277.html
https://grants.nih.gov/grants/guide/pa-files/PAR-20-277.html
https://commonfund.nih.gov/metabolomics
https://commonfund.nih.gov/metabolomics


	 C. T. Yu et al.

1 3

29  Page 12 of 12

NIH Common Fund's National Metabolomics Data Repository. Metab-
olomics workbench. Retrieved February 22, 2022, from https://​
www.​metab​olomi​cswor​kbench.​org/

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.metabolomicsworkbench.org/
https://www.metabolomicsworkbench.org/

	An evaluation of the National Institutes of Health grants portfolio: identifying opportunities and challenges for multi-omics research that leverage metabolomics data
	Abstract
	Background 
	Aim of review 
	Key scientific concepts of review 

	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	Acknowledgements 
	References




