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Abstract
In recent years, there have been significant advances in the technology used to col‐
lect data on the movement and activity patterns of humans and animals. GPS units, 
which form the primary source of location data, have become cheaper, more accu‐
rate, lighter and less power‐hungry, and their accuracy has been further improved 
with the addition of inertial measurement units. The consequence is a glut of geospa‐
tial time series data, recorded at rates that range from one position fix every several 
hours (to maximize system lifetime) to ten fixes per second (in high dynamic situa‐
tions). Since data of this quality and volume have only recently become available, the 
analytical methods to extract behavioral information from raw position data are at an 
early stage of development. An instance of this lies in the analysis of animal move‐
ment patterns. When investigating solitary animals, the timing and location of in‐
stances of avoidance and association are important behavioral markers. In this paper, 
a novel analytical method to detect avoidance and association between individuals is 
proposed; unlike existing methods, assumptions about the shape of the territories or 
the nature of individual movement are not needed. Simulations demonstrate that 
false positives (type I error) are rare (1%–3%), which means that the test rarely sug‐
gests that there is an association if there is none.
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1  | INTRODUC TION

Methods for collecting data on the movement of animals have ad‐
vanced dramatically over the last two decades, with GPS and inertial 
measurement units becoming smaller, lighter, more energy efficient, 
and more accurate than ever before. These developments enable the 
detailed tracking of multiple individuals over long periods of time. To 
make the most of these technological advances, methods to analyze 
large amounts of data efficiently are essential.

The interactions of animals are one area of application in which 
vast amounts of data are collected; yet, efficient methods to an‐
alyze them are scarce. When analysing the interaction between 
solitary animals, the quantification of association or avoidance be‐
tween territorial conspecifics would advance our understanding of 
animal ecology and, in the long term, the impact of changing envi‐
ronments. Existing forms of such tests are predicated on assump‐
tions about the shape of each individual's territory (Dunn, 1979; 
Macdonald, Ball, & Hough, 1980) or, more recently, model the an‐
imal's movements as a random walk (Fortin et al., 2005; Latombe, 
Parrott, Basille, & Fortin, 2014; Potts, Mokross, Stouffer, & Lewis, 
2014; Vanak et al., 2013). Perhaps for that reason, these methods 
are often not employed, and avoidance is instead inferred from cir‐
cumstantial evidence. For example, Jackson and Ahlborn comment 
in (1989) that “judging by the intensity of use of core areas, the 
large amount of overlap among individuals, and the relatively small 
total home areas, it is remarkable that the tagged cats managed to 
remain on average >2 km apart. This implies that the Langu cats 
[snow leopards (Panthera uncia, Schreber, 1775)] actively avoided 
one another, while sharing the same area.” There is no explanation 
as to why an average of 2 km could not have occurred purely by 
chance; rather, an absence of contacts is seen as evidence of active 
avoidance.

A test for dynamic interactions was first suggested by Macdonald 
et al. (1980); this is based on the application of a quadrivariate nor‐
mal distribution to the co‐ordinates of the two target individuals. 
Dunn describes a similar approach that employs a multivariate 
Ornstein‐Uhlenbeck model rather than a multivariate normal model 
(Dunn, 1979). Sunarto, Kelly, Parakkasi, and Hutajulu (2015) use ker‐
nel density estimation (KDE) to characterize activity patterns for 
each species and calculate the coefficient of overlap between pairs 
of wild cat species. These tests either require that the utilization of 
each range is distributed about a single center of activity or in an 
oval shape. Violation of these assumptions, which have no obvious 
biological basis, can produce large errors (Doncaster, 1990).

Delgado, Penteriani, Morales, Gurarie, and Ovaskainen (2014) 
proposed a functional response in which social behavior is as‐
sumed to depend on proximity to other individuals. As detailed 
by the authors, the null model is supposed to account for all fac‐
tors influencing movement behavior apart from conspecifics. In 
their method, they suggest a null model that is calculated from 
movement in a random direction with the same step length as 
the observed movement. Similarly, Fortin et al. (2005) proposed 

a method that compares characteristics of the observed move‐
ments to characteristics based on a correlated random walk. This 
was later used to test for interactions by Latombe et al. (2014), 
Potts et al. (2014), Vanak et al. (2013), and others (Merkle, Fortin, 
& Morales, 2014; Thurfjell, Ciuti, & Boyce, 2014). This method 
assumes that the individuals would move randomly if they were 
not directly reacting to another individual or environmental fac‐
tors. This means that specific habitat areas with higher or lower 
chances of being visited have to be specifically incorporated into 
the null model. As an example, a particularly dense area of the 
habitat might be difficult to penetrate or represent an area with 
few possibilities for hunting. If these areas are not included in 
the model they could increase false positive results because the 
ranges of the focal individual and their conspecifics might be orga‐
nized so that the individuals are limited to moving in regions that 
cause the observed distances between them to be smaller than 
expected by chance.

Elbroch, Quigley, and Caragiulo (2014) suggested a generalized 
linear model to test for predictive power of various factors on the 
number of spatial associations observed. These factors included the 
number of elk in the study area and the mean genetic relatedness 
between interacting individuals. This is an interesting approach that 
helps in understanding what factors influence associations; how‐
ever, it does not easily extend to testing whether individuals actively 
avoid each other or seek each other's proximity.

Doncaster suggested the first non‐parametric test in Doncaster 
(1990). This compares the empirical distribution function of the N 
paired separations with that of the complete set of N2 separations. 
For this, a critical separation is chosen, within which the presence 
of interactions is deemed to be interesting. However, the correct 
value of this separation may not be easy to estimate and the number 
of observations would have to be very large to permit an analysis 
over multiple different separations. Furthermore, the significance 
test depends on the independence of successive data points and is 
only valid for fixed ranges of inter‐individual separation (Doncaster, 
1990).

In this paper, we propose a method that creates perturbations of 
blocks (e.g., days) of the observed data as a null model. It is therefore 
possible to create up to D! (where ! stands for the factorial and D 
is the number of blocks in the observation period) permutations to 
which to compare the observed data; there is no need to assume 
independence between individual measurements, only between 
blocks of measurements (e.g., days or weeks). One of the main ad‐
vantages of this method is that specific geographic areas that are 
visited less or more frequently by the individuals do not have to be 
included manually. Instead, they are automatically accounted for, 
since the frequency with which each location is visited remains ex‐
actly the same in both the null model (the permutations) and the ob‐
served movement. A further benefit is that there is no need to guess 
in advance which range of separation distances might constitute an 
interaction; rather, one just applies the test of interaction over mul‐
tiple different distance ranges.
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2  | METHOD

Dynamic interactions can be measured in two ways, as defined by 
Doncaster (1990). The first is termed “static interaction”, which de‐
scribes a spatial overlap of home ranges, as is discussed for example 
in Benhamou, Valeix, Chamaill‐Jammes, Macdonald, and Loveridge 
(2014) and Ngoprasert et al. (2012). The second characterizes de‐
pendencies between individuals’ movements. This study examines 
the latter, “dynamic interactions”. As Doncaster describes in (1990): 
“Dependency in the movements of two individuals (dynamic interac‐
tion) […] can be expressed in terms of probability. Are the animals 
more likely to maintain a certain separation (positive dynamic inter‐
action) or less likely (negative dynamic interaction) than is expected 
from the configuration and utilization of their ranges? At small sepa‐
rations in particular, does there exist a bond of attraction between 
them or do they respond to close contact by mutual repulsion?”

The method described in this paper does not assume any under‐
lying distribution, nor a particular shape or usage of the individuals’ 
territories. It does not require independence of consecutive mea‐
surements, nor a constant time difference between the measure‐
ments. This test simply relies on the disassociation of the target 
individuals by using permutations. To accomplish this, the observa‐
tion period is divided into time blocks, such as days. These blocks are 
then permuted for each animal individually and distances calculated; 
consequently, the inter‐individual distances at, say, 2 p.m. will be cal‐
culated from the locations of the animals on different days at 2 p.m. 
Assuming that the blocks are independent, this approach can be 
used to obtain the inter‐individual distances that one would expect 
to see if the animals did not respond to each other's whereabouts.

Following is a detailed description of the steps taken to test for 
association or avoidance using the proposed method.1

First, the distance between two individuals is calculated at each 
point in time using the observed data. Where data points are missing 
or observations are taken at different times, the positions are inter‐
polated linearly, for simplicity, as has been done previously (Fortin 
et al., 2005; Turchin, 1998). The observed data are then divided into 
blocks which are deemed to be independent; if these are days or 
weeks then the diel/weekly movement patterns remain intact in the 
permutations (for example, a propensity to visit a waterhole at 8 a.m. 
or sleep at 12 p.m.). These blocks are permuted randomly 10,000 
times and the distance between the target individuals at each time 
point is recalculated for each permutation.

There are now one observed and 10,000 permuted lists of inter‐
individual distance measurements for each time point in the data. 
It is, consequently, possible to determine how likely the observed 
measurements are, given the permuted set that is our null model. If 
individuals are significantly more often found close together in the 
observed data set than in the permuted data sets, then one can con‐
clude that this is unlikely to have arisen by chance. Likewise if they 
are significantly less often seen together.

It remains to be determined what “close together” means in this 
context. It would, for example, be reasonable to choose a range of 
distances, say 0–20 m to represent the region in which physical 

contact is most likely; alternatively, since animals communicate 
explicitly by sound and implicitly by sight, one might be interested 
in other ranges—say 80–100 m. Additionally, visibility will vary 
across habitats. As discussed above, one of the advantages of this 
approach is that it is possible simultaneously to test for interest‐
ing interactions (or the lack of them) across a set of ranges. Thus, 
in Section 3.2.1, which describes the application of this method 
to data collected from leopards (Panthera pardus, Linnaeus, 1758), 
the range intervals are chosen to be 0–20, 20–40, 40–80, 80–160, 
160–320, and 320–640 m. Whatever set is chosen, the separation 
distances calculated from the observed and permuted data are 
binned according to the selected set of intervals; this gives us a 
count of the number of times that the individuals were in each dis‐
tance range for both the observed and permuted data sets.

The null hypothesis is that there is no difference between the 
number of times the target individuals are found within a certain 
distance interval in the observed and permuted time series. The 
two alternatives are that the individuals are (a) more often; and 
(b) less often in the interval examined than expected from the 
permutations.

A p‐value is defined to be the probability of obtaining a result 
at least as extreme as the one that was observed, assuming that 
the null hypothesis is true (Goodman, 1999). Therefore the p‐value 
in this case is the upper bound (as we only have a sample of all 
possible scenarios) on the proportion of permutations as extreme, 
or more extreme, than the observation. Say the two target indi‐
viduals were observed to be in the 20–40 m interval M times, then 
the p‐value for the null hypothesis versus the alternative that the 
individuals are less often in the same interval than expected by 
chance lies between:

where nperm is the number of permutations calculated and n1 is the 
number of permutations in which the dyad was inside the 20–40 m 
interval at most M times. The observed number of times the indi‐
viduals were within that particular interval is then compared to the 
distribution created by the permutations. Observations lying in 
the 0.05/2k tail of the permutations will be regarded as evidence 
that the target individuals were less often in the distance interval 
than expected by chance. This percentage is calculated using the 
Bonferroni correction (Morrison, 1990); the 0.05 represents the sig‐
nificance level, which has to be divided by 2k, where k is the number 
of distances tested, since we test k distance intervals for avoidance 
and k for association. The Bonferroni inequality balances out the ef‐
fect of multiple testing.

A p‐value for a given distance interval that is less than 0.05/2k in‐
dicates that there is strong evidence against the null‐hypothesis that 
the two individuals are within that interval as often as expected by 
chance. This could be because they are more often within that par‐
ticular distance interval, as would be the case if they actively sought 
each other out, or because they are less often within the interval, 
which would suggest active avoidance.

n1

nperm
≤p<

n1+1

nperm
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2.1 | Simulations

The method proposed in this paper is focused on determining 
whether a pair of individuals (or social groups that they are members 
of) have been more or less in contact than expected. To show the 
accuracy of the method, neighboring leopard movements were sim‐
ulated and spatio‐temporal associations were imposed on some of 
those movement patterns. The test was applied to these simulated 
movements and the proportion of correctly identified associations 
and non‐associations was calculated.

Movements were simulated using simple random walk processes. 
These processes are defined by an equal probability of moving in any 
direction at each step (the direction is chosen from a uniform distri‐
bution on the range from 0 to 2π). The shape of the territory was 
assumed to be elliptical with radii of 9 and 4 km. These parameters 
are roughly estimated from the observations collected on one of the 
leopards (randomly selected) used in Section 3.2.1. Figure 1 shows 
the areas visited by this individual (blue solid line) and its neighbor 
(red dashed line) during the observation period.

The territories of both the simulated movements have the same 
size and shape. The second territory is shifted by 6 km along the axis 
of the minor radius. Therefore the overlap is similar to that of the 
observed individuals. The overlap was overestimated as false pos‐
itives are more readily detectable if the likelihood of encounters is 
increased. An example of the simulations is given in Figure 2. It is 
clear that the simulations are very different to the observed move‐
ment patterns; however, mimicking the movement of the leopards 
is not the aim of these simulations. The method should be capable 
of finding associations since the precise nature of movement is not 
critical to its operation, as long as there are no major changes in the 
movement during the observation period.

Ten thousand eighty simulations were run without any associ‐
ation between the dyad and a further 10,080 simulations were run 
in which the individuals actively seek each other's proximity if they 
are within a certain distance of each other (from here on referred to 
as the sensing distance). In the simulations in which there is no asso‐
ciation between the individuals, both processes are simple random 
walks with elliptical boundaries. In the cases with association, the 
general movement is again a simple random walk except when they 
are within the sensing distance of each other. In that case, they move 
directly toward each other and stay at one unit less than half the 
sensing distance from each other (this will be referred to as the as-
sociation distance). The individuals stay within that distance of each 
other between 1 and 5 steps (this number of steps will be referred to 
as the association time).

Within the 10,080 simulations with associations, the association 
time is varied from 1 to 5 steps and the sensing distance is varied 
from 250 to 500 m. For both the simulations with association and 
the simulations without association, the observation period is varied 
from 100 to 350 days. For each of the simulations, the method pro‐
posed in this paper is applied, and it is recorded whether the method 
correctly detects that there is, or is not, an association.

For each simulation, four distance intervals are tested for asso‐
ciations. In the association scenario, one of these intervals contains 
the association distance and should therefore test positive for a 
more than expected (MTE) association, that is, the individuals are 
more often within those distances than expected by chance. As a 
corollary, the interval containing the association distance should test 
negative for a less than expected (LTE) association. The other three 
intervals tested are outside the sensing distance and should there‐
fore test negative for both MTE and LTE. In the scenario without 
association, all of the intervals should test negative for both MTE 
and LTE.

F I G U R E  1   Movement of the individuals used for approximate 
territory size/shape/overlap and step size distribution. The 
overlapped area is circled by a black line. The observation period is 
217 days
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F I G U R E  2   Representative example of the simulations. The 
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association time is three steps, and the sensing distance is 300 m
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In concrete terms, the total number of distances tested for an as‐
sociation in each of the two scenarios is 40,320 (=4 × 10,080). When 
there is no association, all 40,320 distances should test negative for 
MTE (MTEneg) and LTE (LTEneg) with no positive MTE (MTEpos) or LTE 
(LTEpos) tests. In the association scenario, 10,080 should be MTEpos and 
LTEneg, representing situations in which they are correctly identified as 
being more often (not less often) within the interval than expected when 
the interval contains the association distance. In a similar fashion, 30,240 
should be MTEneg and LTEneg. In total, this gives expected values of 
30,240 for MTEneg, 40,320 for LTEneg, zero LTEpos and at most 10,080 
for MTEpos. The latter is slightly complicated by the fact that animals 
only seek each other's proximity if they happen to be within the sensing 
distance of each other; this will not occur in all simulations.

2.2 | Application

To demonstrate how the method could be used, the proposed 
method has been applied to location data collected from eight 
resident neighboring leopards and eight packs of African wild dogs 
(Lycaon pictus, Temminck, 1820) in Northern Botswana. In the former 
case, each of the leopards was fitted with a GPS collar and the aim 
of the test was to identify whether the individual leopards avoided 
each other. For African wild dogs, one individual in each pack was 
fitted with a GPS collar. The purpose in this case was to determine 
whether neighboring packs avoided each other (or alternatively 
sought proximity).

2.2.1 | Leopards

Between 2007 and 2012, two female and six male leopards were fit‐
ted with GPS collars. Not all collars were fitted for the entire study 
period; therefore only periods of simultaneous tagging were used 

in this analysis. The number of days each dyad was simultaneously 
tagged varied between 119 and 406. Locations were measured at 
least four times a day. As leopards are generally active at night and 
are least active in the middle of the day (Bailey, 1993) a day was 
considered to run from midday to midday for the purposes of permu‐
tation. The distance intervals tested were: 0–20, 20–40, 40–80, 80–
160, 160–320, and 320–640 m. Bins at short distances were chosen 
narrower than distances further apart, because we were particularly 
interested in close proximity of the individuals.

2.2.2 | African wild dogs

The eight packs of African wild dogs were collared between May 
2011 and May 2014. As for the leopards, the wild dog packs were 
not all collared simultaneously. Therefore, packs were only consid‐
ered if they were tagged simultaneously for at least 100 days. The 
resulting 14 neighboring pack dyads were collared for between 
108 and 402 days. The distance intervals tested were: 0–500 m, 
500 m–1 km, 1–1.5 km, and 1.5–2 km.

3  | RESULTS

In the following two sections, the results of the simulations are de‐
tailed, followed by the results from the application. First, the results 
of the simulations in which there is an association are described 
in Section 3.1.1, then those with no association (Section 3.1.2). 
This is followed by the results of the application to leopard data 
(Section 3.2.1) and to African wild dog data (Section 3.2.2).

3.1 | Simulations

3.1.1 | Association scenario

This section discusses the results in the scenario in which there is 
an association between the two simulated individuals. Overall, out 
of the 40,320 expected LTEneg intervals tested, 37,940 (94%) were 
correctly identified as not being less often within close proximity of 
each other than expected by chance. Out of the 30,240 expected 
MTEneg intervals, 29,761 (98%) were correctly identified as not 
being more often within close proximity of each other. And, out of 
the 8,975 MTEpos intervals that are possible (these are the only oc‐
casions on which the individuals end up within the sensing distance 
of each other by chance, as discussed in Section 2.1) 7,250 (81%) 
were correctly identified as being more often within close proximity 
of each other than expected.

Figure 3 shows the results broken down by the association time, 
that is, by how many steps the individuals stay within the associa‐
tion distance of each other, before they go back to a random walk. 
The results are detailed in Supporting Information Table S1, with the 
number of simulations and correctly identified distances listed.

The LTEneg and MTEneg results are consistently highly accurate, 
with false positives between 1% and 9% of cases. This demonstrates, 

F I G U R E  3   Proportion of simulations correctly classified as 
not having a less than expected association (LTEneg, i.e., “no 
avoidance”), not having a more than expected association (MTEneg, 
i.e., “no attraction”) and having a more than expected association 
(MTEpos, “attraction”) as a function of the number of time steps 
spent at the association distance
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that the test very rarely suggests that there is an association, when 
there is none. The LTEneg and MTEneg results should not be affected 
by the time spent within the association distance, since they check the 
distances that are outside the association distances. This can be seen 
in the results, as the LTEneg and MTEneg lines are close to horizontal.

The general upward trend of the MTEpos line is to be expected. 
The more time the individuals spend within a distance interval, the 
higher the likelihood of the test detecting an association. The pro‐
portion of correctly identified intervals increases from 60% when 
only one time step was spent within the association distance, to 92% 
when five time steps were spent within the association distance.

The breakdown of the results with respect to the varying sizes 
of the association distance and lengths of observation period are 
presented in Figure 4a,b respectively. The absolute number of sim‐
ulations and number of correctly identified simulations are listed in 
Supporting Information Tables S2 and S3.

The results are very similar to those characterized by the asso‐
ciation time. False positive results (MTEneg and LTEneg) were sug‐
gested between 1% and 8% of the cases. The MTEpos results show 
that with a larger association distance, or with a longer observation 
period, the test is more likely to detect an association correctly. This 
is probably the case, because the individuals are more likely to be 
within the sensing distance of each other during the simulations and 
therefore show an association more often than in the cases in which 
the association distance is small or the observation period is short.

3.1.2 | No association scenario

This section discusses the results in the scenario in which there is 
no association between the two individuals. In this case, all 40,320 
distances tested should indicate that the individuals were not less 
often than expected within the distance intervals tested (LTEneg) 

and neither were they more often than expected within those inter‐
vals (MTEneg).

Overall, out of the 40,320 LTEneg tests 39,915 (99%) were cor‐
rectly identified as not being less often than expected within the 
intervals tested. And out of the 40,320 MTEneg tests 39,455 (98%) 
were correctly identified as not being more often than expected 
within those intervals.

The break down of the results with respect to the length of 
observation period is presented in Figure 5 and detailed, including 
absolute number of distances tested and number of correctly iden‐
tified significant intervals, Supporting Information Table S4. The re‐
sults are consistently high, with accuracies between 97% and 99%. 
This suggests that the method has a small type I error (false positive) 
of between 1% and 3%.

In summary, the results demonstrate that false positives (type I 
error) are rare, which means that the test rarely suggests that there 
is an association if there is none. When there is no association, be‐
tween 94% and 99% of cases are correctly identified as not having 
an association. The results for MTEpos, that is, the correct identifi‐
cation of an association, are consistently lower than the results for 
LTEneg and MTEneg (the correct identification of no association). 
We believe that a small false positive result is more important than 
a small false negative result, that is, suggesting that the individuals 
do not show an association when there is one, is favoured over sug‐
gesting that the individuals show an association when there is none.

3.2 | Application

Location data were collected in latitude and longitude format. 
Before the analysis, the latitude and longitude were transformed into 
Cartesian coordinates using the dg2lg function from the Geodetic 
Toolbox in Matlab (MATLAB, 2014).

F I G U R E  4   Proportion of simulations correctly classified as having a LTEneg, MTEneg, and MTEpos association as a function of (a) the size 
of the association distance and (b) the length of the observation period

(i) (ii)
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3.2.1 | Leopards

Applying the proposed method to leopard data suggested that none 
of the dyads spent less time within close proximity of each other 
than would be expected by chance. This observation conflicts with 
the conclusions of studies suggesting that male leopards dynami‐
cally avoid one another (Hornocker, 1970; Jackson & Ahlborn, 1989; 
Stander, Haden, Kaqece, & Ghau, 1997) to reduce the likelihood of 
violent or fatal conflicts (Bailey, 1993; Brown, 1982). These data 
demonstrate that not only do leopards not actively avoid one an‐
other, there is little pressure for them to do so as they are highly 
unlikely to encounter one another by chance.

As expected, two of the six male‐female dyads (F1M2 and F2M3) 
were significantly more often in close proximity (F1M2: 0–160 m 
and F2M3: 0–80 m, 160–640 m) than expected by chance. This is 
most likely due to courtship and mating (Bailey, 1993).

More surprisingly, two of the five male‐male dyads (M2M3 and 
M3M6) were highly significantly more often in close proximity of 
each other (both M2M3 and M3M6 in the 0–80 m interval). The in‐
dividuals in both of these dyads are of similar size and weight and 
are in their prime (it can not be ruled out that they are related). M2 
and M3 are also the only males shown to be significantly more often 
in close proximity of the two females. Unfortunately, M6 was only 
collared simultaneously with M3, so associations between M6 and 
the females, or M6 and M2 could not be tested.

For each dyad, the p‐values per distance were plotted and the 
four plots belonging to F1M2, F2M3, M2M3 and M3M6 are shown 
in Figure 6.

3.2.2 | African wild dogs

Using the proposed method on data collected on African wild dog 
packs suggested that none of the dyads showed any significant 

distance patterns, neither being less often, nor more often in close 
proximity to each other over the intervals considered. Three of the 
p‐value graphs, as described in Section 3.2.1, are shown in Figure 7.

4  | DISCUSSION

As Doncaster mentions in Doncaster (1990), “A positive component 
is likely to arise particularly when the two animals have separate 
resting sites at which they regularly begin and end their cycles of ac‐
tivity.” The implication of Doncaster's statement is that colocation, 
when associated with a geographic point, is of a different nature to 
colocation in featureless areas because one is intrinsically more likely 
than the other. The technique we propose here directly discounts 
chance interactions of this form. Assume that two individuals meet 
regularly at a waterhole each morning. Since we do not disrupt the 
diurnal cycle in permuting days, those individuals will meet regularly 
at that waterhole in the permuted time series as well. Consequently, 
to establish that a statistically significant interaction occurred in the 
observed data, the number of occurrences of observed colocation 
would need to be very high; much higher than might be accounted 
for by the number that occur by chance alone. Conversely, in areas in 
which few meetings occur by chance, a smaller number of meetings 
will be considered significant.

Doncaster's comments do, however, point toward a need for 
care in the application of our test. If the waterhole is available only 
for part of the year, and permutations occur across the entire year, 
then the interactions could appear to be significant. Consequently, it 
is important to ensure that permutations occur only between days/
weeks that are equivalent. For example, permuting days that have 
very different seasonal features may well lead to spurious results.

Such seasonal features could include seasons of drought, where 
for example a waterhole that both individuals generally use does not 
exist. Seasons of very high rain fall could also change the behavioral 
pattern, for example by forcing one or both of the individuals to find 
a different resting site. Such examples illustrate when care should 
be taken.

To investigate such dependencies in our case, the locations of 
the dyads that were significantly more often colocated were plotted 
(see Supporting Information Figure S1 for an example of the plots 
relating to the leopard data). None of the location plots showed any 
particular geographic location as being the source of the significant 
proximities.

To examine possible seasonal effects, the distances between 
each dyad were plotted over time (see Supporting Information 
Figures S2 and S3 for the leopard and African wild dog data respec‐
tively). From these graphs, it can be seen that there is no particular 
seasonal clustering of the small number of observed colocations.

When there are observation periods in which the location of 
the two observed individuals is not known in enough detail (when 
at least one of the two individuals’ locations is recorded less than 
every 6 hr), that period is excluded from the analysis. This is shown 
in the time series plots, Supporting Information Figures S2 and S3, 

F I G U R E  5   Proportion of simulations correctly classified as 
having a LTEneg and MTEneg association as a function of the 
length of the observation period

pe
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F I G U R E  6   Representative p‐value plots of leopard avoidance and association. If the red line with stars is below 0.004 (0.05/(2*6)—the 
black dashed line—hardly visible here, because it is so close to the x‐axis) it suggests that the individuals “avoid” being within that distance of 
each other. If the blue line with circles is below the black dashed line it suggests that the individuals are attracted to being in that distance of 
each other
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F I G U R E  7   Representative p‐value plots of African wild dog avoidance and association. If the red line with stars is below 0.006 (0.05/
(2*4)—the black dashed line) it suggests that the packs “avoid” being within that distance of each other. If the blue line with circles is below 
the black dashed line it suggests that the packs are attracted to being in that distance of each other
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by periods of missing data, such as that toward the beginning of plot 
M3M6 in Supporting Information Figure S2.

Since positions are interpolated when data points are missing or 
observations are taken at different times, this could result in missing 
an avoidance or association response. The two individuals may be 
traveling in a straight line, deviate in a hemisphere to avoid the cue 
of another individual, and then rejoin the original route. Depending 
on fix intervals, the method might not detect these interactions. 
However, if individuals are not located simultaneously, it is impossi‐
ble to know where exactly the individuals are.

Other confounding factors, such as two individuals following a 
third conspecific or heterospecific that has not been fitted with a 
GPS collar, cannot be ruled out as possible explanations for an ob‐
served relationship. But this is simply a restatement of the truism 
that correlation and causation are different and that causations can 
generally not be tested for without a randomized experiment, which 
is not possible in observational studies.

In general, our results support the finding of previous work 
on mutual avoidance/attraction between neighboring African 
wild dog packs (Mills & Gorman, 1997). As previous data were 
acquired by VHF tracking collars, it was limited to relatively few 
near‐simultaneous locations of neighboring packs acquired by 
physically tracking the animals (Mills & Gorman, 1997). Despite 
significant overlap between their ranges (ca. 35%; Reich, 1981), 
observed packs were seen to meet very rarely; until now it has 
not been possible to determine whether this occurred by active 
avoidance or simply as a consequence of natural movement. In 
our study, using larger volumes of data acquired remotely using 
GPS radiocollars, we found no evidence of active spatial avoid‐
ance or association between neighboring packs. As can be seen 
from the p‐value plots in Figure 7, our close proximity counts 
could have happened by chance alone at all measured distances. 
Spatial interactions (though not necessarily direct interactions) at 
our measured scales were no more or less likely to occur than 
would be expected by chance. In fact, our data suggest that on 
only eight occasions were dyads within 600 m of one another, a 
reasonable distance over which visual encounters seem to occur 
in this species (cf Jordan et al., 2017), suggesting that direct phys‐
ical encounters are rare.

Although it is not yet clear by what mechanism African wild 
dogs establish and maintain territories, there is strong evidence 
they do so based on chemical signaling using scent marks (Jackson, 
Weldon McNutt, & Apps, 2012; Jordan, Golabek, Apps, Gilfillan, 
& McNutt, 2013). It is possible that scent, which can be encoun‐
tered without being simultaneously colocated, holds sufficient in‐
formation to indicate the continued presence of a neighboring pack 
and so may reduce the frequency and cost/benefit ratio of direct 
encounters. It would therefore be of great interest to investigate 
the temporal association/avoidance in more detail, particularly de‐
layed association/avoidance (visiting areas in which another pack 
has recently been) of neighboring packs, and indeed to assess the 
responses of African wild dogs to direct and indirect (olfactory) 
inter‐pack encounters.

5  | CONCLUSIONS

The rate of growth in the availability of GPS data from free‐ranging 
animals has not been matched by progress in the development of 
mathematical techniques for analysing these data. When analysing 
the interaction between solitary animals, the quantification of as‐
sociation or avoidance between territorial conspecifics would ad‐
vance our understanding of animal ecology and, in the long term, the 
impact of changing environments. Existing forms of such tests are 
predicated on assumptions about the shape of the individuals’ ter‐
ritory and boundaries (Dunn, 1979; Macdonald et al., 1980), or the 
way the animals move around their territories (Fortin et al., 2005; 
Latombe et al., 2014; Potts et al., 2014; Vanak et al., 2013).

In this paper, a new method for detecting avoidance and asso‐
ciation is presented. Unlike previous work, the method makes no 
assumption about the shape or size of the territories, nor about the 
way that individuals move. It relies purely on the disassociation of 
the individuals’ movement through permutations. The main assump‐
tion of this method is that the division of the data into blocks (e.g., 
days, weeks, etc.) is performed appropriately. The division must 
preserve patterns in the spatio‐temporal behavior of the animals. 
For example, it makes no sense to break the day into twelve hour 
periods; in this case, a block containing an habitual 2 p.m. visit to a 
watering hole could be paired with a 2 a.m. sleep. Likewise, where 
there are seasonal variations in the data, for example, on some days 
the watering hole is dry, on others not, the effects of seasonality 
must be taken into account in the permutations.

An extensive series of simulations suggest that this method has a 
low rate of false positives, that is, it is unlikely to suggest an association 
if there is none. The false positive error rate ranges from 3% to 1%. As 
expected, the false negative results, that is, suggesting no association 
when there is one, is most affected by the strength of the association. 
This is strongest in the value of the association time, which defines 
how long the individuals stay within close proximity of each other.

Among other things, this new method permits the analysis of ter‐
ritorial behavior in animals. Both the presence and absence of posi‐
tive spatial association between individuals or groups are biologically 
interesting phenomena. In Section 3.2, the method was applied to 
data collected from GPS collars on individual leopards in which sig‐
nificant positive association was established between some male‐
male as well as male‐female leopard dyads, and to African wild dogs, 
in which there was no significant dynamic interaction detected be‐
tween the packs. For the leopards, two out of six male‐female dyads 
were more often within close proximity of each other than would 
be expected by chance. This is most likely related to courtship and 
mating, and conforms to biological expectations. Interestingly, we 
also showed that two out of five male‐male dyads were more often 
within close proximity of each other. This observation is in opposi‐
tion to conclusions from previous work (Hornocker, 1970; Stander 
et al., 1997), but could be due to mutual evaluation, family relation‐
ships, or a range of unknown factors. None of the African wild dog 
packs were more or less often within close proximity of each other 
than would be expected by chance. It is possible that, although the 
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movement patterns of individual packs bring neighbors into rela‐
tively close proximity, the risk and occurrence of direct encounters 
may be reduced by remote inter‐pack information exchange, proba‐
bly via fresh scent signals in these areas.

More generally, our method for avoidance and associations 
could be applied to epidemiological questions. If individuals are 
more often within close proximity of each other than expected by 
chance, the transmission rate of diseases would be higher than that 
estimated using random movement models. The method could also 
be extended to include a time lag to determine whether individ‐
uals are more often in an area recently occupied by another ani‐
mal than might be explained by chance. This could be important in 
cases of geo‐located time‐limited phenomena such as scent mark‐
ing or the transmission of parasites or infectious agents through the 
environment.
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