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Abstract: Traditional methods of quantifying epidemic spread are based on surveillance data. The
most widely used surveillance data are normally incidence data from case reports and hospital
records, which are normally susceptible to human error, and sometimes, they even can be seriously
error-prone and incomplete when collected during a destructive epidemic. In this manuscript, we
introduce a new method to study the spread of infectious disease. We gave an example of how to
use this method to predict the virus spreading using the HIV gene sequences data of China. First,
we applied Bayesian inference to gene sequences of two main subtypes of the HIV virus to infer the
effective reproduction number (GRe(t)) to trace the history of HIV transmission. Second, a dynamic
model was established to forecast the spread of HIV medication resistance in the future and also
obtain its effective reproduction number (MRe(t)). Through fitting the two effective reproduction
numbers obtained from the two separate ways above, some crucial parameters for the dynamic
model were obtained. Simply raising the treatment rate has no impact on lowering the infection
rate, according to the dynamics model research, but would instead increase the rate of medication
resistance. The negative relationship between the prevalence of HIV and the survivorship of infected
individuals following treatment may be to blame for this. Reducing the MSM population’s number
of sexual partners is a more efficient strategy to reduce transmission per the sensitivity analysis.

Keywords: HIV/AIDS; Bayesian phylogenetic method; effective reproductive number; primary drug
resistance; transmitted drug resistance; dynamic model

1. Introduction

AIDS (Acquired Immunodeficiency Syndrome) is a disease caused by HIV (Human
Immunodeficiency Virus) and has become a disease that seriously threatens human health
in the world today. In order to alleviate the AIDS epidemic in China, the Chinese gov-
ernment began to implement the “Four Frees and One Care” HIV/AIDS free treatment
policy in 2003 [1,2]. This policy has greatly improved the patient’s survival rate and the
patient’s life quality. On the other hand, the high mutation rate of HIV virus has led to the
generation of HIV-resistant strains [3]. The spread of drug-resistant strains causes a waste
of national medical resources.

We want to know the effect of the free treatment policies, especially the drug resistance
situation of HIV/AIDS by dynamic models. It is hard to avoid parameter acquisition when
performing prediction with dynamics models. Some parameters are general parameters,
which are common to both China and abroad. We can assign these values by searching
relative literature. Some might be greatly different due to different countries or different

Trop. Med. Infect. Dis. 2022, 7, 190. https://doi.org/10.3390/tropicalmed7080190 https://www.mdpi.com/journal/tropicalmed

https://doi.org/10.3390/tropicalmed7080190
https://doi.org/10.3390/tropicalmed7080190
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/tropicalmed
https://www.mdpi.com
https://orcid.org/0000-0002-8771-561X
https://orcid.org/0000-0001-5036-0248
https://doi.org/10.3390/tropicalmed7080190
https://www.mdpi.com/journal/tropicalmed
https://www.mdpi.com/article/10.3390/tropicalmed7080190?type=check_update&version=1


Trop. Med. Infect. Dis. 2022, 7, 190 2 of 22

treatment strategies, so they need be fitted by monitoring data. However, such areas
happen to lack monitoring data except for some gene sequences of HIV patients being
detected before treatment. In this manuscript, we will show how to combine the gene
sequences of HIV and the dynamic model to study the dynamics of HIV spreading.

HIV is an RNA virus. RNA viruses have a short reproduction time and a high mutation
rate, which can easily lead to a large number of genetic mutations during the transmission
process. Therefore, during the spread of HIV, relevant signals will be left in the sampled
virus sequence. In recent years, researchers have begun to conduct retrospective studies
on the spread of the HIV virus on the genetic level. Most of these studies are based on
genetic sequences to build molecular networks of transmission using Bayesian evolution
analysis [4–12]. For example, in 2008, Lewis et al. used the Bayesian framework to conduct
a phylogenetic analysis of 2126 HIV gene sequences in London, and they constructed a
network for HIV transmission, revealing that the local HIV/AIDS epidemic can be traced
back to the late 1990s [13]. In 2018, Zhao et al. constructed a molecular network of the
spread of MSM in Beijing based on the HIV gene sequence, and they proposed the need to
strengthen education and intervention for people with potential high risk. These findings
have important implications for the parameterization of epidemiological models and the
design of intervention strategies.

Traditional dynamic models can be used to predict the spread of virus in
populations [14–22], and the Bayesian evolution analysis of virus separated from the
infected people can trace the historical dynamics of virus transmission [13,23,24]. However,
the work connecting the gene sequences and the dynamic model has not yet been seen. This
manuscript will use Anhui province as an example, combine genetic sequence molecular
evolution analysis and system dynamics models to conduct an in-depth research on the
HIV/AIDS epidemic in the content of the HIV-free treatment policy in China, and thus
predict the drug resistance spreading in the next few years.

2. Research Methodology
2.1. Gene Sequence Analysis

To trace the history of transmission dynamics of HIV, we sampled totally 360 HIV-pol
gene sequences (CRF 01AE (150), CRF 07BC (190), CRF 08BC (9) and CRF 5501B (11)) from
360 HIV patients who were infected with HIV through sexual behavior in Anhui Province.
This data set is sampled between October 2017 and September 2018. Considering that the
proportions of the CRF 08BC and CRF 5501B are too small, we only analyzed the subtypes
CRF 01AE and CRF 07BC, comprising a total of 340 HIV virus gene sequences. We applied
Mega for sequence alignment. The total length of the pol gene that we studied was 1075 bp.

The selection of a nucleotide substitution model is an important step during the
phylogenetic analysis. Common nucleotide substitution models include the HKY (+Γ + I)
model, GTR (+Γ+ I) model, and so on [25]. These different substitution models determined
different evolutionary distances and different phylogenetic trees [26]. Here, we used
software Phylosuite to select the most suitable substitution model according to the Akaike
Information Criterion (AIC) [27], where AIC was defined as: AIC = 2k− 2ln(L), in which
k is the number of corresponding parameters and L is the likelihood value. Method-of-
moments was used to estimate the AIC method. The model with lower AIC value is
the more suitable model. After calculating the AIC score, the HKY+Γ+I model and the
uncorrelated exponential relaxed molecular clock are determined finally.

2.1.1. Bayesian Inference

The birth death skyline (BDSKY) model in BEAST2 is a random description of popula-
tion change, which allows the extraction of virus transmission dynamics information from a
phylogenetic tree [11]. This model is established on Bayesian inferences, which can estimate
the effective reproduction number of HIV/AIDS transmission from gene sequences. The
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Bayesian approach allows us to continuously update our estimate of a set of parameters, Θ,
as data become available.

P(Θ|data) =
P(data|Θ) · P(Θ)

P(data)
.

P(Θ), the prior distribution, represents our prior estimates about the true value of Θ.
P(data|Θ) is the likelihood distribution. It is also often written as L(Θ|data), which means
the probability of observing the data given Θ. For the method to work, it is necessary
to calculate the likelihood distribution for all possible values of Θ. P(data) is the model
evidence, and it is the same for all possible hypotheses (values of Θ) being considered.
P(Θ|data) is the posterior distribution and represents our updated estimate of the value of
Θ given the observed data.

The main objective of Bayesian inference is to calculate the posterior distribution of
our parameters using our prior beliefs updated with our likelihood. From the posterior
distribution, we can determine the most likely values of Θ given the observed data. Since
we are usually only interested in relative probabilities of different hypotheses, P(data) can
be left out of the calculation, and we write the model form of Bayes’ theorem as

P(Θ|data) ∝ P(data|Θ) · P(Θ)

where ∝ means “proportional to”.

2.1.2. The Effective Reproduction Number GRe(t) Infered from Gene Sequences

Since we will study two different subscript gene sequences, we use j = 07BC for
the subtype CRF 07BC and j = 01AE for the subtype CRF 01AE. We will deduce the
propagation dynamics of the two subtypes separately. For each subtype j, the BDSKY
process can conclude three parameters: transmission rate λj, removal rate γj and sampling
probability ψj. This process allows individuals to “birth” (λj) or “death” (γj and ψj) at
any point in time. A “birth event” corresponds to an individual’s infection, and a “death
event” corresponds to an infected individual becoming non-infected (i.e., removed from
the infected compartment because of individual death, successful treatment, or individual
behavior change). Then, the effective reproduction numberRe(t) derived from the gene
sequences can be defined as [11]

j
GRe(t) = λj(t)/(µj(t) + ψj(t)),

in which the left-hand subscript G denotes that the effective reproduction number is derived
from the gene sequences. For estimating j

GRe(t) of subtype j = 07BC or 01AE, the Bayes’
theorem that we use is

P(j
GRe(t)|gene sequences) ∝ P(gene sequences|jGRe(t)) · P(j

GRe(t)). (1)

In order to catch the characteristics of transmission in different historical stages, we
divided the period from the origin of each subtype HIV sequences to the sampling time
of the last sample into a total of six segments. Then, from each subtype gene sequence of
j= 07BC and 01AE, we can infer the effective reproduction number j

GRe(t) during each

segment t, t = 1, 2, . . . , 6 through Equation (1). Hence, j
GRe(t) is a piece wise function for

each of the two subtypes, which is a constant during the same time segment t. It refers to
the average number of new infections caused by an infected person at a certain time point t
during the outbreak. We use the Markov Chain Monte Carlo (MCMC) method to achieve
Bayesian phylogeny inference.
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2.2. Transmission Dynamics Model
2.2.1. A Nested Model and Its Four Submodels

To predict the prevalence of HIV drug-resistant strains, we considered the transmis-
sion dynamics of HIV/AIDS through sexual route, including gay, straight and bisexual.
The whole population was divided into four subgroups: heterosexual women who only
have sex with men (marked as w), heterosexual men who only have sex with women
(marked with mw), homosexual men who only have sex with men (marked with mm), and
bisexual men who have sex with both women and men (marked as b). The population was
divided into susceptible people S, infected people I (infected but not receiving treatment),
treated people T, and drug-resistant people R according to the infection. Considering that
the HIV infection process has obvious stage characteristics, according to the level of CD4
cells in the patient’s body, we divide the infected people into three stages: the first infection
stage I1 (CD4 count ≥ 500 cells/mm3); the second infection stage I2 (200 cells/mm3 <
CD4 counts < 500 cells/mm3); and the third stage of infection I3 (AIDS stage, CD4 count
≤ 200 cells/mm3). Similarly, Ti and Ri, i = 1, 2, 3 can be explained. The details of the
model can be found in Figure 1. When the superscript g in the transmission process dia-
gram Figure 1 is taken as w, mw, mm and b, it represents the four types of subgroups. See
Appendix A.1 for the corresponding dynamic model.
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Figure 1. Transmission process diagram. The superscript g can be w, mw, mm and b, respectively,
which represents the four types of subgroup populations. Parameter a is an input of susceptible
individuals; θi, i = 1, 2, 3 are the disease progression rates in infection stage 1, 2 and 3, respectively;
δi, i = 1, 2, 3 are the treatment rates of patients in stage 1, 2 and 3, respectively; η is the percentage
of patients who give up HAART; γ is rate of drug resistance after HAART; ρ is the percentage of
patients who are no longer resistant.

The standard treatment of HIV/AIDS in China has gone through four periods: the
period before 2002 featured no treatment; the period from 2003 to 2011 was when the
treatment was started when the CD4 count was less than 200 cells/mm3; the period from
2012 to 2015 was when the treatment was started when the CD4 count was less than
500 cells/mm3 and the period after 2015 was when the treatment was started soon after
discovery. We call these periods I (1992–2002), II (2003–2011), III (2012–2015) and IV
(2016–now), respectively.

Due to different prevention and control policies being held in different historical
stages, the dynamics of HIV transmission have different stage characteristics. So, our model
(Figure 1) in fact is a nested model. For the four different historical treatment periods I,
II, III and IV, we can simplify the model to be four submodels by letting some parame-
ters be zero based on its history characters; see Table 1 for the four different submodels.
According to the “next-generation operator” method in the literature [28], we can obtain
the basic reproduction number k

MR0 for each submodel of corresponding historical period
k = I, II, III and IV (see Appendix A.2). Here, the left-hand subscript M means that the
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basic reproduction number k
MR0 was obtained from k = I, II, III or IV, one of the four

models respectively.

Table 1. Submodels of different historical periods and corresponding assumptions.

Submodel Assumptions Historical Period

I δi = 0 and Tg
i = 0, Rg

i = 0, i = 1, 2, 3, g = w, mw, mm, b 1992–2002
II δi = 0 and Tg

i = 0, i = 1, 2, g = w, mw, mm, b 2003–2011
III δ1 = 0 and Tg

1 = 0, g = w, mw, mm, b 2012–2015
IV The full model 2016–now

2.2.2. The Effective Reproduction Number MRe(t) Inferred from the Dynamic Submodels

For a general dynamic model of an infectious disease, the basic reproduction number
R0 is the expected number of infections directly generated by one case given that all
individuals are equally susceptible. As the infection spreads, the susceptibility of the
population decreases. The effective reproduction number, Re(t), is related to the basic
reproduction number R0, by Re(t) = R0 · S(t)/N(t), where S(t)/N(t) is the average
susceptibility of the population. Re(t) is often used as an indicator of the effectiveness of
interventions, such as social distancing measures, to contain the spread of a virus. IfRe(t)
is greater than 1.0, the infection is growing at an exponential rate. If Re(t) is at 1.0, the
spread is sustained at a linear rate. IfRe(t) is less than 1.0, the infection is spreading at a
slower pace and will eventually die out.

Specific to our study on HIV/AIDs spreading during four different historical periods
k = I (1992–2002), II (2003–2011), III (2012–2015), and IV (2016–now), let us make

k
MRe(t) =k

M R0
Sk(t)
Nk(t)

(2)

where the basic reproduction number k
MR0 was obtained from Section 2.2.1 and Sk(t) and

Nk(t) represent the susceptible population and the total target population of each historical
period k = I, II, III and IV, respectively [29].

3. Results
3.1. Tracing Back the Dynamic History of HIV/AIDS through Bayesian Inference

The MCMC converged after 20 million iterations for both subtypes. We discarded the
first 2 million iterations. The phylogenetic tree and model parameters were sampled every
1000 iterations. All parameter estimates showed the effective sample size (ESS) of more
than 200. Some results are shown in Table 2.

Table 2. Epidemiological parameter estimations and their 95% HPD of subtype CRF 01AE and CRF 07BC.

Subtype
MRCA The Effective Reproduction Number j = 01AE, 07BC

Median j
GRe(1) j

GRe(2) j
GRe(3) j

GRe(4) j
GRe(5) j

GRe(6)

CFR01AE 95% HPD lower
1982 1.64 1.47 1.42 1.37 1.23 2.17
1973 1.08 0.97 0.94 0.91 0.83 1.61

95% HPD upper 1990 2.30 2.08 2.00 1.94 1.72 2.87

CFR07BC 95% HPD lower
1992 1.58 1.52 1.51 1.50 1.40 2.21
1976 1.15 1.11 1.10 1.10 1.03 1.72

95% HPD upper 1998 2.10 2.00 1.98 1.97 1.81 2.75
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For each data set and substitution model, we analyze them with an uncorrelated
exponential relaxed molecular clock and a strict clock model. In the study of virus evolution,
we used nucleotide substitution models including the HKY (+Γ + I) model and GTR
(+Γ + I) model [25]. The most appropriate combination was selected according to the
Akaike Information Criterion (AIC) [27], where AIC was defined as AIC = 2k− 2ln(L), in
which k is the number of corresponding parameters and L is the likelihood value. Method-
of-moments was used to estimate the AIC method. Finally, the uncorrelated exponential
relaxed molecular clock and HKY+Γ+I model is determined by calculating the AIC value.
The important epidemiological parameter estimation and their 95% HPD of subtype CRF
01AE and CRF 07BC are shown in Table 2.

The results in Table 2 show that the most recent common ancestor (MRCA) to the 150
CRF 01AE subtype gene sequences was around 1982, and the 95% highest posterior density
(HPD) is between 1973 and 1990. Correspondingly, the MRCA to these 190 CRF 07BC
subtype gene sequences was relatively late, around 1992 (95% HPD: 1976-1998). Most im-
portantly, we obtained the effective reproduction number j

GRe(t) over time segment t from
the two subtypes, respectively, in which t = 1, 2, . . . , 6 represents the time segment. The
effective reproduction number j

GRe(t) of the two subtypes showed some similar trans-
mission characteristics in terms of time: both of them were in a relatively stable state in
the early stage, kept around 1.6 with slight fluctuations, and showed a slight downward
trend from 2008 to 2012. However, things changed a lot around 2012: for some reason, the
effective reproduction number increased rapidly and then remained at about 2.2.

When we study the history of HIV transmission dynamics in the entire population
through the two effective reproduction numbers j

GRe(t), j = 01AE, 07BC(t), j = 1, 2, we
will have to integrate them together. The two effective reproduction numbers originated
at different times but ended at the same time. We took the common historical stage of
them. So, the research period was from 1992 to 2018. During this common historical period,
we denote the average of the effective reproduction number for the entire population as
GRe(t), which changes along with time t.

In order to figure out the formula for GRe(t), we used the proportion of the number
of sequences of each subtype in the total gene sequence as its weight in the effective
reproduction number, since subtypes widely disseminated in the population should have
more contribution for GRe(t). Let Mj be the sequence number of gene subtype j (j = 01AE,
07BC). Then, the weighted average effective reproduction number of the entire population
at time t can be described by Formula (3).

GRe(t) =
∑

j

j
GRe(t)Mj

∑
j

Mj
, (j = 01AE, 07BC; t = 1992, 1993, . . . , 2018) (3)

Use R software to visualize GRe(t); then, the result can be found in Figure 2. Figure 2
shows the median line of GRe(t) and its 95% HPD interval from 1992 to 2018. Before 2011,
we can see that the epidemic showed a relatively stable transmission trend through sexual
route. The value of GRe(t) remained stable and slightly decreased, with a median value of
about 1.33 (95% HPD: 0.94–1.8). However, from 2011 to 2014, GRe(t) rose rapidly to 2.13
(95% HPD: 1.32–2.83) for some reason. After 2015, GRe(t) remained stable, with its median
value maintained at approximately 2.20 (95% HPD: 1.67–2.85). Some explanations will be
given later on the possibility of GRe(t) rising in this period.
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Figure 2. The weighted average of the effective reproduction number GRe(t) and its 95% HPD interval.

3.2. Dynamic Model Analysis: Parameter Estimations and Predicting the Transmission
of HIV/AIDS
3.2.1. Parameter Estimations

As we all know, an important step in the prediction of infectious disease spreading is
to obtain (or estimate from data) parameters values. For most of the general parameters
we treated them as constants from references. Details of the values and references can be
found in Appendix A.4. However, there are still some epidemiological related parameters
that we are not sure of and need to be estimated from data.

Unlike novel coronavirus patients, HIV-infected people do not have obvious infection
symptoms. Many HIV infected people do not know that they have been infected for a
long time. This prevents the government from obtaining information about people living
with HIV as early as possible. Moreover, the Chinese government’s screening efforts for
HIV-infected people are far less than those for infected novel coronavirus. As a result,
recorded HIV infection data, if available, may not be very accurate and may not be suitable
for parameter fitting. In Anhui province, which we studied, there is not much surveillance
data on HIV/AIDS that can be used. One form of reliable data available are 340 genetic
sequences of HIV-infected people taken before treatment.

In the previous subsections, we have extrapolated the dynamics of HIV transmission
(GRe(t)) from 1992 to 2018 using the 340 genetic sequences. In order to use these gene data
to estimate unknown parameters of the model (Figure 1, which consists of four different
submodels I (1992–2002), II (2003–2011), III (2012–2015) and IV (2016–now), depending
on the historical period from 2003–now), we calculated the effective reproduction number
k
MRe(t) for each submodel k = I, II, III and IV by Equation (2). Obviously, k

MRe(t) is
functions of parameters and time t. Since the two effect reproduction numbers obtained
through different methods should be the same at the same time t, i.e., MRe(t) =G Re(t) , we
fit them at the same historical period. In this way, we explored the humanistic and statistical
features in different historical stages. We used MCMC to realize this. The algorithm ran for
2.00 million iterations, and we adapted the proposal distribution after 2 million iterations
using Geweke’s method [30] to assess convergence. The fitted curves of the two effective
reproduction numbers for four historical periods I, II, III and IV are shown in Figure A1 in
Appendix A.4. The fitted parameters obtained from the above four periods are shown in
Table 3. The value of these parameters will be referred to as baseline parameter values in
the following research.
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Table 3. Model parameters and the 95% HPD fitted by the two effective reproduction numbers.

Parameters Description Value Fitted from Submodel

aw input of heterosexual women 343780 IV
amw input of heterosexual men 358200 IV
amm input of homosexual men 4974 (2936, 7012) IV
ab input of bisexual men 4646 (2662, 6630) IV
cw the average number of sexual partners per year for heterosexual women 1.9957 (0.846, 3.1454) IV

cmw the average number of sexual partners per year for heterosexual men 2.0946 (0.8514, 3.1742) IV
cmm the average number of sexual partners per year for homosexual men 5.4984 (2.0701, 7.8565) IV
cb the average number of sexual partners per year for bisexual men 5.5765 (2.1816, 8.3334) IV
ε transmissibility ratio of drug-resistant to untreated wild strain carriers 0.43983 II

1/θT
1 course of the disease after treatment in stage 1 7.4030 (6.8823, 8.0000 ) IV

1/θT
2 course of the disease after treatment in stage 2 10.8948 (10.0000, 12.5000) III

1/θT
3 course of the disease after treatment in stage 3 4.1969(3.3333, 4.7619 ) II

δ1 treatment rate of stage 1 0.50188 (0.2155, 0.7883) IV
δ2 treatment rate of stage 2 0.75282 (0.6086, 0.8971) IV
δ3 treatment rate of stage 3 0.74938 (0.6057, 0.8930) IV
v the percentage of male partners of bisexual men 0.62567 (0.4549, 0.7965) IV

3.2.2. HIV/AIDS Epidemic Trend under Baseline Parameters

We first studied the dynamic process of the total number of infected people and
the proportion carrying drug-resistant strains over time from 2015 to 2025 in the entire
population of Anhui province under baseline parameters (Figure 3). The results show that
the total number of HIV/AIDS infections during this period appears to be an upward trend,
and the total number of surviving infections will increase to 33,260 by 2025 (95% confidence
interval (CI): 28,096–40,090, Figure 3a). The number of new infections is also increasing
and will reach 4522 (95% CI: 3366–6130) by 2025. According to the Anhui Provincial Health
and Family Planning Commission, from 2017 to 2019, the cumulative reports of HIV/AIDS
surviving patients whose current address is Anhui province are 18619 [31], 17183 [32]
and 19604 [33], respectively. They are indicated by red dots in Figure 3a. Considering
that the detection rate of HIV infections in Anhui province has not reached 100%, the
number of reported cases should be less than the actual number of HIV infections. Based
on the reported HIV-positive people and the HIV testing rate [31] in the corresponding
year, we have reason to say that our predicted results are basically consistent with the
actual situation.

(a) (b)

Figure 3. The number of HIV-positive people in the entire population (a) and drug resistance rate (b),
where the continuous curve is the median line. Red dots in (a) are reported cases of 2017, 2018 and
2019 respectively.

The target population of our study is the general population. We studied the propor-
tion of each population in the total new infections under baseline parameters from 2015 to
2025. The results showed that the proportion of heterosexual HIV-positive people decreased
from 30.28% in 2015 to 20.43% in 2025 (95%CI: 15.92–26.09%, of which female infected



Trop. Med. Infect. Dis. 2022, 7, 190 9 of 22

people accounted for 15.61%, while heterosexual males accounted for 4.82%). In contrast,
the proportion of HIV-positive MSM (homosexual and bisexual men) has steadily increased.
By 2025, 78.84% (95% CI: 68.97–88.70%) of new HIV infections will be infected through
homosexual sex behavior. Among them, homosexual HIV-positive people accounted for
53.87%, and bisexual HIV-positive people accounted for 24.97%.

Regarding the subpopulations, although the HIV infection rate among heterosexual
men has declined and tends to be stable, the rates in other populations have shown steady
upward trends. By 2025, the HIV-positive rate among heterosexual women will reach 0.25%
(95% CI: 0.21–0.28%), while the HIV-positive rate among heterosexual men will be lower,
only about half of the positive rate of women (0.12%, 95% CI: 0.10–0.13%). In contrast, men
who have sex with men belong to high-risk groups, and their HIV positive rate is dozens
of times that of heterosexual men: the HIV infection rate of bisexual men is 2.44% (95%
CI: 1.88–3.12%), while that of homosexual men is much higher, reaching 3.62% (95% CI:
2.81–4.64%) by 2025.

Considering that large-scale treatment for HIV-infected people in China has lasted for
quite a long time, we are concerned that drug-resistant strains (secondary drug resistance)
will appear in the patients due to poor medication compliance, which will lead to the wide
spread of drug-resistant strains (primary drug resistance) in the population. Unsurprisingly,
the proportion of HIV-positive people carrying drug-resistant strains in Anhui province
has shown a rapid upward trend (Figure 3b) and will basically reach the highest point
of 9.88% by 2025, which corresponds to 3282 (95% CI: 2862–3812) in terms of quantity.
The proportion of primary drug-resistant patients in the total newly infected population
will also increase over time. By 2025, the number of primary drug-resistant patients will
account for 9.63% of total patients carrying drug-resistant strains (95% CI: 6.56–14.2%). In
addition, the proportion of primary drug-resistant patients among total new infections first
showed an upward trend, then tended to be stable each year, and finally will increase to
7.01% (95% CI: 6.61–7.44%) by 2025.

3.2.3. Influence of Intervention Measures on HIV/AIDS Epidemic Trend

In order to implement the “Healthy China 2030” program and deepen the medical and
health system reformation, China’s “13th Five-Year Plan for Combating and Prevention of
AIDS” in 2017 set the “90–90–90” goal. That is, the proportion of infected persons detected
by testing should be above 90%; the proportion of diagnosed infected persons receiving
antiviral treatment should be above 90%; the treatment success rate of infected persons
receiving antiviral treatment should be above 90% [34] by 2020. In the baseline parameters,
the treatment rates of the three different infection stages were 50.19% (95% CI: 21.55%,
78.83%), 75.28% (95% CI: 60.86%, 89.71%) and 74.94% (95% CI: 60.57%, 89.30%). These
treatment rates are still far from the second "90%". Next, we consider what will happen if
the treatment rate increases to the target state in 2020.

The total HIV infection rate and drug resistance of Anhui province from 2020 to 2025
under the “90%” treatment rate are shown in Figure 4, which is a comparison chart between
the baseline and the target situation. The results show that the total infection rate still keeps
increasing (the green curve in Figure 4a) even under the “90%” treatment rate, which is
only slightly lower than the baseline parameters (the red curve in Figure 4a). Even more
surprising, the total drug resistance rate after intensified treatment will increase more
rapidly than the baseline situation, reaching 10.92% (95% CI: 10.69–11.12%) by 2025, which
is seen as the red curve in Figure 4b. In addition, the proportion of primary drug resistance
in new infections has also shown an increasing trend compared with baseline parameters.

In short, when we increase the treatment rate to 90%, the total infection rate can
be reduced only by 0.017% by 2025, but in turn, the total drug resistance rate and the
proportion of primary drug resistance in new infections will increase 1.06% and 1.12%,
respectively. What prevents ART treatment from playing an effective role in the epidemic?
Is the current drug treatment effect not good enough? If the new first-line drugs can improve
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the treatment effect (including reducing the infectivity and prolonging the lifespan), how
much will the epidemic be improved?

To answer these questions, we assume the following two situations: (a) the new drug
can only prolong the lifespan after treatment by 20% (it can survive for 24 years after
extension); (b) the new drug can not only prolong the life after treatment by 20% but also
reduce the infection rate by 20%. The results are shown in Figure 5. We were surprised
to find that assumption (a) will make the epidemic worse instead (Figure 5a, green line).
This may be because patients will have more risky sexual behaviors due to longer lifespan.
However, assumption (b) will slow down the trend (Figure 5a, red line). In terms of drug
resistance, the drug resistance rate will decrease slightly under assumption (a) (Figure 5b,
green line) and increase under assumption (b) (Figure 5b, red line). The main reason
may be that treatment only suppresses the non-resistant strains, which may instead give
drug-resistant strains more space for transmission. This result suggests that prolonging the
lifespan of the patients is a double-edged sword. When developing new drugs, we should
not only consider how to prolong the life span of patients but also consider how to reduce
the infectivity. This conclusion will continue to be discussed in the sensitivity analysis.

(a) (b)

Figure 4. Impact of target treatment rates on the HIV/AIDS epidemic: the infected rate (a) and the
rate of drug resistance (b). The green box plots are based on the baseline parameters, while the
red ones are based on target treatment rate. The continuous green and red curves are their median
lines respectively.

3.2.4. Sensitivity Analysis

In previous studies, we unexpectedly found that merely increasing the treatment rate
to the target rate (90% treatment rate) could not lead to a significant improvement in HIV
epidemic (Figure 5a). In order to find the reason, we did some sensitivity analysis. We find
that only when shortening each infectious stage’s life span to less than 25% of its baseline
values can the epidemic be controlled. Details can be found in Appendix A.5. In the
process of new drug development, if we cannot effectively reduce the infection rate while
continuing to pursue prolonging the life-span of patients after treatment, the epidemic will
keep rising as a consequence. We speculate that this may be one of the reasons that the
effective reproduction Rg

e has been increasing since 2012 (Figure 2). In other words, it is
difficult to control the epidemic only by developing new drugs in a short period. So, what
are the key factors to control the HIV/AIDS epidemic?

To answer this question, we conducted a sensitivity analysis on the number of sexual
partners in different populations. An interesting fact is that changing the number of
heterosexual people’s sexual partners has little impact on the epidemic, and it almost can
be negligible while comparing with the two subpopulations of homosexual sexual behavior
who contributed a significant effect to the epidemic. As long as the number of bisexual
men’s annual sex partners is controlled below 6, and meanwhile, the number of homosexual
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men’s annual sex partners is controlled below 4, the epidemic can be controlled. Details
can be found in Appendix A.6.

(a) (b)

Figure 5. Impacts of improving the treatment effect on the infected rate (a) and the rate of drug
resistance (b). The blue box plots are based on the baseline parameters, the green ones are based
on increase lifespan, and red ones are based on both increase lifespan and reduce infectivity. The
continuous blue, green and red curves are their median lines respectively.

4. Discussion and Conclusions

Generally speaking, predictive models for infectious diseases generally cannot avoid
the problem of parameter estimation. After all, not all parameter values are easy to obtain.
Even if some foreign literature mentions the value range of certain parameters, there may
still exist differences due to different races. To some degree, parameter values determine the
credibility of predictions. Facing the complex history of HIV treatment in China, different
historical stages may have different values even for the same parameter. We innovatively
carried out data mining on virus gene sequence detected from the infected people, so as
to fit some parameter values which are difficult to obtain by social surveys or laboratory
tests, making our prediction results more reliable. However, other non-Bayesian research
methods are also good choices for the mathematical modeling of infectious diseases with a
large number of reported data [35].

The idea of combining gene sequences with dynamic models came from the absence
of monitoring data when doing model fitting. Unlike novel coronavirus patients, HIV-
infected people do not have obvious infection symptoms. Many HIV-infected people do
not know that they have been infected for a long time. This prevents the government from
obtaining information about people living with HIV as early as possible. Moreover, the
Chinese government’s screening efforts for HIV-infected people are far less than those
for individuals infected with novel coronavirus. As a result, recorded HIV infection data,
if available, may not be very accurate and may not be suitable for parameter fitting. In
Anhui province, which we studied, there is not much surveillance data on HIV/AIDS
that can be used. The only reliable data available for use are 340 genetic sequences of
HIV-infected people taken before treatment. HIV is an RNA virus. This gives it the ability
to mutate faster, and these mutations show up in the entire genetic sequence of the virus
from generation to generation. In other words, the evolutionary history of HIV is hidden
in its genetic sequences. Since both gene sequences and dynamic models can describe the
transmission dynamics of viruses, it should be possible to combine them for the purpose of
learning from each other. This is our motivation to finish this manuscript.

What is more, most dynamic models generally only consider heterosexuality and
homosexuality when classifying the target population, and they will not further subdivide
homosexual people. Our study divided the MSM population into homosexual men and
bisexual men to analyze the importance of bisexual men in the spread of HIV/AIDS.
These bisexual men may be biological and psychological bisexuals; also, it may be that
homosexuals are forced to marry women under the pressure of public opinion to cover
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up their particular sexual orientation. We generally think that such people are a bridge
that links HIV/AIDS from high-risk groups to the general population. Thus, cutting off
this bridge will slow down the HIV epidemic. However, the result of our model shows an
opposite result: if bisexual men with the unchanged number of sexual partners disconnect
from men, the epidemic will slow down a lot; otherwise, it will lead to an increase in the
epidemic. For more details, please read Appendix A.7.

In “China’s 13th Five-Year Plan for Containment and Prevention of AIDS”, China ad-
vocates that HIV/AIDS prevention and treatment should achieve three 90%: the proportion
of infected people and patients who have been diagnosed and know about their infection
status should reach 90% or more; the proportion of infected people and patients who meet
the treatment conditions receiving antiviral treatment should be more than 90%; the success
treatment rate of infected people and patients receiving antiviral treatment should be more
than 90%. These three 90% involve screening, treatment and drug development. According
to our findings, if no more effective drugs are available, simply increasing the treatment
rate will cause a slight decrease in the number of new infections and the number of people
with primary drug resistance. Moreover, the epidemic is still on the rise; that is to say, the
increase of treatment rate cannot effectively control the epidemic, and the prevention and
control effect is not ideal. A similar phenomenon was also found in the study [36] by Lou
Jie et al. A plausible explanation is that after treatment, the life expectancy of HIV-infected
patients is extended, but the current drug’s effect is not so good at reducing the infection
rate, thus creating a greater possibility of transmission instead. In the meantime, free treat-
ments of HIV have not yet covered the entire course of patients, so once drug resistance
develops, the treatment led to failure.

Therefore, after the implementation of the “90–90–90” strategic measures, continuous
improvements of the treatment rate did not bring the HIV epidemic under control but
inversely caused more drug resistance. The Chinese government needs to intervene in
various aspects of different groups of people in combination with other perspectives in
order to curb the current domestic AIDS epidemic. The sensitivity analysis on the two
critical parameters, infection rate after treatment and progress rate of disease, indicates
neither one is the most critical factor to impact the epidemic. It would be easier to control
the epidemic by reducing the number of sexual partners of the two subpopulations in
the MSM group through publicity and other means. In addition, it is worth mentioning
that considering the absolute leading role of homosexual people in the epidemic at the
present stage, we should tilt most of the resources to this group so that we can benefit from
spending money wisely.

In short, gene sequences can tell us the history of HIV/AIDS spreading and the
dynamic model can tell us its future. Combining the two together is an innovative approach,
especially for epidemics where reliable surveillance data are lacking. In addition, we
believe that this new method is not only suitable for HIV but also for other RNA viruses,
such as novel coronavirus. Of course, our method is not perfect, since the influencing
factors considered by the Bayesian model are relatively simple. However, at the very
least, genetic sequence data can be used as a supplement to macro surveillance data for
epidemic prediction.
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Appendix A

Appendix A.1. The Dynamic model

Ṡg = ag − µSg −Ωg(t)−Λg(t)

İg
1 = Ωg(t)− (θ I

1 + δ1 + µ)Ig
1 + ηTg

1 + ρRg
1

İg
2 = θ I

1 Ig
1 − (θ I

2 + δ2 + µ)Ig
2 + ηTg

2 + ρRg
2

İg
3 = θ I

2 Ig
2 − (θ I

3 + δ3 + µ)Ig
3 + ηTg

3 + ρRg
3

Ṫg
1 = δ1 Ig
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1 = Λg(t) + γTg

1 − (θR
1 + ρ + µ)Rg
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2 − (θR
2 + ρ + µ)Rg

2

Ṙg
3 = θR

2 Rg
2 + γTg

3 − (θR
3 + ρ + µ)Rg

3

(A1)

where Ωg(t) and Λg(t)(g = w, mw, mm, b) denote the number of newly infected people
at the time of t at subgroup g infected with wild HIV strains and resistant HIV strains,
respectively.
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and
Nw = Sw + Iw
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(A3)

Appendix A.2. The Basic Reproduction Number Rd
0

Here, we only show how to calculate the most complex basic reproduction number in
the IV period, Rd

0(IV). The Rd
0 of the other stages (I, I I, I I I) can be simplified from Rd

0(IV).
We use the “regeneration matrix” method to find the basic reproduction number

Rd
0(IV) of the model (A1); the process is as follows:

Step 1:

Construct matrices f0 and v0, where f0 is a column vector of n× 1, representing a new
infection in each infection state, and v0 is a column vector of n× 1, representing that each
infected state has been transported (not newly infected), where n is the number of infected
states.

f g
0 = (Ωg, 0, 0, 0, 0, 0, Λg, 0, 0)′ (A4)

then

f0 =


f w
0

f mw
0
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0
f b
0

 (A5)
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(A6)

then

v0 =


vw

0
vmw

0
vmm

0
vb

0

 (A7)

Step 2:

Construct the matrix F and V, and calculate the value of the Jacobian matrix of f0 and
v0 at the disease-free equilibrium, respectively.

We can easily find the disease-free equilibrium of the model (A1) (disease-free equilib-
rium) E0 is

(
aw

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0,

amw

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0,

amm

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0,

ab

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0) (A8)

The matrix F, V is the Jacobian matrix of f , v. Now, the matrix F, V is represented by
a block matrix of 9× 9. So, we can obtain FE0 , VE0 as follows.
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FE0 =


0 F12 0 F14

F21 0 0 0
F31 0 F33 F34
F41 0 F43 F44



V0 =



−δ1−µ−θ I
1 0 0 η 0 0 ρ 0 0

θ I
1 −δ2−µ−θ I

2 0 0 η 0 0 ρ 0
0 θ I

2 −δ3−µ−θ I
3 0 0 η 0 0 ρ

δ1 0 0 −η−γ−µ−θT
1 0 0 0 0 0

0 δ2 0 θT
1 −η−γ−µ−θT

2 0 0 0 0
0 0 δ3 0 θT

2 −η−γ−µ−θT
3 0 0 0

0 0 0 γ 0 0 −µ−ρ−θR
1 0 0

0 0 0 0 γ 0 θR
1 −µ−ρ−θR

2 0
0 0 0 0 0 γ 0 θR

2 −µ−ρ−θR
3



VE0 =


V0 0 0 0
0 V0 0 0
0 0 V0 0
0 0 0 V0


Step 3:

Obtain basic reproduction number MR0(IV) = ρ(FE0 V−1
E0

), where ρ represents the
maximum eigenvalue.

Appendix A.3. Initial Population

According to the statistical results of all groups of people in Anhui in 2015, the initial
value is shown in Table A1.

Table A1. The initial population in 2015.

Stage
Population Heterosexual Women Heterosexual Men Homosexual Men Bisexual Men

S Sw = 24,347,402 Smw = 24,682,596 Smm = 449,877 Sb = 330,210
I1 Iw

1 = 1200 Imw
1 = 1216 Imm

1 = 1857 Ib
1 = 1365

T1 Tw
1 = 0 Tmw

1 = 0 Tmm
1 = 0 Tb

1 = 0
R1 Rw

1 = 5 Rmw
1 = 5 Rmm

1 = 5 Rb
1 = 5

I2 Iw
2 = 335 Imw

2 = 340 Imm
2 = 527 Ib

2 = 389
T2 Tw

2 = 810 Tmw
2 = 820 Tmm

2 = 1240 Tb
2 = 925

R2 Rw
2 = 60 Rmw

2 = 61 Rmm
2 = 85 Rb

2 = 67
I3 Iw

3 = 335 Imw
3 = 340 Imm

3 = 527 Ib
3 = 389

T3 Tw
3 = 810 Tmw

3 = 820 Tmm
3 = 1240 Tb

3 = 925
R3 Rw

3 = 60 Rmw
3 = 61 Rmm

3 = 85 Rb
3 = 67

Appendix A.4. Fitted Parameters

Details of the values and references can be found in Tables A2–A4. The details of
other fitting parameters are shown in Table A5. The fitted curves of the two effective
reproduction numbers GRe(t) and MRe(t) for four historical periods I, II, III and IV are
shown in Figure A1.

Table A2. Infection rate: β.

Parameters Description Value (95%CI) Source

βI
1 infection rate of wild strain carriers in stage 1 0.0428 (0.0160, 0.6590) [15,37]

βI
2 infection rate of wild strain carriers in stage 2 0.0500 (0.0200, 0.0700) [37]

βI
3 infection rate of wild strain carriers in stage 3 0.1000 (0.0500, 0.1400) [37]

βT
1 infection rate of wild strain carriers after HAART in stage 1 0.0282 (0.0106, 0.4349) [14]

βT
2 infection rate of wild strain carriers after HAART in stage 2 0.0330 (0.0132, 0.0462) [14]

βT
3 infection rate of wild strain carriers after HAART in stage 3 0.0120 (0.0060, 0.0168) [14,38]

βR
1 infection rate of drug-resistant carriers in stage 1 εβI

1
βR

2 infection rate of drug-resistant carriers in stage 2 εβI
2

βR
3 infection rate of drug-resistant carriers in stage 3 εβI

3
ε transmissibility ratio of drug-resistant to untreated wild strain carriers fit
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Table A3. Disease progression rate: θ.

Parameters Description Value: Years Source

1/θ I
1 course of wild strain carriers in stage 1 4 [14]

1/θ I
2 course of wild strain carriers in stage 2 6 [14]

1/θ I
3 course of wild strain carriers in stage 3 2 [14]

1/θR
1 course of drug-resistant carriers in stage 1 4 [14,39,40]

1/θR
2 course of drug-resistant carriers in stage 2 6 [14,39,40]

1/θR
3 course of drug-resistant carriers in stage 3 2 [14,39,40]

Table A4. Other parameters.

Parameters Description Value Source

η the percentage of patients who give up HAART 0.0602 [41,42]
γ rate of drug resistance after HAART 0.0545 [42,43]
ρ the percentage of patients who are no longer resistant 0.2687 [42,44]
µ natural mortality rate 0.0131 [45]
k ratio of female to other and male to other transmission 0.5263 [36]

Table A5. Other fitted parameters.

Period Parameter Value/Function

I

aw 509832
amw(t) 542781-amm(t)-ab(t)
amm(t) 1432.6 × t + 10527
ab(t) 1607×t + 10431

cmm(t) −0.036928×t + 2.8484
cb(t) −0.040123×t + 3.1024

cw 1.5228
cmw 1.5659

v 0.70368

II

aw 613031
amw(t) 685421-amm(t)-ab(t)
amm(t) 1622.4×t + 12382
ab(t) 1398.7×t + 10591

cmm(t) −0.042873×t + 3.4122
cb(t) 0.092656×t + 3.4909

cw 1.4985
cmw 1.5066
v(t) −0.0098732 × t + 0.59836
δ3(t) 0.03733×t + 0.35124

III

aw 449161
amw(t) 493770-amm(t)-ab(t)
amm(t) 1455.8×t + 5545.3
ab(t) 2079.9×t + 5093.9

cmm(t) 1/(0.61892 + exp(−2.6515×t+ 3.1585)) + 3.5015
cb(t) 1/(0.54199 + exp(−2.7309×t+3.2935)) + 3.4814

cw 1.5362
cmw 1.5631
v(t) 0.07004×t + 0.51912
δ2(t) 1/(1.6826 + exp(−1.809×t + 0.53915))+ 0.2192
δ3(t) 1/(1.6585+ exp(−1.8287×t +0.55639))+0.19956
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Figure A1. Cont.
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Figure A1. The fitted curves of the two effective reproduction numbers GRe(t) and MRe(t) for four
historical periods I (a), II (b), III (c) and IV (d), respectively.

Appendix A.5. Sensitivity Analysis on Therapeutic Effect

There are two parameters related to the therapeutic effect: the post-treatment trans-
mission rate (βT) and the course of disease (1/θT). Next, we will discuss the effect of
changes in these parameters on the effective reproduction number MR0(IV). We keep other
parameters unchanged during this process. The sensitivity analysis results are shown in
Figure A2b.
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Figure A2. Sensitivity analysis of treatment rate (a), infection rate after treatment (solid line in (b))
and course of the disease after treatment (dotted line in (b)) to Rd

0(IV).

If only changing the infection rate after treatment at each infection stage, that is,
reducing or increasing βT , the result is shown by the solid line in the Figure A2b. The
abscissa is the multiple of the infection rate after the current baseline treatment (indicated
by p, that is, the infection rate βT becomes p ∗ βT after each stage of treatment), and the
ordinate is the corresponding MR0(IV) value. The result shows that under the condition
that other parameters remain unchanged, only when the infection rate of each infection
stage after treatment simultaneously reduces to about 10% of the baseline infection rate
after treatment βT can MR0(IV) drop below 1 (cyan solid line). Moreover, among the three
infection stages, the infection rate in the second stage is the most sensitive to MR0(IV)
(solid green line), while the infection rate after treatment in the third stage is the least
sensitive to MR0(IV) (solid red line). This is because the course of the second stage is the
longest among the three stages, and the patients in the third stage of infection have weaker
sexual ability.

If only changing the course of the disease after treatment at each infection stage (1/θT),
the result is shown as the dotted line in Figure A2b, where the abscissa is p, and it is the
value of a multiple of the course parameter value after current baseline treatment. We
are surprised to find that under the condition that other parameters remain unchanged,
MR0(IV) is positively correlated with the course of disease after treatment, that is, the
longer the course of disease after treatment, the higher the MR0(IV) will be. Moreover,
only when the course of the disease after each stage of treatment is reduced to less than 25%
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of its baseline parameter value at the same time can MR0(IV) drop below 1 (cyan dotted
line). The order of sensitivity to MR0(IV) in the course of the disease after treatment at
different infection stages is consistent with the sensitivity to drug infectivity.

Appendix A.6. Sensitivity Analysis on the Number of Sexual Partners

If other parameters remain unchanged, and only the number of annual sexual partners
of various groups of people is changed, the result is shown in Figure A3a, where the abscissa
is the multiple of the current parameter change, and the ordinate is the corresponding
MR0(IV) value. The greater the slope of the straight line, the greater the influence of this
parameter is on MR0(IV). The results show that the disease transmission can be effectively
controlled when the annual number of sexual partners in all populations is reduced to
0.4 times the current number of sexual partners (cyan line). The order of the influence of the
number of different groups annual sexual partners on MR0(IV) is: homosexual male (green
line)> bisexual male (red line)> heterosexual people (the blue line, see the illustration
on the Figure A3a). An interesting fact is that changing the number of heterosexual
people’s sexual partners has little impact on the spread of HIV/AIDS (blue line): almost
negligible. The two types of people with homosexual sexual behavior (green line and red
line) contributed a significant effect.

We further analyzed two types of MSM population and explored the impact of the
number of sexual partners of bisexual men (cb) and the number of heterosexual men (cmm)
on MR0(IV) (Figure A3b).
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Figure A3. Sensitivity analysis of sexual partners to the reproduction number. (a) Only the number
of annual sexual partners of various groups of people is changed and other parameters remain
unchanged. (b) The impact of the number of sexual partners of bisexual men and the number of
heterosexual men on the reproduction number.

Appendix A.7. Influence of Bisexual Men’s Sexual Preference on HIV/AIDS Prevalence

Traditionally, we believe that bisexual men play a bridge role in HIV transmission
because they are not only involved in the transmission between homosexual groups but
also in the transmission between heterosexual people. We would like to know what impact
bisexual men would have on the HIV epidemic if they become purely homosexual or
heterosexual. Figure A4a is the curve of the number of HIV-positive patients in the whole
population of Anhui province from 2020 to 2025 over time after changing the nature
of bisexual males. The results show that under the assumption that bisexual men are
the pure MSM population, the total number of HIV/AIDS infections in Anhui province
has shown a rapid upward trend, far exceeding the baseline status, and the number of
surviving infections will increase to 38,171 by 2025 (95% CI: 34,694–42,078, the red curve
in Figure A4a), and the number of new infections will also increase to 6333 accordingly.
However, the resistance rate is lower than the baseline status and will decrease to 9.41% by
2025 (95% CI: 8.83–9.88%, the red line in Figure A4b). On the contrary, if you disconnect
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from male sex and become purely heterosexual, the number of HIV infections will be
significantly lower than the baseline status by 2025, it will be as low as 26,957 by 2025
(95% CI: 25,890–28,633, Figure A4a green curve), and the number of new infections will
reduce to 2465. Meanwhile, its resistance rate will exceed the baseline status, increasing to
10.59% (95% CI: 10.14–10.93%) (the green curve in Figure A4b) in 2025.

(a) (b)

Figure A4. The impact of changing the sexual preferences of bisexual men on the on the number
of infected people (a) and the rate of drug resistance (b). The blue box plots are the situation of no
change, the green ones are the situation that disconnect from male sex, and the red ones are the
situation that disconnect from female sex. The continuous blue, green and red curves are their median
lines respectively.

Appendix A.8. Prevention and Control Strategy Optimization Analysis

For the current prevention and control measures, the spread of HIV in Anhui province
has not been well controlled. Three important measures are now considered to be strength-
ened, and the new infection rate and the rate of drug resistance in 2021–2025 are numerically
simulated (see the results in Tables A6 and A7).

The measures of reinforcement are to increase the treatment rate, reduce the with-
drawal rate, and reduce the number of sexual partners. The specific measures are as follows:

(1). The treatment rate is increased by 10%;
(2). The treatment rate is increased by 20%;
(3). The withdrawal rate is reduced by 10%;
(4). The withdrawal rate is reduced by 20%;
(5). The number of sexual partners is reduced by 10%;
(6). The number of sexual partners is reduced by 20%;
(7). (1)(3)(5) combination;
(8). (2)(4)(6) combination.

From Tables A6 and A7, it is not difficult to see that increasing prevention and control
efforts can reduce the population of new infections, and at the same time, it will also reduce
the primary drug resistance population. The greater the prevention and control efforts are,
the more the new infections and primary drug resistance population reduce. Among the
three measures, the best effect is to reduce the number of sexual partners. Combining the
three measures (cases 7, 8) compared with one measure is more effective in controlling both
new infections and primary drug resistance population. For the prevention and control of
HIV in Anhui, China, comprehensive measures can not only control new infections but
also reduce the population of primary drug resistance, thus being a wise choice.
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Table A6. New infection population under different measures.

Measures
Years 2021 2022 2023 2024 2025

Baseline parameter (95%CI) 3194 3499 3831 4207 4619
(2829, 3560) (3031, 3970) (3257, 4434) (3511, 4955) (3780, 5541)

(1) The treatment rate is increased by 10% (95%CI) 3150 3432 3752 4102 4497
(2787, 3510) (2981, 3884) (3193, 4325) (3424, 4820) (3670, 5378)

(2) The treatment rate is increased by 20% (95%CI) 3007 3258 3554 3875 4234
(2678, 3360) (2855, 3714) (3049, 4122) (3269, 4585) (3502, 5110)

(3) The withdrawal rate is reduced by 10% (95%CI) 3128 3416 3738 4094 4495
(2787, 3500) (2982, 3893) (3201, 4346) (3450, 4861) (3708, 5437)

(4) The withdrawal rate is reduced by 20% (95%CI) 3069 3336 3656 4002 4392
(2740, 3448) (2983, 3937) (3143, 4279) (3381, 4781) (3628, 5344)

(5) The number of sexual partners is reduced by 10% (95%CI) 2781 2991 3223 3474 3755
(2474, 3113) (2613, 3406) (2768, 3740) (2940, 4106) (3123, 4502)

(6) The number of sexual partners is reduced by 20% (95%CI) 2326 2456 2602 2757 2925
(2062, 2601) (2142, 2788) (2232, 2999) (2332, 3228) (2435, 3477)

(1)(3)(5) combination (95%CI) 2780 2927 3153 3401 3677
(2502, 3145) (2608, 3424) (2766, 2744) (2931, 4094) (3104, 4494)

(2)(4)(6) combination (95%CI) 2309 2416 2540 2680 2831
(2056, 2583) (2119, 2743) (2200, 2929) (2291, 3138) (2384, 3373)

Table A7. Primary drug resistance population under different measures.

Measures
Years 2021 2022 2023 2024 2025

Baseline parameter (95%CI) 209 235 262 292 323
(188, 230) (209, 261) (231, 294) (253, 331) (276, 371)

(1) The treatment rate is increased by 10% (95%CI) 208 234 261 291 321
(187, 229) (209, 260) (231, 295) (255, 333) (277, 374)

(2) The treatment rate is increased by 20% (95%CI) 201 228 257 287 318
(181, 222) (204, 255) (227, 189) (251, 327) (274, 368)

(3) The withdrawal rate is reduced by 10% (95%CI) 206 231 258 287 318
(185, 227) (207, 258) (229, 291) (251, 327) (274, 367)

(4) The withdrawal rate is reduced by 20% (95%CI) 202 228 254 283 313
(183, 224) (205, 255) (226, 288) (249, 325) (272, 365)

(5) The number of sexual partners is reduced by 10% (95%CI) 184 205 227 250 273
(168, 199) (183, 228) (201, 256) (218, 284) (236, 315)

(6) The number of sexual partners is reduced by 20% (95%CI) 155 172 188 205 221
(139, 172) (153, 192) (166, 212) (179, 232) (190, 254)

(1)(3)(5) combination (95%CI) 176 197 219 241 264
(157, 194) (175, 219) (192, 246) (209, 275) (226, 305)

(2)(4)(6) combination (95%CI) 154 170 184 201 219
(137, 174) (151, 190) (164, 210) (178, 234) (189, 250)
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