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Summary

Health depends on the diet and a vegetal diet pro-
motes health by providing fibres, vitamins and
diverse metabolites. Remarkably, plants may also
provide microbes. Fungi and bacteria that reside
inside plant tissues (endophytes) seem better pro-
tected to survive digestion; thus, we investigated the
reported evidence on the endophytic origin of some
members of the gut microbiota in animals such as
panda, koala, rabbits and tortoises and several her-
bivore insects. Data examined here showed that
some members of the herbivore gut microbiota are
common plant microbes, which derived to become
stable microbiota in some cases. Endophytes may
contribute to plant fibre or antimetabolite degrada-
tion and synthesis of metabolites with the plethora
of enzymatic activities that they display; some may
have practical applications, for example, Lactobacil-
lus plantarum found in the intestinal tract, plants and
in fermented food is used as a probiotic that may
defend animals against bacterial and viral infections
as other endophytic-enteric bacteria do. Clostridium
that is an endophyte and a gut bacterium has
remarkable capabilities to degrade cellulose by hav-
ing cellulosomes that may be considered the most
efficient nanomachines. Cellulose degradation is a

challenge in animal digestion and for biofuel produc-
tion. Other endophytic-enteric bacteria may have cel-
lulases, pectinases, xylanases, tannases, proteases,
nitrogenases and other enzymatic capabilities that
may be attractive for biotechnological developments,
indeed many endophytes are used to promote plant
growth. Here, a cycle of endophytic-enteric-soil-en-
dophytic microbes is proposed which has relevance
for health and comprises the fate of animal faeces
as natural microbial inoculants for plants that consti-
tute bacterial sources for animal guts.

Effects of vegetal diet and endophytes

Vegetal diet

Vegetables provide fibres, vitamins and metabolites that
promote health (Cardona et al, 2013; Klinder et al, 2016;
Makki et al, 2018), but their role as microbe providers is
less known, unless these microbes are pathogens.
When animals consume raw plants, they eat their asso-
ciated bacteria. Eating an apple may provide hundred
millions of bacteria (Wassermann et al, 2019), as does
eating bananas, lettuce (Berg et al, 2014a) or other raw
vegetables and non-pasteurized juices. Even if vegeta-
bles are washed, peeled or disinfected, they still provide
microbes because the endophytic bacteria or fungi
reside in the plant interior protected from disinfectants.
Herbivore guts had the largest diversity of bacteria, con-
taining 14 phyla, while only six phyla were found in car-
nivores (Ley et al, 2008). Different species of
Bifidobacterium and Lactobacillus were found in herbi-
vores compared with carnivore or omnivore animals
(Endo et al, 2010). The gut human microbiota has been
extensively studied (reviewed in Thursby and Jurge,
2017; Rothschild et al, 2018) and depends on the diet
(Muegge et al, 2011; David et al, 2014). Transient micro-
biota (called foreign microorganisms by David et al,
2014) may derive from food. Notably, the gut microbiome
in humans is determined by the number of vegetables
consumed (McDonald et al, 2018). Ingested bacteria
may be metabolically active in human guts as revealed
by gene transcripts from food-bacteria in guts (David
et al, 2014). Furthermore, plant-borne pathogens provide
an unfortunate example of human ingestion of plant bac-
teria (Berg et al, 2014a, 2014b; Rosenblueth and
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Martinez-Romero, 2006). Certainly, plant bacteria have
been in our diet for a long time (Berg et al, 2014a,
2014b) and for the whole evolutionary history of herbi-
vores. The evolutionary history of insects is tightly
dependent on plants as food (McKenna and Farell,
2006) and large radiations in insects followed plant
diversification (Futuyma and Agrawal, 2009).
Besides containing bacteria, plants may modify gut

bacterial composition and diversity due to their content
of fibres, flavonoids, carotenoids, alkaloids, bioactive
metabolites, antimetabolites or toxins (Cardona et al,
2013; Klinder et al, 2016; Makki et al, 2018; Baxter
et al., 2019). Japanese that eat seaweeds have a pecu-
liar microbiota (Hehemann et al, 2010).

Endophytes

All plants in nature and crops have associated microbes
(Friesen et al, 2011) in apparently all organs and tissues.
Microbes that colonize inner plant tissues are designated
endophytes (Rosenblueth and Martinez-Romero, 2006;
Harrison and Griffin, 2020; Berg et al, 2014a, 2014b), as
the Greek-prefix ‘endo’ means inside or within and ‘phy-
ton’ means plant. Endophytes are a selected group of
plant-associated microbes (Rosenblueth et al, 2004;
Rosenblueth and Martinez-Romero, 2006; Hardoim et al,
2015; Busby et al, 2016) in the sense that only particular
microbial genotypes are capable of internally colonizing
specific plants. Endophytes promote plant growth by dif-
ferent strategies, such as suppressing or out-competing
pathogens, fixing nitrogen, producing hormones that
stimulate plant growth, protecting from stress or enhanc-
ing the availability of minerals (Rosenblueth and
Mart�ınez-Romero, 2006).

Endophytes in animal guts

Gut microbiota may contain hundreds to thousands of
bacterial species (McDonald et al, 2018; Rothschild et al,
2018) that may be acquired from or selected by the diet.
Bacterial cultures from herbivore faeces showed bacteria
that are evidently derived from plants, for example methy-
lobacteria isolated in cultures from rhino (Rhinoceros son-
daicus) and alpaca faeces (Jiang et al, 2013) and
detected in cabbage white butterfly (Robinson et al,
2010b). Methylobacteria (commonly found in plants) use
methanol, a sub-product of plant cell wall biosynthesis
and produce the plant hormones cytokinins (Lidstrom and
Chistoserdova, 2002). Furthermore, cultured actinobacte-
ria from herbivores showed that Streptomyces,
Rhodococcus and Microbacterium were the dominant iso-
lates from all six animal faeces tested, including an ele-
phant (Jiang et al, 2013). These bacteria are common
plant endophytes, for example, Microbacterium was

isolated from legume nodules in arid regions (Zakhia
et al, 2006) and from a halophyte in a salt-marsh (Alves
et al, 2014), Streptomyces was found as a seed endo-
phyte in a Phaseolus vulgaris (common bean) cultivar
with outstanding characteristics (L�opez-L�opez et al 2010)
and a Rhodococcus leaf endophyte enhanced resistance
to pathogenic fungi in potato (Hong et al, 2016).
Endophytes that feed on plants would have fibre

degrading capabilities that would help animals degrade
plant polysaccharides in guts. Plant fibres containing cel-
lulose and hemicellulose are not easily digested, and
sets of large numbers and diverse degrading enzymes
are needed, including glycoside hydrolases and polysac-
charide lyases, which are not produced or rarely pro-
duced by mammals (El Kaoutari et al, 2013). Clostridium
is found as an endophyte and in many animal guts
(Figs 1 and 2). Clostridial cellulolytic activity is remark-
able because these bacteria may contain cellulosomes
(Bayer and Lamed, 1986; Schwarz, 2001), which are
considered the most efficient natural nanomachines
(Nunes, 2018) that degrade both cellulose and hemicel-
lulose. Cellulosomes are protuberances on the bacterial
cell wall (Bayer and Lamed, 1986) containing complex
enzymatic systems. Enterobacter that is found in herbi-
vore guts or faeces and in plants (Fig. 1) has diverse
polysaccharide degrading enzymes such as cellobiosi-
dase, endoglucanase, polygalacturonase, xylanase, b-
glucuronidase, pectinases and cellulases (Prem Anand
et al, 2010; Naveed et al, 2014; Xia et al, 2017). Cellu-
lases are found in many Proteobacteria, Firmicutes and
Actinobacteria (Berlemont and Martiny, 2013).
In contrast to fibre or wood-chewing insects, sap-suck-

ing insects such as stinkbugs or cochineals may have
bacteria with less fibre degrading capabilities. In sap-
sucking insects, protease activity was found in guts and
it was suggested that ‘digestive proteolysis may be wide-
spread in homoptera’ (Foissac et al, 2002). In the car-
mine cochineal, Dactylopiibacterium showed increased
expression of protease and peptidase genes in a gut
metatranscriptomic analysis suggesting a bacterial origin
of proteases in guts (Bustamante-Brito et al, 2019).
Some herbivores have a specialized diet, for example

koalas eat eucalyptus, pandas eat bamboos, tortoises
eat cactus, Monarch butterfly pupas eat Asclepias and
maguey red worms eat Agave cactuses and their micro-
biota serves to digest some of the particular substances
or antimetabolites in their host plants. Some of the
antimetabolites may be degraded in guts by endophytes
such as Pseudomonas, burkholderias and Enterobacter
(Shanmuganandam et al, 2019). Tannins are the fourth
more abundant plant molecules after cellulose, hemicel-
lulose and lignin, with tannic acid as the most abundant
reserve in plants (de Las Rivas et al, 2019). Tannases
that degrade tannins found in eucalyptus, quercus and
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other tree leaves ingested by herbivores, are produced
by many bacterial genera found in guts and plants,
including Enterobacter, Weissella and Lactobacillus (de
Las Rivas et al, 2019). Pinene, from pine trees that are
ingested by different beetles, is degraded by some
Pseudomonas using monooxygenases, lyases and alde-
hyde dehydrogenases (Linares et al, 2009).
The importance of endophytic fungi in plants and

ecosystems is well appreciated (Harrison and Griffin,
2020). In turn, fungi may harbour bacterial communities
that would also have an impact in plants (Bonfante et al,
2019). We suppose that from the outstanding diversity of
fungi in plants (Harrison and Griffin, 2020) only a few
fungi colonize animal guts. Some fungi are commonly
found inside insects and plants (Pa�zoutov�a et al, 2013;
Chen et al, 2018; Biederman and Vega, 2020) and may
have cellulases and tannases (Martin, 1992; de Las
Rivas et al, 2019). The most common contribution from

fungi to their insect symbiont is the catalytic capacity to
break down plant polysaccharides such as cellulose and
pectin from their diet (Martin, 1992). Herrera et al (2011)
found sequences 97% similar to root-associated fungi in
coprophilous fungal communities obtained from the dung
of four species of mammalian herbivores. The effects of
eating endophytic fungi were observed with sheep.
Sheep were fed ryegrass with or without distinct fungal
endophytes, and later sheep faeces were studied for
their degradation rate. Faeces from animals that ate
grass with fungal endophytes had the lowest faecal
degradation rates (Cripps et al, 2013). This nice example
showed that fungal endophytes from grasses that were
consumed by sheep arrived into guts and exerted effects
on faeces.
Insects among animals seem to have had unique

associations with fungi for around 420 million years.
These associations range from pathogenic with

Fig. 1. Examples of animal gut bacteria (from cultures or identified in gut metagenomes) that are common plant endophytes.

Fig. 2. 16S rRNA gene phylogenies of gut bacteria and endophytes of selected genera. A. Clostridium . B. Weissella. C. Lactobacillus plan-
tarum . 16S rRNA sequences from NCBI database were aligned using Clustal W and phylogenetic trees were constructed in MEGA X software
using the maximum likelihood method and general time reversible model with 1000 bootstraps replicates. A total of 1369 positions were
included for the phylogenetic analysis.
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Cordyceps for example, to obligate mutualisms found in
beetles, wasps and ants (Boucias et al, 2012a, 2012b;
Gibson and Hunter, 2010). Remarkably, some of the
insect-associated fungal groups are well-known endo-
phytes within the Sordariomycetes and Agaromycetes
(Naranjo-Ortiz and Gabald�on, 2019).
Interestingly, some protists may inhibit cellulolytic

activities in guts (Ray et al, 2012). Protists and archaea
though they are associated with plants and guts, will
not be revised here, neither the rumen or bee micro-
biota (Taxis et al, 2015; Engel et al, 2012; Zheng et al,
2019 Raymann et al, 2018; Motta et al, 2018. Powell
et al, 2018; Raymann and Moran, 2018; Leonard et al,
2020). Previously, a deep analysis of anaerobic adapta-
tions of bacteria in arthropod guts and the possible
DNA contaminants in reagents were reported (Degli
Esposti and Martinez-Romero, 2017; Glassing et al,
2016). We show here examples of gut bacteria with a
possible endophytic origin (Fig. 1), detected in pandas,
koalas, rabbits, tortoises and several insects that are
reviewed below.

Koala

The koala (Phascolarctos cinereus) has a diet based
almost exclusively on Eucalyptus leaves (Moore and
Foley, 2000). Secondary metabolites contained in Euca-
lyptus plants act as toxins and antimicrobial agents that
could affect the koala and its microbiota (Moore et al,
2004; Brice et al, 2019). The koala gut microbiota is
highly conserved and specialized in the digestion and
detoxification of dietary components (Brice et al, 2019).
Blyton et al (2019) demonstrated that oral-faecal inocula-
tion between wild koalas with different feeding habits
allows them to feed on Eucalyptus species that were
previously inedible. Similarly, gut microbiota are acquired
by juvenile koalas when they feed on special maternal
faeces called ’pap’ (Osawa et al, 1993a, 1993b). The
strict vegetarian diet of koalas leads to a constant supply
of endophytic microbes, which may become resident or
transitory inhabitants of their guts. The koala rectum is
mainly colonized by Bacteroidetes, Firmicutes and Pro-
teobacteria (Barker et al, 2013; Alfano et al, 2015). Sta-
phylococcus, Bradyrhizobium and Acinetobacter have
been found in koala guts and as Eucalyptus endophytes
(Proc�opio et al, 2009; da Silva Fonseca et al, 2018).
Likewise, tannin-degrading strains of Streptococcus,
Enterobacter and other Enterobacteriaceae have been
isolated from koala faeces (Osawa, 1992), ’pap’ (Osawa
et al, 1993a, 1993b) and Eucalyptus leaves (Miguel
et al, 2016). Cellulose-degrading Pseudomonas and
spore-forming bacilli are other examples of microbiota
shared between koala faeces and Eucalyptus tissues
(Singh et al, 2015; Miguel et al, 2016).

Giant panda

The giant panda (Ailuropoda melanoleuca) consumes
about 15 kg of leaves, stems and shoots of bamboo
every day (Dierenfeld et al, 1982). Due to their carnivo-
rous origin, pandas have a straight short gastrointestinal
tract (Ley et al, 2008) whose microbiota is rich in Pro-
teobacteria and Firmicutes (Fig. 1) (Tun et al, 2014; Xue
et al, 2015; Guo et al, 2019). However, the gut micro-
biota is affected depending on the part and species of
bamboo consumed. For instance, a high leaf consump-
tion leads to an increase in Bacteroides and a decrease
in Lactobacillus, but it does not affect Streptococcus and
Clostridium populations (Williams et al, 2013). A phylo-
genetic tree showed Clostridium from plants and gut
intermingled indicating that gut bacteria were recently
acquired or constantly exchanged (Fig. 2A). Recent work
by Jin et al (2020) showed that bacteria and fungi colo-
nizing different bamboo species appeared as gut colo-
nizers after consumed by giant pandas. Interestingly, the
greater the microbial diversity of bamboo, the greater the
diversity found in faecal samples.
The cellulolytic activity of Clostridium as well as the

presence of bacterial genes that encode plant cell wall
degrading enzymes (endocellulase, b-glucosidase, xylan
1,4-b-xylosidase and endo-1,4-b-xylanase) in panda guts
highlight the microbial degradation of bamboo (Zhu et al,
2011; Guo et al, 2020) that could perhaps help to
release endophytes during digestion.
Among the Proteobacteria that inhabit panda faeces,

Pseudomonas, Klebsiella, Enterobacter and Pantoea are
frequent endophytes of grasses and bamboo (Han et al,
2009b; Han et al, 2010; Liu et al, 2017). Most genes
related to pathways for the plant secondary metabolite
degradation have been associated with Pseudomonas
from panda gut metagenomes (Zhu et al, 2018; Yao
et al, 2019). Klebsiella and Enterobacter strains isolated
from panda faeces carry genes involved in microbe-plant
interactions and cellulose degradation indicating their
endophytic origin (Lu et al, 2015a, 2015b).
Weissellas from panda faeces are intermingled with

plant weissellas in 16S rRNA gene phylogenetic trees,
and this is the case with weissellas from human and bat
faeces and from fish guts (Fig. 2B). Weissellas may con-
tain tannases that would help to degrade tannins from
plants (de Las Rivas et al, 2019).- Similarly, Cryptococ-
cus, Ramichloridium, Shiraia, Ceramothyrium, Rhin-
ocladiella and Cephalosporium are bamboo-associated
fungi detected in panda’s faeces (Jin et al, 2020).
The gut microbiota of the giant panda resembles that

of carnivorous and omnivorous bears because it has a
different and lower diversity than other herbivores (Xue
et al, 2015), but it also shows bacterial signatures that
could result from being a bamboo specialist.
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Rabbits

Rabbits (Oryctolagus cuniculus) eat grasses, tree leaves
and faeces. They are considered caecotrophagic ani-
mals because they ingest their soft faecal pellets pro-
duced by digestion in the caecum. Within herbivorous
mammals, rabbits have the shortest mean retention time
to digest their food, while the ruminants have the longest
(Uden, et al, 1982; Kararli, 1995; Crowley et al, 2017).
The rabbit digestive tract is adapted to process large
amounts of fibre-rich feed. Microbial fermentation of the
food takes place in the caecum (Mackie, 2002; Harcourt-
Brown, 2004). Bacteroidetes dominate the caecal popu-
lation and may be associated with the high fibre content
in the diet (Crowley et al, 2017).
Like koalas, newborn rabbits in wild habitats ingest

faecal pellets excreted by their mothers (Kovacs et al,
2006). When rabbits have access to the faecal excreta,
bacteria colonize the caeca and rabbits have a reduced
mortality after weaning in comparison to rabbits not con-
suming faeces (Combes et al., 2014).
Clostridium, Anaerofustis, Blautia, Akkermansia and

Bacteroides are abundantly found in caecal samples,
and in faeces Oscillospira and Coprococcus (Velasco-
Galilea et al, 2018). Clostridium as well as Roseburia,
Sutterella, Enterobacter and Desulfovibrio have been
reported as endophytes and in rabbit faeces (Velasco-
Galilea et al, 2018; Shanmuganandam et al, 2019). Inter-
estingly, the genome of a gut Enterobacter cloacae
strain has genes for plant colonization revealing charac-
teristics of an endophyte (Shastry et al, 2020). Rose-
buria can produce butyrate, which is a nutrient for
enterocytes (Tamanai-Shacoori et al, 2017). Butyrate
was identified as a promotor of gut barrier formation
(Beaumont et al 2020).

Herbivorous tortoise

Herbivory is not frequently found among reptiles (Yuan
et al, 2015). However, there are herbivorous tortoises
such as Gopherus berlandieri that is found in arid regions
in Northeast Mexico and Southern United States (Judd
and Rose, 1983). From the faeces of G. berlandieri
healthy tortoises, we isolated Klebsiella variicola (Montes-
Grajales et al, 2019). K. variicola may be found as endo-
phyte in maize, banana and rice plants (Rosenblueth et al,
2004) and was found as well in newborn baby faeces
(Rosales-Bravo et al, 2017). K. variicola has been pro-
posed to be used as probiotic (Rosales-Bravo et al, 2017)
or crop inoculant. This bacterium is found in humans as
an opportunistic pathogen (Martinez-Romero et al, 2018).
From different G. berlandieri tortoises, distinct K. vari-

icola isolates showed limited genetic diversity, suggest-
ing that they are clones selected from a larger pool of

these bacteria. Nitrogen-fixing activity was detected by
the acetylene-reduction assay, both from faeces and
K. variicola isolates. As tortoises are coprophagous, it
seems possible that they acquire K. variicola tortoise-
borne strains directly from their mother or from the fae-
ces of other tortoises. We surmise that K. variicola in tor-
toises were plant-borne but we did not find them in their
vegetal food; thus, they are not continuously ingested.
Some K. variicola clones seem to have become stable
microbiota, selectively maintained in tortoises by copro-
phagy. Clostridium was abundantly found in Gopherus
flavormarginatus (Garcia-De la Pe~na et al., 2019),
Gopherus polyphemus (Yuan et al, 2015) and G. ber-
landieri faeces.

Stinkbugs

Some stinkbugs from the superfamilies Coreoidea,
Lygaeoidea and Pyrrhocoroidea feed on sap of diverse
plants that have burkholderia endophytes. Burkholderia
were found in insect guts in specialized compartments
with crypts that have restricted entry and high burkholde-
rial densities (Kikuchi et al, 2007, 2011; Kim and Lee,
2015). Recently, two novel genera were named for
burkholderia subclades, Paraburkholderia and Caballero-
nia (Sawana et al, 2014; Dobritsa and Samadpour,
2016), and these are differentially encountered in stink-
bug families that have specialized diets (Takeshita et al,
2015; Takeshita and Kikuchi, 2020). The symbiosis of
phytophagous stinkbugs with these bacteria seems to be
ancient (Kikuchi et al, 2011; Takeshita et al, 2015). Sym-
bionts are beneficial to the insects, as stinkbugs without
them displayed developmental delays, impaired survival
or reduced size (Kikuchi et al, 2007; Boucias et al,
2012a; Xu et al, 2016a). Bacteria may confer stinkbugs
resistance to the insecticide fenitrothion (Kikuchi et al,
2012; Tago et al, 2015). A transcriptome analysis of mid-
gut-colonizing Burkholderia insecticola from the bean-
bug Riptortus pedestris showed that bacteria recycle the
host nitrogen wastes allantoin and urea, provide B vita-
mins, especially B12 and supply methionine and trypto-
phan to the host (Ohbayashi et al, 2019). Burkholderias
constitute nice examples of plant bacteria that become
gut colonizers, which are acquired by each new insect
generation (Kikuchi et al, 2007; Kikuchi et al, 2011).
Consequently, reported phylogenies showed that insect-
gut and plant burkholderias are intermingled (Itoh et al,
2014; Tago et al, 2015; Xu et al, 2016b).

Carmine cochineal

Carmine cochineals (Dactylopius spp.) are a group of
hemipteran insects that have cultural and economic
importance, as they produce a pigment called carminic
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acid that is used in industries like food, cosmetics and
textiles. They originated in Mexico and South America
(Ch�avez-Moreno et al., 2009; Ch�avez-Moreno et al.,
2011; Mazzeo et al, 2019). Cochineals are sap-suckers
of Opuntia and other cactuses (Ch�avez-Moreno et al,
2009). Our first microbial diversity study of different car-
mine cochineal species performed by Ram�ırez-Puebla
et al (2010) using PCR-product sequencing, showed that
the insect symbionts were related to plant endophytes
such as Herbaspirillum, Acinetobacter and Mesorhizo-
bium. Further metagenomic studies of D. coccus and
D. opuntiae allowed us to obtain the genome of a
betaproteobacterium (Dactylopiibacterium carminicum)
related to the grass endophytes Uliginosibacterium and
Azoarcus (Vera-Ponce de Le�on et al, 2017). Several
characteristics of Dactylopiibacterium remind endo-
phytes, like the ability to fix atmospheric nitrogen, to pro-
duce cellulases and pectinases, and to catabolize
salicylic acid that is produced in plants (Vera-Ponce de
Leon et al 2017; Bustamante-Brito et al, 2019). Our
results suggested an endophytic origin of Dactylopiibac-
terium symbionts.
In the carmine cochineal guts, we found one species

of endophytic fungi belonging to the genus Coniochaeta.
Coniochaeta species are main endophytes of trees and
grasses with some species well known for their produc-
tion of a broad spectrum of antimycotics (Xie et al,
2015).

Bark beetles and weevils

Wood-eating Dendroctonus beetle guts contain nitrogen-
fixing bacteria, for example Raoultella terrigena that is a
common endophyte (Morales-Jim�enez et al, 2013).
Endophytes that have been used as plant growth-pro-
moting bacteria were also isolated from Dendroctonus
beetles. Among these, Serratia, Pseudomonas and Rha-
nella species were able to recycle uric acid (Morales-
Jim�enez et al, 2013). An additional study using 16S
rRNA gene identification of gut bacteria from the pine-
pest Monochamus alternatus (Coleoptera) showed
Enterobacter, Raoultella, Serratia, Lactococcus and
Pseudomonas, which are commonly found in plant tis-
sues as well. Enterobacter was the most common in lar-
val and Serratia in pupal intestines. These bacteria may
help to degrade the terpene pinene found in pines (Chen
et al 2020).
Weevils are important beetle pests of stored grain

legumes that feed and reproduce on dried seeds (Tuda,
2007). The neotropical genus Acanthoscelides com-
prises a diverse group of weevils some specialized on
Phaseolus seeds (Alvarez et al, 2005). We studied the
gut microbiota of bean weevils, Acanthoscelides obtec-
tus (Coleoptera: Chrysomelidae, Bruchinae). Weevils

were collected from inside wild P. vulgaris seeds from
vines growing in mountain fields in the state of Morelos,
Mexico. 16S ribosomal RNA genes from midgut DNA or
from isolates were sequenced to generate a census of
bacterial communities. We identified bacteria related to
Agrobacterium, Bacillus, Massilia, Gluconacetobacter,
Propionibacterium, Asaia and Bradyrhizobium. Bacillus
isolates were frequently identified in bean seeds (Lopez-
Lopez et al, 2010) and leaves as endophytes (de Oli-
veira Costa et al, 2012). We suppose that P. vulgaris
endophytes are transferred to the guts of A. obtectus
weevils when they feed on bean seeds. Weevil insects
in turn may transfer these bacteria to other plants and
seeds.

Maguey red worm

The maguey red worm (Comadia redtenbacheri) is edible
and endemic to Mexico. Larvae are plant-eating special-
ists of Agave inner plant tissues (Hern�andez-Flores et al,
2015; C�ardenas-Aquino et al, 2018). Enterococcus and
Klebsiella that secrete indole-acetic acid and solubilize
phosphate were isolated as endophytes from leaf bases
of agave plants (Martinez-Rodriguez et al, 2019) and
from the larva guts as well (our unpublished results). In
the larvae from other Lepidoptera, Spodoptera littoralis
an antimicrobial peptide was found secreted by Entero-
coccus located on the gut epithelium (Shao et al, 2017).
Furthermore, microbiomes from distinct agave plants
have been reported (Coleman-Derr et al., 2016; Marti-
nez-Rodriguez et al., 2019; Flores-Nu~nez et al 2020)
and several of the bacterial genera encountered therein
were also identified in red worm guts (Hern�andez-Flores
et al, 2015) and from gut microbiomes in our laboratory.
Cellulosimicrobium found in cactus has an outstanding

capability to degrade the plant cell wall using cellulases,
xylanases and pectinases (Han et al, 2009a). Cellu-
losimicrobium was isolated from elephant and alpaca
faeces (Jiang et al, 2013). We identified this bacterium
from maguey worm microbiomes. Isolated strains from
the larva guts of another lepidoptera, Plutella xylostella
were capable of degrading plant phenolic compounds
(Xia et al, 2017).

Monarch butterflies

Monarch butterflies have a specialized plant diet. Milk-
weeds of the genus Asclepias are the preferred food of
monarch caterpillars and adult monarchs feed on the
nectar and pollen of flowers that provide sugars and
other nutrients. We analysed the overwintering micro-
biota from guts of adult monarch butterflies, Danaus
plexippus (Lepidoptera: Nymphalidae, Danainae) by
sequencing metagenomes and 16S rRNA genes from
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bacterial isolates. We identified 16S rRNA gene
sequences for Asaia, Pseudomonas, Serratia, Entero-
coccus, Carnobacterium, Kinetoplastibacterium, Xylophi-
lus, Polaromonas, Herbaspirillum and Lactococcus
bacteria. Some of these bacteria such as Pseudomonas,
Serratia, Enterococcus, and Herbaspirillum are well
known endophytes of plants. In guts of adult monarch
butterflies, the acetic acid bacterium Commensalibacter
was the most abundant (Serv�ın-Garcidue~nas et al.,
2014; Servin-Garcidue~nas and Mart�ınez-Romero, 2014).

Cabbage white butterfly

The adult cabbage white butterflies (Pieris rapae) con-
tain Enterobacter as well as Flavobacterium in their guts
(Steinhaus, 1941); in the larvae, species from the genera
Asaia, Acinetobacter, Methylobacterium, Enterobacter
and Pantoea have been found (Robinson et al, 2010a,
2010b). Bacteria from these genera are common plant
endophytes. Sinigrin, a glucosinolate found in Brussels
sprouts, affects the bacterial community composition
when fed to the cabbage white butterfly larvae. The bac-
teria found in the midgut may participate in sinigrin
degradation (Robinson et al, 2010a, 2010b).

Drosophila and fruit flies

Lactobacillus plantarum is found in plants as endophyte
(Minervini et al., 2018) and commonly in Drosophila gas-
trointestinal tracts (Siezen et al, 2010). L. plantarum from
Drosophila is related to strains from the same species from
human faeces and plants (Fig. 2C). Drosophila in natural
habitats may feed on plants but mainly on yeast from fer-
mented fruits (Becher et al, 2012). L. plantarum, considered
a facultative symbiont, is continuously ingested and
excreted by Drosophila (Storelli et al, 2018). It provides
acetyl-glutamine to the host, produces a hormone-signalling
control (Storelli et al, 2011) and stimulates the production of
intestinal peptidases (Matos et al, 2017). Notably, an
improvement of host beneficial effects was obtained by an
experimental evolution assay of L. plantarum across 20
Drosophila generations (Martino et al, 2018).
Similarly, from the Mediterranean fruit fly several enter-

obacteria were isolated including Klebsiella that was
found in all samples; nitrogen fixation was detected in the
enterobacterial cultures (Behar et al, 2005). An additional
study from our laboratory (using 16S rRNA gene identifi-
cation of cultured gut bacteria) from wild larvae from the
Mexican fruit fly Anastrepha ludens showed Bacillus, Lac-
tobacillus, Pseudomonas, Enterobacter, Klebsiella,
Acinetobacter, Leuconostoc and Weissella. All of them
are reported endophytes. Nitrogen-fixing activity was
detected by the acetylene-reduction assay with Klebsiella
and Enterobacter. Pectinolytic activity was observed in

Pseudomonas and Bacillus and uricolytic activity in Pseu-
domonas. Additionally, we isolated in culture Pichia and
Hanseniaspora yeasts (that are known fungal endo-
phytes) from A. ludens larvae. Pichia was present in the
oranges where larvae were feeding. Both yeasts were
found in Drosophila suzukii (Hamby et al, 2012). A. lu-
dens is an important pest in Mexico and Central America
that attacks several fruit species especially citrus and
mangos. Larvae feed on the fruits causing great losses,
and biological control with sterile males has been used to
control this pest (Barker et al., 2013).

An endophytic-enteric-soil-endophytic cycle

We showed data to support the endophytic origin of some
gut bacteria, and we propose here the natural existence
of an endophytic-enteric-soil-endophytic microbiota cycle,
designated hereafter as endophytic-enteric cycle (Fig. 3)
in which plant tissues could act as enteric ‘fibre capsules’
to protect plant endophytes from being digested in the
stomach and allowing their later release in the intestine. If
plant-borne microbes from guts pass to the environment,
then they may become soil bacteria and a natural biologi-
cal inoculant of plants. By colonizing plants, these bacte-
ria would complete a microbe cycle. Common ecological
features in roots and gut (Ram�ırez-Puebla et al, 2013)
support their sharing bacteria. A shortcut in the endo-
phytic-enteric cycle would be faecal ingestion (co-
prophagy), which is a common practice among many
animals, we surmise that animals were pioneers on faecal
transplants. Fecal transplants are successfully used in
modern Medicine by donating processed faeces from
healthy humans to human patients with chronic gut dis-
eases (Petrof and Khoruts, 2014).
Endophytes, which may or may not reproduce in the

gut, could pass in faeces to soil and water. Tracing bacte-
ria from animal guts to the soil was made possible by iden-
tifying antibiotic-resistant bacteria in soil that derived from
manure obtained from chicken or cow faeces (Wichmann
et al, 2014). Spread of enteric bacteria could lead to a flow
of antibiotic resistance genes from sewage, manure or
slurry to humans (Linton, 1986). Farmland soils that were
fertilized with chicken manure had high levels of antibiotic-
resistant bacteria (Zhao et al, 2017), and the impact of the
use of antibiotics in farm animals has been studied (Qian
et al, 2018; Heuer et al., 2011). Manure would constitute
not only a way to recycle large amounts of N to plants but
a source of bacteria for plants, and this has been shown
when plants got contaminated with pathogens from animal
manures (Guan and Holley, 2003). It was reported that
human health depends on plant health, which in turn is
determined by soils (Hirt, 2020).
As soils are rich in bacteria, insect microbiota may

derive directly from soil (Fig. 3) and indeed soils were
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the main source and not host plants for the leaf-eating
caterpillar microbiota (Hannula et al, 2019). This may be
considered as another shortcut in the cycle and remains
to be tested with other insects. Certainly, there is a very
dynamic flux of microbes to the gut. In the reverse direc-
tion, phytophagous insects that harbour multiple gut bac-
teria in oral secretions may transfer microbes to plants
during feeding (Fig. 3) (Chung et al, 2013) and this is
how many insects are vectors of plant pathogens.
Endophytes normally feed on plant products, and their

degradative capabilities could be of use in catabolizing
plant-derived nutrients or suppress pathogens and fix
nitrogen in the gut, as they do in plants. Gut bacteria
use plant fibres (dietary fibre) to produce short-chain
fatty acids (such as butyric acid) (Baxter et al., 2019)
that are intestine cell (enterocyte) nutrients (R�ıos-Covi�an
et al., 2016; Wang et al, 2019).
Not all plant bacteria would survive digestion and par-

ticipate in the endophytic-enteric cycle. Therein, spore-
producing bacteria may be particularly successful, as
spores are resistant forms which could even become
activated inside guts. Notably, spores may be an impor-
tant constituent of gut microbiomes (Browne et al, 2016).

Critical issues

Even though there is clear evidence of plant-derived
bacteria in guts, a major question remains, are all small
fragments of plant tissues effectively removed before
macerating faecal samples? If not, they could be a
source of DNA that would not reflect true gut bacteria.
Work with panda faeces (Wei et al, 2007; Xue et al,

2015; Jin et al, 2020) addressed this issue, but it is not
the case in all studies with faeces microbiota. Caution
should be taken with metagenomic data, and microbial
cultures from guts not to erroneously consider bacteria
or fungi in plant fragments as bona fide gut microbiota. It
is remarkable that most studies of gut microbiota are
from faeces that may not well reflect gut bacteria (Zmora
et al, 2018). Diet bacteria should be analysed concomi-
tantly with gut microbiota and a comparison of the sur-
vival in the digestive tract of plant-surface bacteria (Leff
and Fierer, 2013) in relation to endophytes would be
highly informative.
Seemingly, carnivores have endophytes in their guts

as well. For example, Prevotella, which is known to be
able to degrade plant derived carbohydrates, was the
most abundant bacterium in the feline gut (Alessandri
et al, 2020b). Endophytes in carnivore guts may derive
from ingesting herbivore guts or faeces or soil-contami-
nated meat. Notably, the gut microbiota of cats and dogs
is determined as in humans by the diet and modified by
overweight or inflammatory diseases (Alessandri et al,
2020a).
We suppose that plants may protect themselves from

herbivory by possessing not only antimetabolites and
toxins (in many cases produced by microbes) but also
microbes that may cause disease or death to herbivo-
rous animals when ingested. In contrast, plant bacteria
may be useful, for example, Lactobacillus plantarum that
is found in human and in omnivore gastrointestinal tracts
(Siezen et al, 2010; Endo et al, 2010) is used as a probi-
otic (Panigrahi et al, 2017; Raveschot et al, 2020), which
may help animals to better resist viral infections (Kumar

Fig. 3. Schematic representation of the endophytic-enteric microbiota cycle. Inside plant-tissue endophytes may gain access to animal guts
when animals eat plants, in turn animals produce faeces that may carry the ingested plant bacteria that would be available to colonize plants
again. Coprophagy (faeces ingestion) is a shortcut in the cycle, as well as the transfer of insect bacteria to the plant during feeding or direct
acquisition of bacteria from soil.
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et al, 2010; Kikuchi et al 2014), like other endophytic-en-
teric bacteria do when used as probiotics (Chai et al,
2013; Mahooti et al 2020; Baud et al, 2020). However,
probiotics constitute only transient members of the gut
microbiota, remaining short periods in the gastrointestinal
tract (Zmora et al, 2018) as we suppose some endo-
phytes would do. Additionally, L. plantarum and Weis-
sella are used in fermented food from plant products
(Wacher-Rodarte et al., 2015, Kavitake et al, 2016).
Curiously, a metabolomic study showed that fermented
food and stools were similar (Quinn et al, 2016).
Herbivores have most probably picked up their stable

microbiota from plant-associated bacteria. Particularly,
the evolutionary history of insects is tightly dependent on
plants as food (McKenna and Farell, 2006). When an
herbivore has recently ingested an endophyte, gut
strains would be identical or very similar to the plant iso-
lates, as can be observed in phylogenies from Weis-
sella from panda faeces, in L. plantarum and clostridia
phylogenies (Fig. 2) or in burkholderias from the stink-
bugs (Itoh et al, 2014; Tago et al, 2015; Xu et al,
2016b). On the other hand, when the endophytes coe-
volved with their animal hosts which maintain them by
vertical transfer, then these bacteria would be divergent
from plant bacteria, as observed in some insect sym-
bionts such as Commensalibacter and Dactylopiibac-
terium (Serv�ın-Garcidue~nas et al., 2014; Vera-Ponce de
Le�on et al, 2017). Specialized insect endosymbionts in
abdominal bacteriomes could have derived from gut bac-
teria, which in turn derived from endophytes that were
found in plants that may not exist today. Flavobacterial
endosymbionts of scale insects (Rosenblueth et al,
2012, 2018), which are around 200 million years old and
provide essential amino acids to the insect, perhaps
derived from plant flavobacteria which are found mainly
in wild but not in domesticated plants (P�erez-Jaramillo
et al., 2018).
If we eat endophytes, we may excrete endophytes;

this occurs with mealybug insects that eat and excrete
honeydew containing Gluconacetobacter spp. (Ashbolt
and Inkerman, 1990), a common nitrogen-fixing endo-
phyte from sugarcane (Caballero-Mellado and Martinez-
Romero, 1994). Notably, the numbers of Gluconaceto-
bacter bacteria diminish drastically in plants with nitrogen
chemical fertilization (Fuentes-Ram�ırez et al., 1999).
Similarly, other agrochemicals may have strong effects
on plant microbiota and thus on the endophytes which
we ingest. Remarkably, fungal endophytes may vary
depending on the habitat (Harrison and Griffin, 2020).
Finally, inoculants used on plants should be considered
not only in terms of their plant growth-promoting capabili-
ties but for their effects on human health as well. The
use of cyanobacteria in plants should be carefully evalu-
ated and avoided if possible. Cyanobacteria produce

very harmful neurotoxins and hepatotoxins (Codd et al,
2005).

Conclusions

Certainly all herbivores eat endophytes, some of them
may be digested or not liberated from plant tissues but
others may be active in the gut and contribute to fibre or
tannin digestion or to the synthesis of essential amino
acids or vitamins, fix nitrogen or provide defence against
pathogens. When studying herbivore gut microbiota,
plant fragments in guts should be independently anal-
ysed.
While stable members of the gut microbiota may have

derived from the vegetal diet, newly ingested endophytes
may be quite variable. It would be desirable to eat the
ones that contribute most to human health either as pro-
biotics or with food. There is still lots to explore on this
considering the variable responses in human individuals
to probiotics, and the large effects of crop management
on plant microbes. Ideally, plant microbial inoculants
should benefit both plants and humans. Clearly, the
endophyte-enteric cycle has relevance to animal health.
So, which endophytes would you like to eat?
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