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Cancer immunotherapy including immune checkpoint inhibitors (ICI) has

revolutionized non-small cell lung cancer (NSCLC) therapy. Recently, the

microbiota status “before” initiation of ICI therapy has been emphasized as a

predictive biomarker in patients undergoing ICI therapy. However, the

microbiota diversity and composition “during” ICI therapy is unknown.

This multicenter, prospective observational study analyzed both saliva

and feces from 28 patients with NSCLC. We performed 16S ribosomal

RNA gene sequencing, then analyzed associations of oral and gut

microbiota diversity or composition with ICI response. At the genus level,

the alpha diversity of the gut microbiota was significantly greater in

responders (n = 17) than in non-responders (n = 11) (Chao 1, p = 0.0174;

PD whole tree, p = 0.0219; observed species, p = 0.0238; Shannon, p =

0.0362), while the beta diversity of the gut microbiota was significantly

different (principal coordinates analysis, p = 0.035). Compositional

differences in the gut microbiota were observed between the two

groups; in particular, g_Blautia was enriched in responders, whereas

o_RF32 order unclassified was enriched in non-responders. The

progression-free survival (PFS) of patients enriched gut microbiota of

g_Blautia was significantly longer [median survival time (MST): not

reached vs. 549 days, p = 0.0480] and the PFS of patients with gut

microbiota of o_RF32 unclassified was significantly shorter (MST: 49 vs.

757 days, p = 0.0205). There were no significant differences between groups

in the oral microbiota. This study revealed a strong association between gut

microbiota diversity and ICI response in NSCLC patients. Moreover, specific
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gut microbiota compositions may influence the ICI response. These findings

might be useful in identifying biomarkers to predict ICI response.

KEYWORDS

oral and gut microbiota, diversity, specific composition, non-small cell lung cancer,
immune checkpoint inhibitors response

Introduction

Immunotherapy with immune checkpoint inhibitors (ICI)

is widely used to treat various malignancies, including non-

small cell lung cancer (NSCLC); it has revolutionized

therapeutic approaches to cancer. Programmed death-

ligand-1 (PD-L1) is an immune checkpoint protein

expressed on tumor cells and tumor-infiltrating immune

cells, which can mediate anticancer immunosuppression

(Ribas and Wolchok, 2018). Anti-PD-1 antibodies (e.g.,

nivolumab and pembrolizumab) and anti-PD-L1 antibodies

(e.g., atezolizumab and durvalumab) enable T-cell activation

and immune system recognition.

Although tumorous PD-L1 expression is a potential

biomarker of the ICI therapeutic response, there is no widely

accepted optimal biomarker to predict the efficacy of ICI, because

ICI response and survival outcomes show heterogeneity in

NSCLC patients receiving ICI therapy, regardless of PD-L1

expression level (Rittmeyer et al., 2017; Gandhi et al., 2018;

Paz-Ares et al., 2018; Socinski et al., 2018).

We recently reported that the pretreatment host immune-

nutritional condition was a prognostic marker for NSCLC

patients receiving ICI therapy (Shoji et al., 2019). Host

immunity is clearly associated with the ICI response. The

internal microbiome is regarded as a controlling factor in host

immunity. In particular, the gut microbiome can modulate the

host immune response (e.g., anti-tumor immunity) and optimize

both innate and adaptive immune responses (Littman, 2012).

Recently, preclinical studies have shown that the gut microbiome

composition and its modification in murine models could

influence the efficacy of ICI (Corrales et al., 2015; Vétizou M,

2015). Therefore, the microbiome has been emphasized as a

predictive biomarker of ICI therapy, mainly in studies from the

United States or Europe. Additionally, the gut microbiota

diversity or abundance of specific gut microbiome

components has been correlated with the efficacy of anti-PD-

1 antibody in melanoma patients (Fessler et al., 2018). Moreover,

fecal microbiota transplantation (FMT) in murine models might

restore the ICI response (Gopalakrishnan et al., 2018; Routy et al.,

2018). In a recent study, FMT from ICI responders to ICI non-

responders produced ICI efficacy in melanoma patients (Davar

et al., 2021).

Furthermore, the oral microbiota has been associated with

several diseases (e.g., inflammatory bowel disease and allergic

diseases) through its influence on the gut microbiota (Pietrantoni

et al., 2003; Yamasaki et al., 2013; Atarashi K, 2017). A recent

study revealed that variation in the oral microbiota was

associated with a risk of lung cancer (Hosgood et al., 2021).

However, samples were collected prior to ICI therapy in most

previous studies, and thus minimal information has been

available regarding the microbiota status during ICI therapy.

Accordingly, FMT or biotics therapy approaches are needed to

investigate changes in the microbiota during ICI therapy.

Notably, there are definite differences in microbiota

composition among ethnicities (Nishijima et al., 2016); to the

best of our knowledge, few reports have been published regarding

Japanese NSCLC patients (Hakozaki et al., 2020). In addition, the

present study is based on the clinical question how is the

condition of host microbiome in NSCLC patients during ICI

therapy. Therefore, the present study might be meaningful as one

of the pioneer studies highlighted the microbiome status during

ICI therapy.

Here, we performed a prospective study to clarify the

microbiota diversity and composition in Japanese NSCLC

patients by analyzing samples collected during ICI therapy.

Materials and methods

Study design and participants

This prospective observational study was conducted at

multiple centers: Department of Thoracic Surgery and

Department of Respiratory Medicine, Clinical Research

Institute, National Hospital Organization (NHO) Kyushu

Medical Center and Department of Thoracic Oncology,

NHO Kyushu Cancer Center. Eligibility criteria were as

follows: pathologically or cytologically confirmed diagnosis

of locally advanced/unresectable or postoperative recurrent

NSCLC; receipt of ICI monotherapy including nivolumab

(Opdivo, Bristol-Myers Squibb), pembrolizumab (Keytruda,

Merck), atezolizumab (Tecentriq, Genentech), and

durvalumab (Imfinzi, Astra Zeneca) or platinum-based

therapy combined with these ICI agents. Patients were

also enrolled if they had discontinued these therapies but

had not received any additional therapies. Patients with the

presence of ongoing antibiotics therapy for infectious

diseases before/during ICI therapy, were excluded in the

present study.

From July 2019 to December 2020, 34 NSCLC patients

were eligible and enrolled. Of those 34 patients, 28 had both

saliva and feces samples available for this study
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(Supplementary Figure S1). All enrolled patients had at least

one measurable target lesion based on the Response

Evaluation Criteria in Solid Tumors (RECIST), version 1.1

(Eisenhauer et al., 2009). Clinical/pathological stage was based

on the Tumor Node Metastasis (TNM) classification

established by the International Union Against Cancer

(Goldstraw et al., 2016). For TNM staging, all patients

underwent computed tomography (CT) of the thorax and

upper abdomen, as well as bone scintigrams, brain CT scans,

magnetic resonance imaging (MRI), or fluorodeoxyglucose-

positron emission tomography (FDG-PET). Postoperative

local or distant recurrence was defined as described

previously (Varlotto et al., 2009). ICI therapy was

continued until radiographic progression. PD-L1 protein

expression was evaluated using antibody clone 22C3 (Dako,

Agilent Technologies, Santa Clara, CA, United States).

Sample collection

Salivary and fecal samples were collected in sterile

containers and immediately placed at 4°C, then frozen

at −80°C. Individual periods of sample collection are shown

in Figure 1. The mean numbers of days between the initiation

of ICI therapy and the day of sample collection were 307

(29–945) days in ICI responders and 117 (23–491) days in ICI

non-responders.

DNA extraction, gene amplification,
sequencing, and data analysis procedures

Preliminary treatment of fecal samples was conducted in

accordance with a previously described method (Takahashi et al.,

2014); DNA was then extracted using an automated DNA

isolation system (Gene Prep Star PI-480, Kurabo, Japan).

DNA was extracted from saliva using the Mora-Extract kit

(Kyokuto Pharmaceutical, Japan). The V3–V4 regions of

bacterial 16S rRNA genes were amplified using the Pro341F/

Pro805R primers (Takahashi et al., 2014) and dual-index method

(Hisada et al., 2015) under hemi-nested PCR conditions (Hell

et al., 2013). Barcoded amplicons were paired-end sequenced on

a 2 × 284-bp cycle using the MiSeq system with MiSeq Reagent

Kit chemistry, version 3 (600 Cycle). Paired-end sequencing

reads were merged using the fastq-join program with default

settings (Aronesty, 2013). Only reads with quality value (QV)

scores of ≥ 33 were extracted with split_libraries_fastq.py

command in QIIME, version 1.8.0 (Caporaso et al., 2010).

Chimeric sequences were removed using USEARCH61 (Edgar

et al., 2011) with the identify_chimeric_seqs.py command in

QIIME (Caporaso et al., 2010). Operational taxonomic units

(OTUs) were aligned using the pick_open_reference_otus.py

command in QIIME (Caporaso et al., 2010). OTUs with 97%

similarity were identified with the Greengenes database, version

13.8 (Aitchison, 1986). Alpha diversity indices (e.g., observed

species, Chao-1, Shannon, and PD_whole_tree) and beta

FIGURE 1
Swimmer plot of survival after initiation of immune check point inhibitor (ICI) therapy. Each bar represents one patient. The left column shows
clinicopathological characteristics.
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diversity indices [e.g., principal coordinates analysis (PCoA)]

were analyzed using the alpha_rarefaction.py and

beta_diversity.py commands in QIIME, respectively (Edgar

et al., 2011). Sampling depth in alpha and beta diversity was

50,895, which was the minimum number of read counts among

samples. To account for compositional artifacts, we transformed

relative abundances using the Centered Log-Ratio (CLR)

transformation (Aitchison, 1986). The Chao-1 index was used

to determine community richness and the Shannon index was

used to determine community diversity. The PD_whole_tree

index was used to compute Faith’s phylogenetic diversity.

PCoA was used to show differences between the two groups.

Unweighted UniFrac metrics were used for beta diversity

(DeSantis et al., 2006). In order to identify the distinct gut

microbiota between ICI responders and non-responders, the

Linear Discriminative Analysis Effect Size (LEfSe) method was

used to compare the composition of the gut microbiota in genus

level using an online tool (http://www.ehbio.com/ImageGP/

index.php/Home/Index/LEFSe.html).

Statistical analysis

Categorical variables were analyzed using Fisher’s exact test.

Continuous variables were compared using the chi-squared test.

The Mann-Whitney U test was used to determine significant

differences among the different groups using alpha diversity,

which showed the diversity in each individual sample. Logistic

regression analysis to calculate odds ratios for ICI response with

respect to clinic-pathological characteristics was used. Kaplan-

Meier statistics and log-rank testing to evaluate progression-free

survival (PFS) was applied.

Statistical analyses were performed using JMP software,

version 14.0 (SAS Institute, Inc., Cary, NC, United States).

The adonis function in the vegan package of R software,

version 3.6.1, was used to conduct permutational multivariate

analysis of variance (PERMANOVA) with respect to microbiome

composition. p-values < 0.05 were considered statistically

significant.

Results

Patient characteristics

The results were determined in follow-up examinations over

a mean duration of 598 days (range, 81–1,225 days) after initial

ICI therapy. Patient characteristics are shown in Supplementary

Table S1. The study group included seven women and 21 men,

with a mean age at diagnosis of 71 years (range, 56–88 years).

Fifteen patients (53.6%) had ECOG performance status (PS)

0 and 13 (46.4%) had ECOG-PS 1. Seven patients (25.0%) had

never smoked, and the remaining 21 patients were current or

former smokers. The histological types were adenocarcinoma in

16 patients (57.1%) and squamous cell carcinoma in 12 patients

(42.9%). Of the 28 included patients, one (3.6%) had stage IIA,

seven (25.0%) had unresectable stage III (two with IIIA, three

with IIIB, and two with IIIC), 11 (39.3%) had stage IV (seven with

IVA and four with IVB), and nine (32.1%) had postoperative

recurrence. Seven patients (25.0%) had mutant epithelial growth

factor receptor (EGFR) and 21 patients (75.0%) had wild-type

EGFR or no data regarding EGFR status. ICI was first-line

therapy in 11 patients (39.3%), second-line therapy in

10 patients (35.7%), third-line therapy in five patients (17.8%),

and fourth-line or later therapy in two patients (7.2%). Twenty-

four patients (85.7%) received ICI monotherapy (nivolumab:

3 mg/kg or 240 mg/body intravenously at 2-week intervals;

pembrolizumab: 200 mg/body intravenously at 3-week

intervals; atezolizumab: 1,200 mg/body intravenously at 3-

week intervals; or durvalumab: 10 mg/kg intravenously at 2-

week intervals), while the remaining four patients received ICI

therapy combined with platinum-doublet chemotherapy

[pembrolizumab: 200 mg/body plus carboplatin, area under

the curve (AUC) for concentration-time: 5 mg/ml/minute;

plus pemetrexed 500 mg/m2 or nab-paclitaxel 200 mg/m2

intravenously at 3-week intervals]. Ten patients (35.7%) had

more than 50% tumorous PD-L1 expression, 10 patients (35.7%)

had 1%–49% PD-L1 expression, and eight patients (28.6%) had

no PD-L1 expression or no data regarding PD-L1 status.

Immune checkpoint inhibitors response in
non-small cell lung cancer patients

No patient experienced a complete response (CR) (0%),

17 patients had a partial response (PR) (60.7%), two patients

had stable disease (SD) (7.2%), and nine patients (32.1%) had

progressive disease (PD). Therefore, 17 patients (PR) were

regarded as ICI responders; the remaining 11 patients (SD or

PD) were regarded as ICI non-responders (Supplementary

Figure S1). Logistic regression analysis to calculate odds ratios

for ICI response with respect to clinic-pathological

characteristics such as gender, smoking status, number of

prior systemic therapy, regimen, histology and tumor

proportional score, was performed (Supplementary Table S2).

As a result, there was no significant difference between ICI

response and any clinic-pathological features in multivariate

analysis.

Relative abundances in oral and gut
microbiomes

We analyzed the relative abundances of oral bacteria at the

phylum and genus levels. At the phylum level, p_Firmicutes,

p_Bacteroides, p_Proteobacteria, p_Actinobacteria, p_Fusobacteria,
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and p_TM 7 were the main taxa; these taxa comprised more than

99% in all groups. At the genus level, 169 genera were detected in the

ICI responder saliva microbiota, while 152 species were detected in

the ICI non-responder saliva microbiota (Figures 2A,B). Among the

genus taxa with < 1% relative abundance, 157 genera (92.9%) were

identified in the ICI responder saliva microbiota, while 138 genera

(90.8%) were identified in the ICI non-responder saliva microbiota.

Genera in both groups mainly included g_Streptococcus,

g_Veillonella, g_Prevotella, g_Haemophilus, and g_Neisseria

(Figures 2C,D). Regarding the gut microbiota, at the phylum

level, p_Firmicutes, p_Bacteroides, p_Actinobacteria,

p_Proteobacteria, p_Fusobacteria, and p_Verrucomicrobia were

the main taxa (comprising more than 99%) in ICI responders.

p_Firmicutes, p_Bacteroides, p_Actinobacteria, p_Proteobacteria

and p_Fusobacteria were the main taxa (comprising more than

99%) in ICI non-responders. At the genus level, 180 genera were

detected in the ICI responder gut microbiota, while 136 genera were

detected in the ICI non-responder gut microbiota (Figures 2E,F).

Among the genus taxa with < 1% relative abundance, 167 genera

(92.8%) were identified in the ICI responder gut microbiota, while

122 genera (89.7%) were identified in the ICI non-responder gut

microbiota. Genera in ICI responders mainly included

g_Bacteroides, f_Ruminococcaceae; g_, f_Lachnospiraceae; g_,

g_Streptococcus, and g_Blautia; genera in ICI non-responders

mainly included g_Bacteroides, f_Ruminococcaceae; g_,

f_Lachnospiraceae; g_, g_Prevotella, and g_Bifidobacterium

(Figures 2G,H).

Diversity metrics in oral and gut
microbiomes

We used alpha and beta diversity indices to evaluate the

intersample and intrasample relationships in the oral and gut

FIGURE 2
Comparisons of taxa relative abundances between ICI responders and non-responders at genus level. (A,B)Distributions of oral microbiota taxa
relative abundances > 1% and < 1% in ICI non-responders (A) and responders (B). (C,D)Comparisons of oral microbiota taxa relative abundances in ICI
non-responders (C) and responders (D). (E,F) Distributions of gut microbiota taxa relative abundances > 1 % and < 1% in ICI non-responders (E) and
responders (F). (G,H) Comparisons of gut microbiota taxa relative abundances in ICI non-responders (G) and responders (H).
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microbiota. Figures 3, 4 show the alpha diversity metrics of oral

and gut microbiota at the genus level. In the oral microbiota,

there were no significant differences between the two groups

(Chao 1, p = 0.632; Observed species, p = 0.523; PD_whole_tree,

p = 0.471; and Shannon, p = 0.474) (Figures 3A–D). In the gut

microbiota, all alpha diversity metrics were significantly higher in

ICI responders than in ICI non-responders (Chao 1, p = 0.017;

Observed species, p = 0.024; PD_whole_tree, p = 0.022; and

Shannon, p = 0.036) (Figures 3E–H). PCoA assessment of beta

diversity was conducted based on weighted UniFrac distance

(Figure 4). In both oral and gut microbiota, similar patterns were

evident in the two groups. The greatest variations in the oral and

gut microbiota of the two groups were 4.39% (PC1) and 4.32%

(PC2), and 4.51% (PC1) and 4.22% (PC2), respectively.

PERMANOVA based on unweighted UniFrac distance

confirmed significant differences between the two groups in

the gut microbiota alone (Figure 4A, oral: p = 0.904 and

Figure 4C, gut: p = 0.035). Additionally, The Mann-Whitney

U test showed significant differences in the gut microbiota alone

(Figure 4B, oral: p = 0.760 and Figure 4D, gut: p = 0.005).

Linear discriminative analysis effect size
results

We used LEfSe to perform high-dimensional genus

comparisons regarding oral and gut microbiota between ICI

responders and non-responders. Figure 5 shows that the ICI

responder gut microbiota was significantly enriched for

g_Blautia, compared with the ICI non-responder gut

FIGURE 3
Comparisons of oral (A–D) and gut (E–H)microbiota diversities between ICI non-responders and responders. (A,E)Chao1 index, (B,F) observed
species, (C,G) PD_whole_tree, and (D,H) Shannon index.

Frontiers in Molecular Biosciences frontiersin.org06

Shoji et al. 10.3389/fmolb.2022.1040424

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1040424


FIGURE 4
Principal coordinates analysis (A,C) and boxplots (B,D) ofmicrobiota data based on unweighted UniFrac distances between ICI non-responders
and responders at the genus level.

FIGURE 5
Results of LEfSe analysis of differentially abundant taxa in gut microbiota between ICI responders and non-responders.
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microbiota. In contrast, the ICI non-responder gut microbiota

was significantly enriched for o_RF32 unclassified, compared

with the ICI responder gut microbiota. There were no

significant differences in the oral microbiota between the two

groups.

Analyses for progression-free survival and
correlation between the microbiome and
immune adverse events

During a median follow-up of 598 days, 9 of 28 patients had

immune-related adverse events (irAE). Six patients had

hypothyroidism, 2 interstitial pneumonitis, 1 thyroiditis,

1 colitis and 1 hypoadrenalism. We applied Kaplan-Meier

statistics and log-rank testing to evaluate PFS by ICI response,

irAE, relative abundance of g. Blautia and o. RF32 unclassified

(Figure 6). Median PFS was not reached in ICI responders, but

median PFS was 92 days for non-responders (p < 0.0001).

Median PFS was not reached in patients with irAE, but

median PFS was 549 days for patients without irAE (p =

0.0581). Median PFS was not reached in patients enriched gut

microbiota of g. Blautia, but median PFS was 549 days for

patients reduced gut microbiota of g. Blautia (p = 0.0480).

Median PFS was 49 days in patients with gut microbiota of o.

RF32 unclassified, but median PFS was 757 days for patients

without gut microbiota of o. RF32 unclassified (p = 0.0205).

Discussion

Similar studies regarding ICI therapy have focused on the

microbiome in patients who have not yet received ICI therapy.

Those studies revealed that the microbiota diversity and

composition before ICI therapy was a predictive biomarker

for ICI response. Although variations in gut microbiota

composition were observed in the previous studies, there has

been minimal information regarding gut microbiota status

during ICI therapy. This information is important for efforts

to enhance ICI therapy through biotics therapy (e.g., pre-, pro-,

and synbiotics) and/or FMT. This analysis of oral and gut

microbiota profiles in Japanese NSCLC patients during ICI

therapy produced several novel findings.

The gut microbiota might have an important role in the ICI

response in NSCLC patients, although the oral microbiota

conveyed information distinct from the gut microbiota.

Greater numbers of gut microbiota species were observed in

ICI responders than in ICI non-responders. Additionally, those

microbiota mainly consisted of minor species (<1%) at the genus

level. Moreover, the fourth and fifth majority of gut microbiota

species in ICI responder were differed from that in ICI non-

responder, while first to fifth majority of oral microbiota were

same between two groups.

An important tool for objective evaluation of the above data

involves analysis of microbiota diversity: the numbers or

abundances of microorganisms colonizing the gut. Greater

FIGURE 6
Kaplan–Meier curve analysis of progression free survival for 28 patients treated with immune-check point inhibitors (ICI) therapy by (A) ICI
response, blue line: ICI responders; red line: ICI non-responders. The two groups were significantly different [Median survival time (MST): not
reached vs. 92 days, p < 0.0001], (B) immune-related adverse event (irAE), blue line: patients with irAE; red line: patients without irAE. MST: not
reached vs. 549 days, p = 0.0581), (C) abundance of g_Blautia, blue line: patients enriched gut microbiota of g_Blautia; red line: patients
reduced gut microbiota of g_Blautia. The two groups were significantly different (MST: not reached vs. 549 days, p = 0.0480) and (D) presence of o.
RF32 unclassified, blue line: patients with gutmicrobiota of o. RF32 unclassified; red line: patients without gut microbiota of o. RF32 unclassified. The
two groups were significantly different (MST: 49 days vs. 757 days, p = 0.0205).
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alpha diversity indicates larger numbers of species in the gut,

which implies a distinct gut microbiota composition. Several

studies have reported that the ICI response was influenced by the

alpha diversity of the gut microbiota before ICI therapy (Hamady

and Knight, 2007; Gopalakrishnan et al., 2018). In the present

study, high alpha diversity was observed in the ICI responder gut

microbiota. Thus, our results indicated that ICI responders had

more abundant gut microbiota, compared with ICI non-

responders, during ICI therapy.

Our study also revealed a significant association between beta

diversity and ICI response. Higher beta diversity indicates a

significant difference in gut microbiota composition between

two samples. In this study, the intersample distance was

significantly shorter in ICI responders than in ICI non-

responders. Therefore, the ICI responder gut microbiota had

significant similarity, compared with the ICI non-responder gut

microbiota, which implies a simple approach to control the gut

microbiota by adding biotics therapy to ICI therapy.

Additionally, we identified specific gut microbiota species in

Japanese NSCLC patients receiving ICI therapy by using LEfSe.

The results indicated that g_Blautia was enriched in ICI

responders, whereas o_RF32 unclassified was enriched in ICI

non-responders. Several studies have shown significant

associations between various gut microbiota components [e.g.,

Bifidobacterium longum (Fessler et al., 2018), Collinsella

aerofaciens (Fessler et al., 2018), Enterococcus faecium (Fessler

et al., 2018), Akkermansia muciniphila (Routy et al., 2018),

Ruminococcaceae (Gopalakrishnan et al., 2018),

Faecalibacterium genii (Jin et al., 2019) and Firmicutes

(Froehlich et al., 2017)] and clinical response to ICI therapy.

These results differed among individual studies, including the

present study, presumably due to factors such as patient disease

(e.g., melanoma, renal cell carcinoma, and NSCLC) and ICI

regimen. Indeed, Chaput et al. (2017) indicated that the gut

microbiota composition depended on the ICI regimen.

Moreover, these differences might be caused by ethnicities.

Nishijima et al. (2016) compared the gut microbiota between

the Japanese population and individuals from 11 other nations.

Notably, the Japanese gut microbiota was considerably different

from the microbiota of other populations; it was characterized by

the highest abundances of Blautia, Bifidobacterium, Collinsella,

Streptococcus, and an unclassified Clostridiales genus, compared

with the microbiota from the remaining 11 countries.

In addition to its status as a species characteristic of the gut

microbiota in Japanese individuals, Blautia coccoides is regarded

as an effective probiotic species. B. coccoides is an anaerobe and

Gram-positive species found in human fecal samples. Reduced

numbers of B. coccoides are associated with several benign

diseases (e.g., hepatic cirrhosis and encephalopathy, irritable

bowel syndrome, acute diarrhea, idiopathic inflammatory

bowel disease, intestinal inflammation, and diabetes mellitus)

and some malignancies (e.g., colorectal and breast cancers)

(Ghanem et al., 2012; Liu and Tong, 2012). Furthermore,

some reports have revealed that increased numbers of B.

coccoides might be beneficial for human health. B. coccoides is

increased among individuals with diets high in resistant starch

and arabinoxylan (Nielsen et al., 2014); moreover, it can reduce

NF-κB activity in human colon cancer cells (Tap et al., 2011).

Additionally, Blautia obeum is a gut microbiota component

involved in the transformation of carcinogenic heterocyclic

amines, and reduced abundance of this species may increase

heterocyclic amine-induced colorectal cancer risk (Ocvirk et al.,

2019). Myles et al. (2014) reported that high omega-3 intake

altered colonic inflammation and increased Blautia abundance in

a murine model. Recently, Martini et al. (2022) reported that

Blautia species could be a potential biomarker of outcome in

metastatic colorectal cancer and non-small cell lung cancer

patients treated with combined ICI therapy. Therefore, Blautia

may be a key gut microbiota component involved in the ICI

response in Japanese NSCLC patients. Conversely, the relative

abundance of RF32 unclassified has been positively correlated

with colonic damage and inflammation (Castro-Mejía et al.,

2016), which are presumably negative influences on immunity

in NSCLC patients.

The findings in this study indicate that controlling both gut

microbiome diversity and the abundances of specific gut

microbiome species during ICI therapy might lead to ICI

response enhancement in Japanese NSCLC patients. Future

therapies targeting the gut microbiome by means of pre-, pro-

, or synbiotics to enhance the ICI response might be considered

from our findings.

This study had the following limitations. First, only a single

sample collection was performed. Thus, it was unclear how the

microbiota diversity and composition might have changed before

and after ICI therapy. Second, the sample size was small, which

may have interfered with meaningful conclusions. Total

28 patients consisted of 18 with advanced stage and 10 with

postoperative recurrence. Therefore, a statistical power was

insufficient to analyze patients with each stages separately.

Third, the delay between microbiota analysis and start of ICI

therapy was almost 3 times longer in responders versus non

responders, which might have any modifying effect on

microbiota alpha and beta-diversity. Lastly, this study allowed

various ICI regimens with or without combination

chemotherapy. In the future, we plan to perform a large,

multicenter, prospective observational study to evaluate the

association between ICI response and changes in gut

microbiota by collecting samples at multiple points (before

and during ICI therapy) for NSCLC patients receiving a

specific ICI regimen.

In conclusion, this study revealed a strong association

between gut microbiota diversity and ICI response in Japanese

NSCLC patients. Moreover, specific gut microbiota compositions

may influence the ICI response. These findings might be useful in

identifying biomarkers to predict ICI response, as well as in

developing biotic therapies to enhance the ICI response.
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