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ABSTRACT: Benchmarking molecular properties with Gaussian-type
orbital (GTO) basis sets can be challenging, because one has to assume
that the computed property is at the complete basis set (CBS) limit,
without a robust measure of the error. Multiwavelet (MW) bases can be
systematically improved with a controllable error, which eliminates the
need for such assumptions. In this work, we have used MWs within
Kohn−Sham density functional theory to compute static polarizabilities
for a set of 92 closed-shell and 32 open-shell species. The results are
compared to recent benchmark calculations employing the GTO-type
aug-pc4 basis set. We observe discrepancies between GTO and MW
results for several species, with open-shell systems showing the largest
deviations. Based on linear response calculations, we show that these
discrepancies originate from artifacts caused by the field strength and
that several polarizabilies from a previous study were contaminated by higher order responses (hyperpolarizabilities). Based on our
MW benchmark results, we can affirm that aug-pc4 is able to provide results close to the CBS limit, as long as finite difference effects
can be controlled. However, we suggest that a better approach is to use MWs, which are able to yield precise finite difference
polarizabilities even with small field strengths.

1. INTRODUCTION

Molecular electronic structure calculations are a widespread
tool in chemistry, biology, and materials science. Such a
diffusion across disciplines has been enabled by Kohn−Sham
density functional theory (KS-DFT, hereafter just “DFT”)1

which brought about calculations with accuracy comparable to
coupled cluster with singles and doubles (CCSD) at the
computational cost of a single-determinant method like
Hartree−Fock (HF). A large part of the current development
of theoretical methods is concerned with obtaining accurate
energies, which are essential to interpret and predict chemical
reactivity.
Molecular properties constitute another important area of

method development. Electric dipole polarizabilities are related
to important processes in chemistry; for example, they hold a
key role in our understanding of intra- and intermolecular
interactions such as dispersion,2,3 they are at the foundation of
techniques such as Raman spectroscopy and Raman optical
activity,4 and they are employed in the development of
accurate force fields for molecular simulations.5,6 It is therefore
highly relevant to assess the accuracy of polarizability
predictions within the density functional theory (DFT)
framework.
The quality of a given DFT calculation depends on two

factors: the density functional approximation (DFA) and the

basis set. In order to fairly assess the performance of
functionals and basis sets, we must distinguish between these
two sources of error. While an ideal (nonexact) functional
should be accurate and yield a result as close as possible to the
corresponding full configuration interaction (FCI) calculation,
an ideal basis should be precise and minimize the error with
respect to the complete basis set (CBS) limit. Most functionals
and basis sets are developed so as to provide the best possible
energies, which sometimes rely on fortuitous error cancella-
tion. The assessment of accuracy (functional) and precision
(basis set) for molecular properties, such as polarizabilites, is
therefore challenging.
Hait and Head-Gordon7 benchmarked the accuracy of

electric dipole polarizability predictions for a large number of
DFAs against coupled cluster with singles, doubles, and
perturbative triples (CCSD(T)) calculations, for a set of 132
species. They employed the aug-pc4 basis set8−11 for all DFT
calculations, assuming that the obtained quantities were close
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to the CBS limit, although they noted that this assumption may
not hold for certain DFAs. We refer the reader to their
excellent paper for details.7

Even the largest practical Gaussian-type orbital (GTO) basis
sets are far from complete in the mathematical sense. In
general, it must be assumed that GTO basis sets deliver results
close to the CBS limit, even for the large aug-pc4 basis set: one
cannot know how close to the limit a given basis set is without
a reference value, and simply comparing with a larger GTO
basis set does not in general guarantee that one converges to
the CBS limit. For energies, the variational principle serves as a
guide, but quantifying the basis set incompleteness error
(BSIE) for other molecular properties is not a trivial task, and
two issues lie at the heart of the challenge: (i) atomic orbital
(AO) bases are generally developed by minimization of the
total energy as the guiding principle and may therefore not be
optimal for molecular properties, and (ii) hierarchical
constructions of AO bases do not guarantee any rate of
convergence of the molecular properties. While the Hylleraas−
Undheim theorem12 proves that the polarizability for non-
dipolar molecules is a lower bound of the CBS limit, there is no
guarantee that a systematic extension of an AO basis will in
practice reach the CBS limit, unless the basis can formally be
extended to completeness.
Multiwavelets (MWs)13 have recently emerged as a powerful

alternative to the traditional AO bases and are not subject to
the same shortcomings as AO bases. MWs are a particular
choice of wavelets14 used to represent functions and operators
on a real-space grid. To overcome the hurdles posed by real-
space methods, such as large memory footprint and computa-
tional cost, MWs exploit adaptive grid refinement15−17 and
Cartesian separated representation of the required operators.18

Such features are combined with a rigorous formalism with
strict error control.19−21 For molecular energies, it is possible
to request a predefined precision with respect to the CBS limit,
and for molecular properties such as polarizabilities, a steady
progression toward the corresponding limit is observed.22 MW
calculations of polarizabilities performed at high precision can
be employed as a true reference because they can be assumed
complete to within the given precision. Such capabilities have
been recently exploited in our group to perform two extensive
benchmark studies on total and atomization energies20 and on
magnetizabilities and NMR shielding constants.23

The objective of the present paper has been to use MWs to
assess whether aug-pc4 indeed is capable of delivering
polarizabilities at the CBS limit, by comparing MW-based
polarizabilities to the recent aug-pc4 benchmark.7 We start by
describing the mathematical framework for computing
molecular properties with MWs. Next, we report the
computational details and present and discuss our results.
We also touch upon additional benefits of MWs related to the
finite differences (FD) approach, and finish by summarizing
our findings.

2. THEORETICAL FRAMEWORK

2.1. Molecular Properties as Energy Derivatives.
Molecular energies are affected by the presence of external
fields. In particular, when a static electric field is applied, the
total energy of the molecule can be expressed as a Taylor
expansion with respect to the external field F24
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where a, b, c, ... are Cartesian directions. Such an expansion
implicitly defines the components of the dipole moment (μ),
the polarizability (α), and the hyperpolarizabilities (here
limited to the first and second hyperpolarizabilities, β and γ,
respectively).
The dipole moment components μa can be obtained as a

simple expectation value of the corresponding dipole operators
μ̂a. Several approaches can be employed to compute
(hyper)polarizabilities. Hait and Head-Gordon7 have em-
ployed a second-order FD expression of the energy. For the
diagonal components of the polarizability tensor, the
expression reads
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Such an expression is formally equivalent to taking the
derivative of eq 1 with respect to the external field and then
applying a linear finite difference formula to the dipole
moment:
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Both formulas have a leading error term that is quadratic in the
applied field and proportional to the second hyperpolariz-
ability. To minimize the error, it is therefore necessary to
employ small fields, especially for molecules with large γ.

2.2. Multiwavelets. Wavelet theory is a relatively recent
branch of mathematics, dating back to the 1980s.14,25 It
constructs functions with the following properties: they are
localized in both real and Fourier space, they achieve
completeness as a limit in the L2 sense, and they provide
rigorous error control. Multiwavelets are a particular kind of
wavelets that include several functions in one interval, as the
“multi” prefix suggests. For the construction of MW bases and
details about their properties, we refer to the literature on the
subject.13,15

Finite Field Polarizability with Multiwavelets. In 2004,
Harrison and co-workers19 for the first time used MWs to solve
the Kohn−Sham (KS) equations of DFT, demonstrating that
arbitrary precision with respect to the CBS limit can be
achieved also for general molecular systems;19,26,27 previously,
this was possible only for very small and highly symmetric
molecules.28

Due to the large number of primitive MW basis functions
necessary for the precise represention of the molecular orbitals,
it is not practical to solve the KS equations in the traditional
way by constructing the primitive Fock matrix and solving the
corresponding Roothaan equations. Instead, the equations are
rewritten in integral form

φ φ= − ̂ ̂G Vi i i (4)

using the bound-state Helmholtz integral operator, which is
given as the inverse of the kinetic energy operator shifted by
the orbital energy Ĝi = (T̂ − ϵi)

−1. There are several benefits
with this reformulation: (i) it avoids the explicit construction
and diagonalization of the primitive Fock matrix; (ii) it allows
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for different and adaptive primitive basis sets for each orbital;
(iii) it avoids the application of the kinetic operator as a second
derivative, which is not numerically stable in the discontinuous
MW basis; and (iv) the implicit construction of a huge virtual
orbital space is not necessary, and one solves instead only for
the occupied orbitals by iterating eq 4 to self-consistency.
In the presence of a uniform electric field F⃗, the KS potential

operator in eq 4 reads

μ̂ = ̂ + ̂ + ̂ − ⃗· ⃗ ̂V V J V Fnuc xc (5)

which features the nuclear (V̂nuc), Hartree (J)̂, and exchange-
correlation (V̂xc) potentials. By solving the corresponding KS
equations to obtain the ground state density ρ = ∑i |φi|

2, we
can compute the electric dipole moment as a function of field
strength from the expectation value

∫μ μ ρ⃗ = ̂ ⃗ =F F r a x y z( ) ( ) d , , ,a a (6)

This procedure can be used to approximate the electric
polarizability through the finite difference formula in eq 3.
Linear Response Polarizability with Multiwavelets. The

starting point to obtain linear response properties with
multiwavelets is standard perturbation theory. A small
perturbation ĥ(1) is introduced, and all terms in eq 4 are
expanded to first order into a set of Sternheimer
equations,22,29−31 which can be written in integral form

φ φ ρ φ= − ̂ [ ̂ + − ̂ ̂ + ̂ ]G V h V(1 )( )i i i i
(1) (0) (1) (0) (1) (1) (0)

(7)

where Ĝi is the same as that for the ground state problem and
ρ̂(0) is the ground state density projector, while V̂(0) = V̂nuc

(0) +
J(̂0) + V̂xc

(0) and V̂(1) = J(̂1) + V̂xc
(1) are the unperturbed and first-

order perturbed potential operators, respectively. At this point,
all unperturbed quantities are already known from solving the
ground state problem, whereas first-order quantities are
obtained by iterating eq 7 to self-consistency. The perturbed
orbitals are then used to build the corresponding density
perturbation

∑ρ φ φ= 2
i

i i
(1) (1) (0)

(8)

Here we have assumed real, time-independent perturbations:
only one set of real, perturbed orbitals is obtained, which
simplify the expression for the perturbed density.
The polarizability tensor is computed as the expectation

value of the dipole operator μ ⃗ ,̂ on a density perturbed by the
same operator

∫α μ ρ= ̂ =r a b x y zd , , , ,ab a b
(1)

(9)

For details about the general derivation of time-dependent and
imaginary (magnetic) perturbations in a MW framework, we
refer the reader to the works by Sekino et al.22 and Jensen et
al.,23 respectively.

3. COMPUTATIONAL DETAILS
Cartesian coordinates of the species studied here were
obtained from Hait and Head-Gordon,7 and a list of the
species and their spin multiplicities is given in Table 1. The set
of 124 species includes 92 closed-shell and 32 open-shell
systems. The set is slightly smaller than the original one
provided in the mentioned benchmark,7 due to convergence
issues encountered for the remaining species (missing species:

CH3O, PS, CH3, NO, CH2, BH2, SH, S2). All coordinates and
spin multiplicities are available in the form of XYZ files in the
Supporting Information, together with Python scripts in the
form of Jupyter Notebooks for our data analyses and figure
generation.

3.1. Multiwavelet Calculations. MW calculations were
performed with a prereleased version (1.0.0-alpha) of the
MRChem program package.32−34 The relative numerical
precision was set to ϵrel = 1 × 10−7, the MW polynomial
order to 11, and the norms of the orbital residuals between
consecutive iterations (∥ϕi

n+1 − ϕi
n∥) were converged to within

ϵmo = 1 × 10−6, both for unperturbed and perturbed orbitals.
In general, it is expected that the converged total energy

should be correct at least within ϵrel with respect to the CBS
limit (relative precision). The orbital convergence necessary to
reach this precision in total energy is roughly ϵ ϵ=mo rel
because of quadratic error propagation. However, since we are
also interested in properties with linear error propagation
(dipole moment and polarizability), we converge the orbitals
well beyond this point in order to get the maximum number of
digits out of the chosen numerical precision ϵrel,

35 and we then
expect around ϵmo absolute precision in dipole moment and
polarizability.
Static polarizabilities were computed with DFT using the

LDA36 and PBE37 functionals, provided by the XCFun
library.38 Closed-shell species were treated with the spin-
restricted formalism, and open-shell species, with the spin-
unrestricted formalism. We used the central two-point finite
difference formula of eq 3 to compute the diagonal elements
αaa of the polarizability tensor. Field strengths of ±0.001 au
were used for all species. Calculations without an applied
electric field were first performed to generate initial orbitals for
the FD calculations. Initial orbitals for zero-field calculations
were generated by the superposition of atomic densities (SAD)
method.39 All MW calculations benefited from the Krylov
subspace accelerated inexact Newton (KAIN) convergence
accelerator.40

To validate our results, we also used MWs to compute static
polarizabilities with linear response (LR) for a subset of the
species. PBE response calculations were performed for 17 of
the 124 species (closed-shell only), while LDA response

Table 1. 124 Species and Their Spin Multiplicities Used in
This Study, Sorted Alphabeticallya

aThe numbers of closed-shell and open-shell species are 92 and 32,
respectively. Closed-shell species are indicated in blue, while open-
shell species are indicated in red.
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calculations were performed for 114 species. Numerical
instabilities for GGA functionals at low-density values affected
the convergence of the PBE LR calculations, explaining the low
success rate. However, the cases that did converge are as
precise as the corresponding LDA calculations: they converged
to within 1 × 10−6, indicating that they are not affected by
these instabilities.
3.2. GTO Calculations. All FD results are taken from the

work of Hait and Head-Gordon.7 They used the energy
expression in eq 2 to estimate the polarizability using a field
strength of 0.01 au. However, they identified a few cases that
were contaminated by hyperpolarizabilities, for which they
reduced the field strength to 0.001 au, but this diagnosis was
performed only at Hartree−Fock level and simply transferred
to the DFT calculations.
In order to assess if further contamination could be present

in the DFT results of Hait and Head-Gordon,7 we performed
analytical polarizability calculations using the ORCA program
package, version 4.1.2,41 with the PBE functional and the aug-
pc4 basis set.8−11 All species were treated with the spin-
unrestricted formalism, and the integrals were computed over
an angular Lebedev grid consisting of 770 points and a radial
grid consisting of 50, 55, and 60 points for first, second, and
third row elements, respectively (“grid7”). Self-consistent field
convergence was accelerated by the direct inversion of the
iterative subspace (DIIS) method.42,43 The total energy change
was converged to within 1 × 10−9 Eh, and the one-electron
energy change to within 1 × 10−6 Eh (as defined by the
“VeryTightSCF” ORCA keyword). The (default) resolution of
identity (RI) approximation was turned off for all calculations
in order to guarantee benchmark quality of the results (some
initial test runs indicated a large dependence on the choice of
auxiliary basis set).
3.3. Data Analysis. For all error analyses, we used the

average polarizability, α̅, defined as

∑α α̅ =
=

1
3 a x y z

aa
, , (10)

Polarizabilities from different calculations were compared using
the relative error (RE) metric, which for species n was given by

α α
α

= ̅ − ̅
̅

REn
n n

n

REF

REF
(11)

where the reference value may change depending on the
comparison. The mean relative error (MRE) over N molecules
was defined as

∑= | |
=N

MRE
1

RE
n

N

n
1 (12)

3.4. Linear and Degenerate Open-Shell Systems. We
have given special treatment to seven species in our data
analysis (vide inf ra). In order to motivate this decision, it will
be useful with a reminder of the electronic structure of linear
and open-shell systems with a degenerate ground state. Such
systems are particularly challenging to model for mean-field
methods such as DFT. Let us consider NO as a prototypical
molecule. It has an unpaired electron in a π orbital. Ideally, πx
and πy are degenerate, but mean-field approaches break the
symmetry as soon as one of the two orbitals is populated (the
density and hence the KS potential become non-totally
symmetric). For such systems, Hait and Head-Gordon7

reported identical values for αxx and αyy, which is not what
we observed: our MW-FD polarizabilities show that one
component (the larger one) is virtually identical to the GTO-
FD value, whereas the other is slightly smaller. According to
Hait and Head-Gordon,44 the smaller component should in
this case be discarded as being unphysical, in connection to the
symmetry breaking occurring for mean-field approaches.45

Since the main objective of the present paper is to quantify the
BSIE for the GTO basis set aug-pc4, we decided that the fairest
analysis could be made by performing the same procedure as
that by Hait and Head-Gordon.7 We therefore explicitly set αxx
= αyy in our MW data set by selecting the component closest to
the xx/yy component reported by Hait and Head-Gordon.7

The seven species that received the above treatment in our
data analysis are SCl, OCl, OH, OF, SF, BN, and NCO. To
qualify for the special treatment, they had to fulfill the
following three criteria (to within a tolerance of 1 × 10−4):

1. αxx = αyy in Hait and Head-Gordon’s data set
2. αxx ≠ αzz in Hait and Head-Gordon’s data set
3. αxx ≠ αyy in our data set

Figure 1. Scaling of computation time with precision for squences of calculations on SiH3Cl using MRChem and ORCA. MWn correspond to ϵrel =
10−n and ϵmo = 10ϵrel, and all errors are measured against the corresponding MW7 calculation, which is the parameter chosen for the full benchmark
study below. The left and center plots show timings for a single finite field (FF) calculation with field strength 0.001 au in the z direction (along the
Si−Cl bond) vs errors in total energy and the z component of the dipole moment, respectively. The right-hand plot shows the timings for the full
polarizability tensor from linear response (LR) vs the error in its isotropic average. Note: ORCA calculations are on 8 CPU cores, while MRChem
are on 96 cores, so the computational cost is not directly comparable.
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3.5. MW vs GTO: Practical Considerations. Availability.
MRChem is one of two programs currently available that offer
an all-electron MW basis (the other is MADNESS46). Detailed
instructions on how to obtain and compile the MRChem code,
as well as a user manual, are available on the documentation
web page.34

Ease of Use. From a user standpoint, selecting appropriate
GTO basis sets for a particular application is not a simple task:
The high parametrization of GTO basis sets means the user
has to carefully evaluate several factors, for example, which
family of GTOs to use (Pople, Jensen, Karlsruhe, Ahlrichs,
Dunning, etc.), how many polarization functions to use, how
many diffuse functions to use, whether to treat different atoms
differently, and so on. Although the result can be converged to
a limit within the given basis, no knowledge about the CBS
limit can be inferred from it. Selecting the best basis is not
trivial, and suboptimal choices based on “habit” and “popular-
ity” are common (analogous to the “zoo” of DFAs47).
For MW calculations, all the user must do is to specify an

overall numerical precision, in terms of convergence thresholds
for energy and orbitals. This precision parameter is relative to
the exact CBS limit, which is a key distinction from GTO.
MWs can therefore provide the user with excellent precision
and a quantifiable error without expert knowledge about basis
sets.
Cost and Performance. At present, a calculation at

moderate precision is cheaper to perform with GTOs because
of a smaller prefactor. At very high precision, MW calculations
become more competitive due to a linear scaling with respect
to the precision. The most severe limitation of MWs is the
memory requirements, which is rather demanding. For the
molecules used in the present work, the total memory needed
for the MW-FD calculations was typically between 50 and
150GB (Figure 4 in the Supporting Information), although this
is rather efficiently distributed across several compute nodes on
a cluster. The number of CPU hours needed for the MW-FD
data set is presented in Figure 5 in the Supporting Information.

Figure 1 presents plots of computation time against
increasingly larger GTO and MW basis sets for the calculation
of total energy, dipole moment, and polarizability for the
SiH3Cl molecule: it shows that each additional digit of
precision for MWs requires a predictable doubling of CPU
time, while moving along the aug-pcn (n = 1, 2, 3, ...) series
increases the computational cost by a larger factor, without a
guarantee of gaining an additional digit in precision.

4. RESULTS AND DISCUSSION
A challenge in computational benchmark studies is the
precision of the basis set: one has to assume that the
computed reference property is at the CBS limit. The large
GTO basis set aug-pc47,48 has been assumed to be close to the
CBS limit for electrical properties. Here, we attempt to
evaluate if aug-pc4 indeed is at the CBS limit for static
polarizability predictions, by quantifying the BSIE associated
with this basis set. We do this by comparing our reference MW
polarizabilities to a recent aug-pc4 benchmark on DFT static
polarizabilities.7 All data presented herein are available via the
Supporting Information accompanying this Article, or as a
separate document at the Dataverse open-data repository.49

In order to isolate BSIEs, we need a detailed understanding
of other potential errors, and in particular the error associated
with using a finite field approach. In order to assign errors to
the right source, we have considered the following types of
calculations: (1) GTO-FD calculations; (2) MW-FD calcu-
lations; (3) GTO-LR calculations; (4) MW-LR calculatations.
The comparison of GTO-FD vs MW-FD is the central point

of this contribution. The comparison of GTO-FD vs GTO-LR
will shed light on potential errors due to finite field effects with
GTOs; the comparison of MW-FD vs MW-LR will show how
much MW results are affected by the FD approach, and the
comparison of MW-FD with GTO-LR will be used to double-
check that the discrepancies observed have been attributed
correctly. The RE distributions listed here are summarized in
Figure 2.

Figure 2. Violin plot summarizing the RE distributions discussed. Red dots indicate data points. The internal validation of our MW results
demonstrates that the MW-FD polarizabilities are virtually free from field strength-related effects. GTO-FD polarizabilities display quite large
errors, considering the size of the aug-pc4 basis set that was used, while GTO-LR display much smaller errors.
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4.1. Consistency of the MW Calculations: MW-FD vs
MW-LR. To make sure that our MW-FD polarizabilities were
not contaminated by field-related effects, we compared the
MW-FD polarizabilities to MW-LR results, using both LDA
and PBE, as shown in the right-most plots in Figure 2. The
LDA validation included 114 of the 124 species, while the PBE
validation included 17 closed-shell species. All results about
these validations, including the list of species with converged
LR values, are reported in the Supporting Information.
The maximum absolute RE and MRE of the LDA validation

were 0.23 and 0.011%, respectively. The PBE validation

yielded similar statistics. The PBE set was limited due to
convergence problems. Nevertheless, we see no indication that
LDA and PBE behave differently.
Based on the very high numerical precision that has been

used throughout, we expect that the remaining discrepancy
between MW-FD and MW-LR is due to the field strength of
0.001 au, although this has not been verified numerically. We
conclude that our MW-FD polarizabilities have field-related
errors at least below 1% but usually much lower than this.

4.2. How Good Are FD Results with the aug-pc4
Basis? To judge the quality of the FD aug-pc4 results, we

Figure 3. Distribution of REs of PBE polarizabilities for the 124 species, comparing GTO-FD with MW-FD, using the latter as a reference. The
dashed lines are located at ±0.5% RE.

Figure 4. Distribution of REs of PBE polarizabilities for the 124 species, comparing GTO-FD and GTO-LR (both aug-pc-4), using the latter as a
reference. The dashed lines are located at ±0.5% RE.

Figure 5. Correlation between the RE distributions presented in Figure 4 (x-axis) and Figure 3 (y-axis). The red dashed line indicates a least-
squares linear fit with r2 = 0.97.
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compared our MW-FD polarizabilities to the published GTO-
FD polarizabilities.7 The distribution of REs for all 124 species,
as defined in eq 11 and with MWs as a reference, are presented
in the left-most plot in Figure 2 and in more detail in Figure 3.
Several features are revealed:

1. The error distribution suggests that FD aug-pc4 on
average performs quite well, yielding a RE smaller than
±0.5% for most species.

2. GTOs seem to overestimate static polarizabilities, which
may be counterintuitive as analytical polarizabilities are
variationally approached from below.12

3. The most challenging species have open-shell electronic
structures.

4. Six species have an RE larger than 1%, which, when
considering the size of the basis set employed, should be
considered significant errors: Li (7.3%); FH−OH
(3.3%); HO2 (2.3%); NaCl (1.9%); NaCN (1.5%);
BeH (1.2%).

4.3. Is It a Basis Set Issue or an FD Issue? In order to
evaluate whether the errors in Figure 3 arose from the FD
approach, we compared the GTO-FD polarizabilities to
computed GTO-LR values. The RE distribution for this
comparison, using the analytical polarizabilities as a reference,
is presented in the second plot in Figure 2 and in more detail
in Figure 4. At first sight, the distribution is very similar to the
one presented in Figure 3, indicating that GTO-FD polar-
izabilities have been contaminated by external field-related
effects (the aug-pc4 benchmark study7 used a field strength of
0.01 au for most species). To rule out the possibility that the
two distributions incidentally show similar shapes, we plotted
the two distributions against each other, species for species in
Figure 5. Linear regression yielded an r2 value of 0.97. Here it
is clear that the error for one species is more or less the same
across the two distributions, further indicating that the GTO-
FD polarizabilities have been contaminated. Thus, our results
show that the observed deviations between MW and GTO
(aug-pc4) polarizabilities in Figure 3 are predominately field-
strength-related errors in the GTO-FD values.
4.4. What Is the True BSIE? In order to return to our

original objective, the estimation of BSIEs in static polar-
izability predictions with the aug-pc4 basis set, we ultimately
chose to compare GTO-LR and MW-FD values. Based on the
above discussion, this comparison should yield the fairest
estimation of the BSIE of aug-pc4. The RE distribution is
presented in the center plot in Figure 2, and in more detail in
Figure 6, and it is clear that the REs have been dramatically
reduced for almost all species. Two species stand out with REs

larger than 0.5%: HO2 (2.1%) and Na (0.9%). While both have
open-shell (doublet) electronic structures, it is not clear what
the origin of their relatively large REs may be. Despite the two
outliers, the comparison in Figure 6 shows that the BSIE for
aug-pc4 is very small.

4.5. Multiwavelets Can Handle Smaller Field
Strengths than GTOs. Using FD calculations to estimate
molecular response properties is a very simple approach, but it
requires a careful consideration of the applied field strength. A
weak field is required in order to stay within the linear regime,
but this at the same time leads to the amplification of
numerical errors due to cancellation of significant digits in the
nominator of eq 3; a large field reduces numerical noise but
simultaneously increases nonlinear effects from higher-order
responses, leading to deviations from the correct result. The
optimal compromise is therefore the weakest possible field that
induces a sufficiently large first-order response in the dipole to
obtain a sufficient number of digits in the polarizability.
Examples of nonlinear behavior for a few species are presented
and briefly discussed in the Supporting Information.
The MW framework guarantees that the computed dipoles

are at the CBS limit with a controlled and systematically
improvable precision:50 the number of correct digits in the
calculated polarizabilities can be improved systematically by
tightening the precision thresholds. Therefore, MWs can make
use of very small fields (10−3 or less) to eliminate higher-order
responses, while still controlling the numerical noise by making
use of tighter thresholds. As shown in Figure 1, even aug-pc4
has an error of roughly 10−3 in the energy as well as in the
dipole moment, whereas the best MW calculation (MW7)
yields three additional digits (10−6). Making use of such a
small field for GTOs will therefore heavily rely on error
cancellation.

5. CONCLUSIONS

We have shown that GTO-FD polarizabilities presented by
Hait and Head-Gordon7 display quite large errors, considering
the size of the aug-pc4 basis set used. However, we conclude
that these errors mainly originate from field strength-related
effects and not from BSIEs. Indeed, GTO-LR polarizabilities
computed with aug-pc4 are very close to the CBS limit, which
we have confirmed by comparing to very precise MW reference
calculations. Specifically, we show that the observed errors
exceeding 1% in GTO-FD polarizabilities are attributed to a
field strength of 0.01 au, while the MRE of 0.06% in GTO-LR
polarizabilities is attributed to the BSIE of aug-pc4.

Figure 6. Distribution of REs of PBE polarizabilities for the 124 species, comparing GTO-LR with MW-FD, using the latter as a reference. The
dashed lines are located at ±0.5% RE.
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The internal validation of our MW results demonstrates that
MW-FD polarizabilities can be made virtually free from field
strength-related effects, because numerical issues arising from
using very small fields can be countered by tightening the MW
thresholds. Our MW-FD polarizabilities using a field strength
of 0.001 au show a MRE of 0.02% relative to a MW-LR
reference.
For future benchmarks of any property, we recommend to

validate that the reference data indeed is at the CBS limit by
comparing to MW results.
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