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Summary

As our understanding of mycology progresses, the impact of fungal

microbes on human health has become increasingly evident. Candida albi-

cans is a common commensal fungus that gives rise to local and systemic

infections, particularly in immunocompromised patients where it can

result in mortality. However, C. albicans has also been quietly linked with

a variety of inflammatory disorders, to which it has traditionally been

considered incidental; recent studies may now provide new aspects of

these relationships for further consideration. This review provides a novel

perspective on the impact of C. albicans and its peptide toxin, candi-

dalysin, on human health, exploring their contributions to pathology

within a variety of diseases.
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ease.

Introduction

Candida albicans is a prevalent fungus that comprises part

of the healthy human microbiota. Within such microbial

communities, C. albicans often exists as a harmless com-

mensal yeast in low-to-moderate numbers, likely kept in

check by competing microbes and host immunity. Its

ability to shift from commensal to infectious pathogen is

of particular interest to the clinical understanding of Can-

dida infections and remains incompletely understood.

Current evidence suggests that pathogenic switching is

primarily a consequence of immune compromise brought

about by a variety of factors including microbial environ-

ment,1 immune-suppressive drug treatment and pre-exist-

ing infection or disease.2–4 Indeed, immunocompromised

patients are particularly susceptible and exhibit mucosal

candidiasis of enhanced severity and frequency, with

potential to progress to systemic candidaemia. This repre-

sents a significant clinical burden, with ~ 2 000 000 infec-

tions in HIV + patients and 700 000 total systemic

infections recorded in 2017.5

In addition to conditions that occur as a result of per-

sistent or severe Candida infection, such as oral and

vulvovaginal candidiasis (VVC) or systemic candidaemia,

an increasing number of seemingly unrelated diseases

have also been reported to show association with Candida

infection. Elevated incidence of candidiasis has been

linked with periodontitis,6–9 inflammatory bowel disease

(IBD),10,11 and skin12–14 and respiratory disorders,15–18

among others; however, the causal relationship in such

circumstances remains unclear. Whilst weakened immu-

nity occurring as a result of disease may certainly favour

growth of opportunistic fungi, a role for C. albicans in

perpetuating ongoing disease and promoting acute or

chronic pathology may also warrant consideration, partic-

ularly in the context of its secreted toxin, candidalysin.

Candidalysin is a recently described cytolytic peptide

exclusively secreted by pathogenic hyphal forms of C.

albicans.19 Interestingly, candidalysin plays an important

role in triggering innate antifungal immunity during

infection,20,21 which is largely governed by neutrophil and

interleukin (IL)-17 responses.22–25 This review will exam-

ine the variety of diseases associated with C. albicans

infections and assess the role of this fungus and its toxin,

candidalysin, in disease development and associated

pathology.

Abbreviations: AD, atopic dermatitis; AMPs, antimicrobial peptides; CNS, central nervous system; ECM, extracellular matrix;
EGFR, epidermal growth factor receptor; EMT, epithelial–mesenchymal transition; IBD, inflammatory bowel disease; IL-17, Inter-
leukin; MMPs, matrix metalloproteinases; MS, multiple sclerosis; SAFS, severe asthma with fungal sensitization; VVC, vulvovagi-
nal candidiasis
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IL-17-mediated disorders

The IL-17 signalling pathway possesses critical roles in

immune regulation, and aberrant function results in a

range of diseases that share a common feature of chronic

inflammatory-induced pathology. This is best defined by

IL-17A, the most studied IL-17 family member, which

has been shown to contribute to dermatitis,26,27 psoria-

sis,28 IBD,29,30 arthritis,31 multiple sclerosis (MS),32 peri-

odontal disease6,7 and systemic lupus erythematosus,33

among other inflammatory diseases. Though much is still

unknown about the mechanisms of IL-17-mediated

pathology, its potent induction of antimicrobial peptides

(AMPs), proinflammatory cytokines and downstream

neutrophil recruitment34–37 is thought to contribute. Of

particular interest is the central role of IL-17A in orches-

tration of antifungal defences. IL-17A and associated

effector molecules and cells are potently induced in

response to C. albicans infection,38–41 with candidalysin

accounting for robust induction of early and innate ‘nat-

ural’ Th17 cell-derived IL-17A.20

Notably, elevated incidence or sensitization to C. albicans

is often observed in a specific group of IL-17-mediated

pathologies localized at mucosal and epithelial surfaces.

These include periodontitis,6–9 atopic dermatitis (AD),14,42

psoriasis,43,44 IBD,10,11 mycotic keratitis45 and severe

asthma with fungal sensitization (SAFS).17,18 Moreover,

evidence of improved disease outcomes following antifun-

gal measures has been observed and suggests a role for C.

albicans in contributing to disease pathology. Examples

include tamoxifen-induced C. albicans inhibition to reduce

severity of periodontitis in women,46 as well as fluconazole

treatment47 or faecal microbiota transplantation (inhibiting

C. albicans burdens)48 to rescue ulcerative colitis symptoms

in mice. There are also limited reports of improved C. albi-

cans-related respiratory diseases following fluconazole

administration15,49 (though Aspergillus species have been

better studied in airways disease50,51). It is likely that other

examples could be found by investing more research into

C. albicans in this context.

Furthermore, candidalysin can directly induce IL-

1b,21,52 IL-3653,54 and the NLRP3 inflammasome,55,56 cen-

tral proinflammatory components known to significantly

contribute to IL-17-mediated diseases.57–61 Together,

these studies suggest a role and potential mechanisms for

C. albicans in contributing to the elevated immune

response and pathology observed in IL-17-mediated

inflammatory diseases. However, the relationships are

complex. Therapeutic blockade of IL-17, whilst beneficial

in MS,62 arthritis63 and psoriasis,64 does not improve

AD68 and was shown to result in exacerbation of exist-

ing65,66 and even de novo67 IBD pathology, as well as

increased incidence of Candida infections.29 Greater

understanding is thus required to fully delineate the com-

plex mechanisms underlying IL-17-mediated diseases and

how Candida or indeed other fungal species may impact

pathology.

A significant component of successful IL-17-mediated

antifungal response is potent neutrophil recruitment and

activation,39,69 which, at an early stage in infection, can

be triggered by the presence of candidalysin.20 Interest-

ingly, whilst a robust neutrophil response functions to

resolve oral21,22 and central nervous system (CNS)25 C.

albicans infections, neutrophils are found to drive pathol-

ogy of VVC,52,70 Candida keratitis (CaK),71 systemic can-

didaemia72 and C. albicans-associated cystic fibrosis, with

the latter arising from neutrophil-induced degradation of

chitinase, suppressing host ability to protect against chitin

containing C. albicans.73 These studies suggest a delicate

balance and complexity of antifungal neutrophil

responses, which are likely dependent on multiple com-

ponents. Continued research may determine the underly-

ing factors leading to pathology in this context.

Barrier integrity and disease

Another component often compromised in disease and

particularly in infection is the epithelium. Its integrity

and function as a selectively permeable barrier are depen-

dent on cohesive contacts between neighbouring epithelial

cells. This is largely provided by E-cadherin, a transmem-

brane glycoprotein that forms binding pairs with that of

neighbouring cells, which, clustering together at adherens

junctions, are supported by the cytoskeleton to form a

tight belt across the epithelium that fastens cells

together.74 In addition to structural defences, a healthy

epithelium provides front-line induction of innate

immune responses through release of alarmins, AMPs

and immune cell chemokines, all of which are addition-

ally compromised upon loss of barrier integrity. Notably,

periodontal,75–77 gut78–80 and skin81–83 disorders are com-

monly associated with the loss of E-cadherin, resulting in

enhanced barrier permeability and inflammatory pathol-

ogy, with restoration of E-cadherin showing improvement

in disease outcomes.84

Candida albicans infection has also been shown to

diminish E-cadherin expression in both in vivo and

in vitro infection models,85–87 with candidalysin high-

lighted as a direct contributor to epithelial damage, loss

of barrier integrity and subsequent translocation of C. al-

bicans across the intestinal epithelia.88 As the gut is con-

sidered the main site of C. albicans entry into the

bloodstream,89 where it may lead to systemic candidaemia

and mortality, the pathological impact of Candida and

candidalysin at this organ appears highly significant. The

ability of C. albicans to diminish E-cadherin expression

and other cell adhesion proteins such as occludin and

desmoglein-2,90 and diminish barrier integrity, may be of

particular interest in the context of IBD, oral and skin

disorders.
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Recently, alcoholic hepatitis was found to be another

potential example of the pathological impact of C. albicans

in breaching gut barriers.91,92 The gut–liver axis describes
the relationship and role of the gut microbiome in shaping

healthy liver metabolism. This connection is supported by

the close anatomical proximity between the gut and liver,

as well as a specialized portal circulation, which permits

enhanced permeability and interaction between gut-

derived substances and liver-resident cells. Gut-derived

bacterial components and endotoxins in particular have

long been implicated in driving alcoholic liver disease.93,94

Recent studies now show a similarly significant role for C.

albicans. Upon infection, ligation of C. albicans b-glucans
to host dectin-1 receptors on liver-resident macrophages

(kupffer cells), results in inflammatory IL-1b release and

enhanced ethanol-induced liver disease in mice.91 A sec-

ond, non-dectin-1-mediated but candidalysin-induced

mechanism also drives elevated hepatic damage, steatosis

and mortality in ethanol-fed C. albicans-infected mice.92

The authors additionally observe that alcoholic hepatitis

patients carry elevated levels of the candidalysin-encoding

gene, ECE1, when compared to healthy controls. These

data identify two distinct C. albicans mechanisms, each

independently promoting alcoholic hepatitis and highlights

this pathogen as a new and considerable factor for the

development of alcoholic liver disease.

Dysregulated growth signalling

The ability of C. albicans to activate the epidermal growth

factor receptor (EGFR) may also contribute to C. albicans-

associated comorbidities. The EGFR is a transmembrane

protein with a broad range of functions controlling various

cell proliferative and maintenance roles, in addition to

immune induction. It is often found highly dysregulated,

via overexpression or constitutive activation, in a select

group of cancers including head and neck, breast, lung,

colon and vulvovaginal cancers.95 Interestingly, the major-

ity of these EGFR-associated cancers are located at sites

where C. albicans commonly infects, with reports provid-

ing contrasting evidence both for and against elevated inci-

dences of candidiasis in these patients. Whilst immune

suppression resulting from anticancer therapy may indeed

play a role, a long-standing debate on the ability of C. albi-

cans to potentiate oncogenic disease exists, primarily in

oral cancer. Recent studies may now provide additional

aspects for consideration.96

C. albicans infection potently activates the EGFR. Upon

cell adhesion, EGFR is bound and activated by the fungal

cell wall protein Als3p, which initiates endocytosis of the

fungus, providing an entry mechanism into host cells.97

Additionally, candidalysin can indirectly activate EGFR

through a complex mechanism involving matrix metallo-

proteinases (MMPs) and EGFR ligands, resulting in down-

stream immune activation.21 Notably, MMPs98 and EGFR

ligands95 are each independently implicated in a number of

cancers. Other observations suggesting contribution to can-

cer development include the ability for C. albicans to acti-

vate epithelial MAPK99 and ERK signalling pathways,

which are associated with growth and proliferation; loss of

E-cadherin and occludin,90 observed in epithelial–mes-

enchymal transition (EMT); activation of angiogenesis100

and pro-angiogenic factors;101,102 and the ability of Can-

dida to enhance production of known carcinogenic

Keratitis Periodontitis

Severe asthma with
fungal sensitisation

(SAFS)

IBD

Psoriasis and
Dermatitis

Systemic
candidaemia

Alcoholic
liver disease

Colon

Vulvovaginal

Lung

Head and neck

Disease resulting from
enhanced IL-17 signalling

Disease arising from C. albicans
breach of gut epithelium

Cancers located at sites
commonly infected by C. albicans

Figure 1. Candida albicans potential contribution to disease. Potential C. albicans mechanisms of contributing to disease include potent induc-

tion of IL-17 signalling, breach of gut epithelial barriers and activation of multiple cancer-associated factors.
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molecules such as nitrosamines103,104 and acetalde-

hyde.105,106 However, clinical and in vivo evidence substan-

tiating a direct causal or potentiating role for C. albicans in

cancer is particularly limited. As such, the association here

remains ambiguous.

Activation of MMPs is also observed in oral disease,107

resulting in breakdown of gingival and periodontal liga-

ment collagens, tissue remodelling, inflammation and

uncontrolled extracellular matrix (ECM) turnover, also

associated with cancer.108,109 Investigation into potential

links with C. albicans would be of great interest given the

known associations of this fungus with oral disease, its

ability to signal through21 and induce MMPs,110 and

MMP activation being a demonstrated mechanism for

disease utilized by other oral pathogens.111,112

Conclusions

As we increase our understanding of C. albicans induced

pathophysiology, the potential for infection to contribute to

several comorbidities becomes increasingly apparent. Its nat-

ural distribution throughout the body and ability to activate

events highly linked with disease may be of significant conse-

quence. Induction of IL-17-mediated signalling, breach of

epithelial barriers and activation of cancer-associated factors

provide the most convincing examples of its ability to con-

tribute to disease (summarized in Fig. 1), though greater

understanding is required to fully delineate its role in these

instances, as well as others, yet unknown. Further research

into the association of C. albicans with these diseases shall

undoubtedly shed light on new mechanisms of disease devel-

opment, which may shift perceptions of this under-investi-

gated microbe and its influence on human health.
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