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A B S T R A C T   

The coronavirus disease 2019 (COVID-19) pandemic has disrupted childhood vaccinations, including pneumo-
coccal conjugate vaccine (PCV). Evaluating the possible impact on the invasive pneumococcal disease (IPD) 
incidence associated with a decline in childhood pneumococcal vaccination is important to advocate the PCV 
programs. Using a deterministic, dynamic transmission model, the differential incidence and burden of IPD in 
children younger than 5 years in Japan were estimated between the rapid vaccination recovery (January 2021) 
and the delayed vaccination recovery (April 2022) scenarios for the next 10 years. In our model, the IPD inci-
dence was reduced from 11.9/100,000 in 2019 to 6.3/100,000 in 2020, caused by a reduced transmission rate 
due to the COVID-19 mitigation measures. Assuming a recovery in the transmission rate in 2022 April, the 
incidence of IPD was estimated to increase with maximal incidence of 12.1 and 13.1/100,000 children under 5 
years in the rapid and the delayed vaccination recovery scenarios. The difference in the total IPD incidence 
between these two scenarios was primarily driven by vaccine serotypes IPD incidence. The difference of inci-
dence was not observed between the two scenarios after 2025. The persistent decline in childhood pneumococcal 
vaccination rates due to the impact of COVID-19 might lead to an increased IPD incidence and an incremental 
disease burden.   

1. Introduction 

Pneumococcal infection is a vaccine-preventable disease (VPD) and 
represents a major cause of disease burden among children with invasive 
pneumococcal diseases (IPDs), including meningitis and bacteremia, 
associated with long-term sequelae or death [1]. Among more than 90 
serotypes of Streptococcus pneumoniae, some of them are covered by 
pneumococcal vaccines. Since the introduction of pneumococcal con-
jugate vaccines (PCVs), many countries have achieved declines in the 
overall IPD incidence due to increases in both individual and herd im-
munity by high vaccination coverage, although increases in the inci-
dence of IPD caused by non-vaccine serotypes (NVTs) have been 
reported [2–6]. Japan introduced 7-valent PCV (PCV7) in 2010, as 
voluntary vaccination, and PCV7 was officially included in the Japanese 
national immunization program as a routine vaccination starting in 
April 2013, with primary doses administered at 2, 3, and 4 months of 
age, followed by a booster dose administered at 12 months of age. This 

vaccine was replaced by PCV13 in November 2013. The national PCV 
program has resulted in a 50%–60% reduction in IPD incidence among 
children younger than 5 years in Japan, with a significant serotype 
replacement (NVTs accounting for approximately 90% of IPDs in the 
post-vaccine era) [7,8]. 

However, since early 2020, many countries have suffered from dis-
ruptions in childhood vaccination programs, including pneumococcal 
vaccination, due to the outbreak of coronavirus disease 2019 (COVID- 
19), which has been declared as a global pandemic [9–13]. The 
pandemic has impacted vaccine supply and resulted in an increase in 
parents opting to cancel or postpone their children’s vaccinations [14, 
15]. Japan has reported that childhood vaccination coverage rates have 
dropped for infantile doses since early 2020 [16]. The ongoing decline in 
childhood vaccination rates represents a serious public health concern. 
Although a few studies have reported the impacts of declining childhood 
vaccination rates due to the COVID-19 pandemic [17–19], no study has 
evaluated the impact of this ongoing issue on IPD, with the 
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consideration of the complexity associated with serotype replacement, 
to the best of our knowledge. 

Evaluating the magnitude of the potential impacts on IPD and sero-
type distributions associated with the observed decline in childhood 
vaccinations during the COVID-19 pandemic is important to support 
PCV programs during the COVID-19 pandemic. Dynamic transmission 
models have been used to evaluate the dynamics of transmission, sero-
type replacement, and the incidence of IPD [20–24]. Because static 
models cannot accurately evaluate the impact of herd immunity or the 
dynamic change of infectious disease epidemiology over time, especially 
if the vaccination rate and the transmission rate are not stable over time, 
the dynamic transmission model is suitable to evaluate the transmission 
of IPD during and after the COVID-19 pandemic. Our objective was to 
evaluate the possible incremental impacts on IPD incidence among 
children under 5 years in Japan associated with a decline of childhood 
pneumococcal vaccination rates due to COVID-19, using a dynamic 
transmission model. 

2. Materials and methods 

2.1. Overview of the dynamic transmission model 

A dynamic transmission model for IPD in Japan was developed to 
evaluate the differential impacts of a decrease in childhood pneumo-
coccal vaccination from 2021 to 2030 due to the COVID-19 pandemic 
between the rapid and the delayed vaccination recovery scenarios. We 
developed a deterministic, susceptible-colonized-infected-recovered 
model (Fig. 1). First, the. 

In this study, the disease burden of non-IPD was not considered due 
to a lack of timely epidemiological data regarding non-IPD, such as the 
incidence rates of non-invasive pneumonia and otitis media, during the 
COVID-19 outbreak. Whereas Japan has a national, weekly IPD sur-
veillance system that was implemented in 2013 and is still in effect [25]. 
The model was divided into demographic and epidemiological compo-
nents and programmed using Berkeley Madonna, version 8.3.18 (Ber-
keley, CA, USA), and Microsoft Excel 2016 (Redmond, WA, USA). 

The rapid and delayed vaccination recovery scenarios were exam-
ined for the duration of vaccination rate decline to evaluate the 

magnitude of the future impacts of COVID-19 on the IPD burden in 
Japan. Following a linear decline in the vaccination rate for the first half 
of 2020 in all scenarios, the rapid vaccination recovery scenario is 
defined as the recovery of vaccination rate starting January 2021 
(irrespective of the duration of the impact of COVID-19 on the reduction 
of transmission rate), and the delayed vaccination recovery scenario 
refers to the recovery of vaccination rate when the impact of COVID-19 
is over (April 2022 in the base case [26]). In the delayed vaccination 
recovery scenario, both the reduced transmission rate and the reduced 
vaccination rate were assumed to continue while the COVID-19 had 
impacts. On the other hand, in the rapid vaccination recovery scenario, 
only the reduced transmission rate was assumed to sustain during the 
COVID-19 impact period. Although past national declines in childhood 
vaccination rates have been associated with different durations [27–29], 
our study assumed the duration of declined vaccination in the delayed 
vaccination recovery scenario was correlated with the duration of 
reduced transmission rate by the impact of COVID-19. The duration of 
the impact of COVID-19 was investigated in the sensitivity analysis. The 
study outcomes included differences in the incidence of IPD and the 
cumulative loss of quality-adjusted life years (QALY) among children 
younger than 5 years between the rapid vaccination recovery and the 
delayed vaccination recovery scenarios. To calibrate the model, the re-
ported incidence of IPD among 0–4-year-old children before the 
COVID-19 outbreak (2008–2019) were compared with the estimated 
incidence from the model run. 

2.2. Demographic component 

To simulate the real Japanese population, 11 age categories (0–2 
month, 3–5 months, 6–11 months, 1 year, 2 years, 3 years, 4 years, 5–9 
years, 10–19 years, 20–64 years, and ≥65 years) were created. All in-
dividuals were assumed to have 85 years of life expectancy [12,13]. 
Data regarding age-specific population dynamics during the study 
period were obtained from the national government [30,31]. 

2.3. Epidemiologic component 

Fig. 1 shows the components of the epidemiologic model 

Fig. 1. Structure of the dynamic transmission model. α = attack rate of invasive pneumococcal disease (IPD) among a colonized population; β = transmission rate in 
a susceptible population; δ = vaccination rate; ω = immunity waning rate; ComV, ComN = competition rates; γ = rate of colonization clearance; VEc = vaccine 
effectiveness for colonization; VEi = vaccine effectiveness for IPD; V: vaccine serotype; N: non-vaccine serotype; B: both vaccine and non-vaccine serotypes. 
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(susceptible-colonized-infected-recovered). Serotypes were divided into 
vaccine serotypes (VTs) and NVTs. VTs consisted of the serotypes 1, 3, 4, 
5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F, and all other serotypes 
were grouped into NVTs. Once a susceptible individual was exposed to 
Streptococcus pneumoniae, they could be moved to the colonized status, 
based on the transmission rate (β) and age-specific contact matrix. A 
small proportion of the colonized population developed IPD (attack rate 
= α). The infected individuals could then be moved to the recovered 
status, associated with permanent immunity, with a proportion that 
experienced death or permanent sequelae (Table 1). 

Age-specific transmission rates and attack rates were calculated 
based on national surveillance reports regarding the colonization rate 
and IPD incidence, in combination with serotyping data [7,8,25,32–38]. 
Because limited data are available regarding the serotype distribution of 
colonization during the pre-vaccine era in Japan, the serotype distri-
bution of colonization and IPD incidence for the post-vaccine period 
were used to estimate the serotype distribution of the pre-vaccine 
period. Attack rates were assumed to be stable over time. The relative 
contact rates, according to age, were calculated based on a previous 
Japanese study [39]. The duration of colonization was assumed to be 51 
days for children under 5 years and 19 days for children 5 years or older 
[40]. The duration of colonization was assumed to be the same for both 
VT and NVT, as suggested by a previous study [41]. Studies regarding 
pneumococcal carriage have reported that two or more competing 

serotypes could be detected in an individual [41]. In our model, an in-
dividual colonized with either VT or NVT could also be colonized with 
the other serotype group (VT and NVT co-colonization), using different 
competition parameters for a VT-colonized individual to be co-colonized 
with both VT and NVT (ComN = 0.04) and for a NVT-colonized indi-
vidual to be co-colonized with both VT and NVT (ComV = 0.5) based on 
previous literature [24,42,43]. However, the degree of competition 
varied widely in each report; therefore, we performed a sensitivity 
analysis using a wide range of competition parameters (from 0 to 0.5) 
[24,43–45]. The parameters used in the model are presented in 
Table S1–S3, and the values obtained from each reference are presented 
in Table 1 and Table S4–6, respectively. 

The infected individuals were assumed to be treated appropriately 
[21,24]. Therefore, transmission was only driven by a colonized popu-
lation in the model. Equations used in the model are explained in Sup-
plemental file. 

A vaccinated individual was moved to the vaccinated status (Fig. 1). 
Although some variations in vaccine effectiveness have been reported by 
each study, multiple studies have reported the effectiveness of the 3 
primary doses plus a booster dose (3 + 1) schedule as being approxi-
mately 85%–86% for the primary doses and 90%–91% for the booster 
dose [46–49]. In our model, the vaccine effectiveness of PCV13 for the 
prevention of VT IPD was assumed to be 86.0% for the primary doses 
and 90.3% for the booster dose [47]. This variation was explored in our 
sensitivity analysis using a vaccine effectiveness range of 75%–99% 
[46–50]. The vaccine effectiveness for colonization was assumed to be 
53% in our model [51]. Although studies reported that children who 
received a booster dose had sustained vaccine effectiveness up to the age 
of 5 years [21,24,51,52], a previous study suggested that children who 
did not receive a booster dose had waning vaccine effectiveness over 
time [49]. In the base case of our model, children with a booster dose 
were assumed to have sustained vaccine effectiveness until 5 years of 
age, and the vaccine effectiveness among children without a booster 
dose waned (Table 1). 

After the introduction of PCV7, the coverage rate demonstrated a 
linear increase during the transition phase (2010–2012), followed by the 
replacement of PCV7 with PCV13 in late 2013 [53]. Between 2013 and 
2017, the vaccine coverage rate for PCV13 was estimated to be 99.9% 
for both primary and booster doses, followed by 98.0% and 96.6%, 
respectively, in 2018, and 95.5% and 95.2% in 2019 for the primary and 
booster doses (Table 1) [54]. The high coverage rate from 2013 to 2017 
was due to the national data containing some catch-up vaccinations in 
the routine coverage rate [54]. Starting in January 2020, the coverage 
rate declined linearly for the next 6 months reaching 78.2% of primary 
doses and 61.3% of a booster dose in June 2020, based on a recent na-
tional report regarding the decline in the childhood vaccination rate 
[16]. This decline was estimated based on survey data collected using a 
national mobile vaccination app, which reported the monthly rates for 
the first dose of PCV13 coverage at 3 months of age, and the first dose of 
measles-rubella vaccine coverage at 14 months of age, among approxi-
mately 120,000 users from 2018 to June 2020 [16]. The coverage rate 
was estimated based on the number of users who answered that their 
children had already received the vaccine dose divided by the total 
number of users who were registered for the app with children of the 
same age. The relative reduction of the coverage rate in June 2020 
compared to the previous year was calculated to estimate the magnitude 
of reduction in vaccinations. The first dose of the measles-rubella vac-
cine is typically administered at the same time as the PCV13 as part of 
the national immunization program. If vaccination rate recovery 
occurred in each scenario, a 6-month period was assumed to be neces-
sary to recover to the levels observed during the pre-COVID-19 period. 
In the base case, we assumed that 50% of children less than 12 months 
who had missed vaccinations had catch-up vaccinations when the 
vaccination rate recovered. In our base-case scenario, this reduced 
transmission rate was assumed to recover at a linear rate over a 6-month 
period starting in July 2021, reaching the pre-COVID-19 transmission 

Table 1 
Parameters of the model.    

Base case Reference 

Vaccine coverage 
(primary/ 
booster doses) 

2010–2012 0%–99.9%/0%–99.9% [16,53,54] 
2013–2017 99.9%/99.9% 
2018 98.0%/96.6% 
2019 95.5%/95.2% 
2020– 78.2%/61.3% 

Vaccine 
effectiveness for 
IPDa 

Primary doses 86.0% (<12 months) [47,49] 
69.9% (12–23 months) 
23.3% (24–35 months) 

Booster dose 90.3% for 5 years 
Vaccine effectiveness for colonizationb 53% [51] 
Duration of 

colonization 
<5 years 51 days [40] 
5 years or older 19 days 

Initial VT rate in IPD 89.0% [7] 
Initial VT rate in colonization 84.6% [7,37] 
Initial colonization 

rate 
0–5 months 17.3% [25, 

32–34]  
6–11 months 31.8%  
12–23 months 48.0%  
2–4 years 48.3%  
5–19 years 42.3%  
≥20 years 6.6% 

Average reported incidence of IPD 
(2008–2019) 

25.0 and 12.2/100,000 
person-years in the pre- 
and post-vaccine periods, 
respectively 

[7,8,25, 
32–38] 

Case fatality rate 0.9% [7,55,56] 
Rate of meningitis in IPD cases 12.6% 
Rate of neurological sequelae in 

meningitis cases 
18.8% 

Average QALY 
loss/case 

Meningitis 
without 
sequelae 

0.023 [55–60] 

Other IPD 0.008 
Neurological 
sequelae 

0.46/year 

Discount rate 3% [61–63] 

Initial status is the beginning status in the model (the year of 2008, the pre- 
vaccine period). 
IPD: invasive pneumococcal disease; NVT: non-vaccine serotype; QALY: quality- 
adjusted life years; VT: vaccine serotype. 

a PCV7 was assumed to be effective only for PCV7-covered serotype IPD and 
colonization. 

b Vaccine effectiveness for colonization was assumed to wane with the same 
proportion to that for IPD. 
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rate starting in April 2022 [26]. However, because of the large degree of 
uncertainty regarding when the recovery of this reduced transmission 
rate would occur, we also performed a sensitivity analysis to analyze a 
wide range of durations for the reduced transmission rate, ranging from 
a rapid recovery (starting in January 2022) to a sustained reduction 
throughout the study period. 

2.4. QALY component 

The case fatality rate due to IPD was reported to be 0.9% [7]. Among 
IPD cases, 12.6% are reported to experience meningitis, and 18.8% of 
meningitis cases developed neurological sequelae, including hearing 
loss, epilepsy, developmental delay hydrocephalus, and paralysis [7,55, 
56]. The average QALY loss per meningitis case without neurological 
sequelae and other IPD cases were assumed to be 0.023 and 0.008, 
respectively [57–59]. The average QALY loss per meningitis case with 
neurological sequelae was estimated to be 0.46, based on the responses 
to a national questionnaire [56]. We assumed that the average QALY per 
Japanese healthy person was 74 years [60]. The outcome tree model and 
the further explanation to calculate QALY are presented in Fig S1. 

2.5. Model run and validation 

The model run was conducted with the following steps. Using the 
age-specific Japanese population in 2008 and the data of colonization 
and IPD incidence in the pre-vaccine period, the initial population in 
each status of the model stratified by age group was calculated 
(Table S3), in which the year of 2008 was defined as the initiation of the 
model. Then, the model run was conducted to obtain the estimated 
incidence of IPD from 2008 to 2030. The model validation was con-
ducted by comparing the reported incidence of IPD with the estimated 
incidence from the model run from 2008 to 2020. 

2.6. Sensitivity analysis 

The one-way sensitivity analysis was conducted to evaluate the un-
certainty associated with the impact of COVID-19 on the incremental 
differences in QALY loss between the rapid recovery and delayed 
vaccination recovery scenarios during the 10-year-study period. The 
parameters included vaccine effectiveness (75%–99%), duration of 
vaccine effectiveness (3–10 years), competition rate (0–0.5), the mini-
mal vaccination coverage rates during the COVID-19 period (50%–90% 
in the COVID-19 period for both primary and booster doses), the dura-
tion of the impact of COVID-19 (from 12 months to 10 years), and the 
discount rate (0%–6%) [61–63]. We also explored how much catch-up 

vaccinations mitigate the incremental impact of delayed vaccination 
recovery if all children 12 months or younger who had missed vacci-
nations in the delayed vaccination recovery scenario received catch-up 
doses when the impact of COVID-19 was over in April 2022. 

3. Results 

Fig. 2 shows the incidence of IPD/100,000 children younger than 5 
years estimated by our model over the entire study period, compared 
with the actually reported incidence [7,8,25,38]. During the pre-vaccine 
period (2008–2010), the average incidence estimated by our model was 
25.5/100,000 children younger than 5 years, whereas the actual 
average incidence during the same period was reported to be 25.0/100, 
000 children younger than 5 years. During the post-vaccine, pre--
COVID-19 period (2014–2019), the average incidence estimated by the 
model was reduced to 11.8/100,000 children younger than 5 years, 
whereas the reported average incidence was 12.2/100,000 children 
younger than 5 years (Fig. 2). Over the post-vaccine, pre-COVID-19 
period, VT IPD was gradually replaced by NVT IPD. 

In 2020, both the transmission rate and the vaccine coverage rate 
were reduced due to the impacts of COVID-19. The reduction in the IPD 
transmission rate during the COVID-19 outbreak was calculated as 26% 
by calibrating our model using the weekly national IPD surveillance data 
until the end of 2020 and comparing against the data reported for 2019 
[25]. Both the model-estimated and reported incidence reduced to 
6.4/100,000 children younger than 5 years by the end of 2020. 
Assuming a recovery in the transmission rate in 2022 April, the inci-
dence of IPD was estimated to increase with maximal incidence of 12.1 
(VT IPD 1.6 and NVT IPD 10.5) and 13.1 (VT IPD 3.1 and NVT IPD 
10.1)/100,000 children under 5 years in 2023 in the rapid and the 
delayed vaccination recovery scenarios (Fig. 2). The difference in total 
IPD incidence between the rapid and the delayed vaccination recovery 
scenarios was primarily driven by the difference in the estimated VT IPD 
incidence (Fig. 2). The incidence in the delayed recovery scenario 
started decreasing in late 2023 due to the improved vaccination rate, 
and the difference of incidence was not observed between the two sce-
narios after late 2025. The average incidence of IPD was 12.1 (VT IPD 
1.4 and NVT IPD 10.6)/100,000 children under 5 years between July 
2025 and December 2030 in both the rapid and the delayed vaccination 
recovery scenarios. With the COVID-19 impact until April 2022, the 
delayed vaccination recovery scenario had 82.7 incremental QALY loss 
between 2021 and 2025 compared to the rapid vaccination recovery 
scenario (Table 2). 

Fig. 3 shows the one-way sensitivity analysis. Among the 6 param-
eters, the duration of the COVID-19 impact, followed by the reduced 

Fig. 2. Incidence of invasive pneumococcal diseases 
under 5 years old From January 2020 to June 2020 
pneumococcal vaccination rates reduced linearly, to 
78.2% and 61.3% for primary and booster doses, 
respectively. The relative reduction in pneumococcal 
transmission rates was estimated to be 26% from 
January 2020 to June 2021. A recovery from the 
reduced vaccination rates was assumed to occur 
during the 6 months from January 2021 to June 2021 
for the rapid vaccination recovery scenario and from 
April 2022 to September 2022 for the delayed 
vaccination recovery scenario. Recovery of the 
reduced transmission rate was assumed to occur in 
April 2022 for both scenarios. 
PCV: pneumococcal conjugate vaccine; VT: vaccine 
serotype; NVT: non-vaccine serotype; Rapid: rapid 
vaccination recovery scenario; Delayed: delayed 
vaccination recovery scenario.   
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vaccine coverage rate during the COVID-19 period, was the most sen-
sitive for the cumulative incremental QALY loss between the rapid and 
the delayed vaccination recovery in the scenarios. If all children 12 
months or younger who had missed vaccinations in the delayed vacci-
nation recovery scenario received catch-up doses when the impact of 
COVID-19 was over in April 2022, the differential QALYs loss between 
the rapid and delayed vaccination recovery scenarios between 2021 and 
2030 was estimated to reduce by 10.4%. 

4. Discussion 

The study highlights the estimated incremental IPD disease burden 
and the increase in the VT IPD incidence among children younger than 5 
years if the decline in vaccination rates due to COVID-19 persists. The 
rapid recovery and shortened duration of the decline in vaccination rates 
is crucial for the prevention of an incremental disease burden in the 
future. 

Because of serotype replacements after PCV introduction, some ar-
ticles have argued the necessity and beneficial effects of maintaining 
high childhood pneumococcal vaccination rates among these pop-
ulations [64,65]. Our study showed that a decrease in the childhood 

pneumococcal vaccination rate was associated with a resurgence in the 
VT IPD incidence rate. The increased incidence of VT IPD, up to 3.1/100, 
000 children younger than 5 years, appeared to be relatively small 
compared with the VT IPD incidence rate in the pre-vaccine era, which 
was approximately 20/100,000 children younger than 5 years. This 
difference may be because of sustained herd immunity. However, 
maintaining a high rate of vaccination coverage is important, even 
though some highly vaccinated countries have ceased to observe 
continued reductions in IPD incidence. 

Our model calibration estimated a 26% reduction in the pneumo-
coccal transmission rate due to COVID-19 mitigation measures in 2020. 
Although some surveys have reported significant reductions in the 
incidence of non-COVID-19 respiratory infections in 2020, few data are 
available regarding the magnitude of reductions in the transmission 
rates, rather than the incidence rates, of non-COVID-19 respiratory in-
fections [66–70]. Evaluating the magnitude of reduced transmission 
rates for infectious diseases other than COVID-19 in repose to the 
enactment of COVID-19 mitigation measures is also important for better 
understanding infectious disease epidemiology in the COVID-19 eras. 

Our study is limited by the large degree of uncertainty regarding how 
long the COVID-19 will impact the observed reductions in childhood 
vaccination rates and disease transmission rates. We also assumed that 
the vaccination rate of the first dose could be applied to the rest of 
primary doses. We performed sensitivity analyses using wide ranges of 
these parameters. Because of the nature of our dynamic transmission 
model, we could not capture annual fluctuations in the IPD incidence 
rate in our model. Although the actual incidence established by national 
reports revealed variability in the annual IPD incidence rates and the 
proportions of VT vs. NVT strains during the same periods (pre-vaccine 
or post-vaccine period), our model reported a stable IPD incidence, 
which may result in differences between the incidence estimated by our 
model run and the actual incidence in any given year. However, we 
believe that this does not compromise the overall trend displaying the 
likely differences in the IPD incidence and disease burden between the 
rapid and the delayed vaccination recovery scenarios. Finally, because 
simulating all pneumococcal serotypes is impossible, we grouped sero-
types, as has been described for other pneumococcal modeling studies. 
Therefore, our model is unable to assess the effects of an individual that 
is simultaneously colonized by more than one VT strain, more than one 
NVT strain, or more than 2 serotypes. 

In conclusion, a persistent decline in the childhood pneumococcal 
vaccination rate due to the impacts of COVID-19 could result in an in-
crease in the IPD incidence and an incremental disease burden. These 
increases are primarily because of an increase in VT IPD. A rapid re-
covery in the vaccination coverage rate could prevent this possible in-
crease in the disease burden. Sustaining a high pneumococcal 
vaccination rate is important for minimizing the disease burden of 
childhood IPD, even though the impact of vaccination appears to be 
minimal due to serotype replacement. 
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Table 2 
The cumulative, incremental QALY loss of invasive pneumococcal 
disease in children under 5 years old in the delayed vaccination 
recovery scenario compared with the rapid vaccination recovery 
scenario due to the impacts of COVID-19 on vaccination rates since 
January 2021.   

QALY loss 

1 year (until the end of 2021) 2.89 
2 years (until the end of 2022) 39.6 
3 years (until the end of 2023) 67.2 
4 years (until the end of 2024) 78.5 
5 years (until the end of 2025) 82.7 

QALY: quality-adjusted life year; Discount rate = 3%. 

Fig. 3. Sensitivity analysis The cumulative incremental quality-adjusted life- 
year (QALY) loss for the delayed vaccination recovery scenario compared with 
the rapid vaccination recovery scenario over the next 10 yearsOne-way sensi-
tivity analyses were performed for the following ranges of each factor: vaccine 
effectiveness, 75%–99%; duration of vaccine effectiveness, 3–10 years; serotype 
competition rate, 0–0.5; the reduced vaccination coverage rates during the 
COVID-19 period, 50%–90% during the COVID-19 period for primary and 
booster doses; the duration of the impact of COVID-19, 12 months–10 years; 
and the discount rate, 0%–6%. The horizontal line for each the box indicates the 
incremental QALY loss from the base case. 
Abbreviation: QALY, quality-adjusted life years. 
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