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Abstract: Point-of-care screening tools are essential to expedite patient care and decrease reliance on
slow diagnostic tools (e.g., microbial cultures) to identify pathogens and their associated antibiotic
resistance. Analysis of volatile organic compounds (VOC) emitted from biological media has seen in-
creased attention in recent years as a potential non-invasive diagnostic procedure. This work explores
the use of solid phase micro-extraction (SPME) and ambient plasma ionization mass spectrometry
(MS) to rapidly acquire VOC signatures of bacteria and fungi. The MS spectrum of each pathogen
goes through a preprocessing and feature extraction pipeline. Various supervised and unsupervised
machine learning (ML) classification algorithms are trained and evaluated on the extracted feature
set. These are able to classify the type of pathogen as bacteria or fungi with high accuracy, while
marked progress is also made in identifying specific strains of bacteria. This study presents a new
approach for the identification of pathogens from VOC signatures collected using SPME and ambient
ionization MS by training classifiers on just a few samples of data. This ambient plasma ionization
and ML approach is robust, rapid, precise, and can potentially be used as a non-invasive clinical
diagnostic tool for point-of-care applications.

Keywords: DART-MS; ambient plasma ionization; solid phase micro-extraction; machine learning
classification algorithms; K-means clustering; imbalanced learning; VOC; point-of-care devices;
pathogen identification

1. Introduction

Timely and accurate detection of pathogens in the human body can play a critical
role in the early detection of infection, greatly improving prognosis and recovery [1]. Con-
ventional methods for the identification of bacteria and other pathogens are either very
slow, such as microbial culturing, or require highly specialized equipment and expert
knowledge, such as molecular identification [2,3]. At present, there is a need for rapid,
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sensitive, low-cost, and non-invasive screening tools that can be deployed as point-of-care
(POC) devices [4]. These POC tools employed in the proximity of patient care are essential
to expedite patient care and decrease reliance on slower diagnostic techniques to identify
pathogens and their associated antibiotic resistance [4]. Many efforts are underway to de-
velop new point-of-care tools such as Raman spectroscopy and gas chromatography [5–7].

Volatile organic compounds are a diverse family of organics that microbial pathogens
produce as a result of their metabolic activity [8]. Studies have shown that the VOC profiles
emitted by microbes vary with species, environmental conditions, and ambient factors [9].
Identification of pathogens through their VOC profiles by mass spectrometry (MS) has seen
extensive research [1,2,10,11]. These studies have analyzed VOCs emissions in exhaled
breath, blood, and urine, and have been successful in demonstrating the diagnostic potential
of bacterial VOC profiling [12–14]. Exhaled breath analysis (EBA) has been extensively
studied for disease monitoring [15,16]. Skin VOC sampling and analysis have also picked
up pace, and various studies have shown its effectiveness in identifying biomarkers for
physiological processes [17–19]. The work proposed in this study builds on this premise
and presents a method for identifying a pathogen based on its VOC profile.

Human skin hosts a unique microbiome. The perfusion of gases from the skin through
surface capillaries makes it an important source of emission of VOCs from the human
body [20]. Recently, there have been studies that analyze VOCs collected from the skin
to determine surface acidity [17], identify biomarkers of physiological reactions [18], and
detect the presence of certain diseases [19]. The field of VOC sensing to detect and monitor
the diversity of human disease has thus far been limited by an absence of POC technologies
leveraging machine learning (ML) based diagnostic VOC signatures. Fitzgerald et al. [1]
have shown that it is possible to discriminate between bacterial strains from VOC profiles
obtained through headspace SPME gas chromatography MS; however, this technique relies
on lengthy separations that make it practical.

The most common method for VOC profiling is via multivariate analysis, such as
principal component analysis [21,22]. In recent years, applications of machine learning (ML)
and artificial intelligence have shown great promise in advancing the field of healthcare and
critical care [23]. ML models are able to identify physiomarkers that help in early detection
of sepsis [24] and predict life-threatening conditions such as acute respiratory distress
syndrome (ARDS) using ICU data [25] and gene expression signatures [26]. A major area
of research currently is early and accurate detection of infections from microbial VOCs
and several statistical and machine learning methods have been successfully developed
to this end [4,27]. There are works that demonstrate the use of ML for VOC screening
via gas identification using ”e-nose” metal-oxide sensors [28,29]. Palma et. al. show
that supervised learning can be successfully used to classify microbial strains using meta-
information about their VOC profiles [30]. Other works add to this by showing that SPME
and gas chromatography mass spectrometry can be used to sample VOC signatures, which
can be used to create VOC profiles for classification [31–33]. In this work, we use signal
processing and ML techniques to develop a rapid, robust and end-to-end Python pipeline
for classifying a pathogen as bacteria or fungi, using the raw MS spectrum.

In this work, solid phase micro-extraction (SPME) and direct analysis in real time (DART)
ambient plasma ionization MS were used to collect VOC sample data from microbial cultures
followed by automatic feature extraction and learning techniques for VOC profiling. VOC
fingerprints have been shown for fungi with DART alone [34] and SPME-DART has been
previously reported for the analysis of VOC in samples such as grapes [35] and museum
pieces [36]. This study involves using SPME to collect VOCs accumulated in the gas space
above the agar slant in a sealed tube, known as the headspace. The SPME blades were then
transported to be rapidly processed by DART and high-resolution MS. The VOC samples were
profiled as bacteria or fungi and further analyzed to identify individual strains of bacteria. This
method has the potential to improve patient care by rapidly identifying human pathogens at
the POC by future applications in skin VOC sampling. High-resolution MS was used in this
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initial discovery phase and could potentially be replaced by portable MS instruments coupled
to DART in POC settings to reduce cost.

2. Results and Discussions
2.1. Classification of Pathogens as Bacteria or Fungi Based on VOC Signatures

The MS samples were sent through a blank correction, smoothing, and peak detection
pipeline to obtain a binary feature matrix with 1’s indicating peak locations. Principal Com-
ponent Anaysis (PCA) was performed on this binary feature matrix, before the supervised
learning stage. Unsupervised K-means clustering on PCA-transformed data (Figure 1)
showed that all fungi were correctly clustered together, but some bacterial samples were
assigned to the fungi cluster. The fact that an unsupervised clustering algorithm could
identify underlying structure and pattern in the data that can be leveraged to broadly
identify the two pathogen types laid a promising premise for further experiments with
supervised learning algorithms. The support vector machine binary classifier, K nearest
neighbor classifier, and a logistic regression classifier could differentiate between bacterial
and fungal pathogens with high accuracy. Decision tree classifiers provided interpretability
in terms of identifying salient features that can help distinguish between bacteria and fungi
with high accuracy (Figure 2c). Results for the performance of these supervised learning
algorithms on the original binary feature matrix as well as the PCA-transformed dataset
are listed in Table 1.

Figure 1. (a) Feature vectors corresponding to each pathogen as data points in the transformed
feature space after k-means clustering for two clusters. The colored shaded regions cover all the
points that were clustered together and the red and green differentiate between the two clusters. We
can see that there is some inherent separability between bacteria (red data points) and fungi (green
data points) in this transformed feature space. (b) This plot shows the variability of salient peak
locations in each cluster. The clustering algorithm is able to automatically identify peak locations that
are commonly seen in one pathogen type, and not seen in the other.
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(a)

(b)

(c) Decision Tree Classifier Trained 
On Binary Feature Matrix

Figure 2. Study overview for identification of pathogens from skin VOCs. (a) Summary diagram of
the SPME-DART-MS procedure. SPME blades are incubated in the headspace of the agar slant with
the microbes. The blades are then removed and placed in between the plasma stream of the DART
plasma ionization source and the ambient pressure interface of the mass spectrometer. VOC adhered
to the SPME blade are desorbed and ionized by DART. Then, the ionized VOC enter the ambient
pressure interface of the mass spectrometer for measurement to produce a signature. (b) Process
flow diagram for MS data preprocessing, peak detection, and ML. The mass spectra of the pathogen
and blank were first min-max normalized. Linear interpolation was applied to the pathogen data to
match the m/z sampling frequency of the blank to facilitate the blank subtraction step. The pathogen
mass spectra were then smoothed by a mean filter, after which adaptive thresholding was applied to
windows of 50 m/z intervals to obtain peak locations. These are encoded into a binary feature matrix
that indicates whether a peak is present in a unit m/z interval or not. A PCA transform on this matrix
was used as the input to our ML classification algorithms. (c) Interpretation of the decision tree
trained on the binary feature matrix in terms of feature importance. This figure shows the distribution
of bacteria and fungi samples with respect to the peak locations of most discriminatory importance
(100 m/z, 377 m/z, 147 m/z).

Training the classifiers directly on the binary feature matrix obtained after peak de-
tection helped determine exactly which m/z values the classifier algorithms were used to
discriminate between bacteria and fungi. This pipeline involved less feature engineering
and led to more interpretable results. Random forest classifiers performed significantly
better when trained on the original binary feature matrix. It was also easier to visualize the
salient peak locations that had maximum discriminatory importance. Each ML model was
compared to each other using receiver operating characteristic curves (ROC) and precision–
recall (PRC) curves. ROC curves display the sensitivity (true positive rate) and specificity
(1-false positive rate) tradeoff of a classifier. PRC plots the precision (positive prediction
power) vs. recall (sensitivity). ROC and PRC results for supervised learning algorithms are
shown in Figure 3. The area under the curve (AUC) can be treated as an estimate of how
well a model performs. All the ML approaches were verified by 3-fold cross-validation. It
can be seen that random forest classifiers trained on the binary feature matrix had the best
AUC, while SVM performed well on the PCA feature matrix. Logistic regression performed
consistently well on both datasets, as can also be verified from Table 1.
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Figure 3. Receiver operating characteristic curves (ROC) depict the tradeoff between true positives vs.
false positives for each algorithm (traces rising closer to the top left are better). The precision–recall
curves (PRC) show the tradeoff between true positive vs precision in positive predictions for each
algorithm (traces closer to the top right are better). This figure displays the ROC and PRC curves for
classifiers trained on the binary feature matrix as well as the feature matrix after PCA, respectively.

Table 1. Results of binary classification (bacteria vs. fungi) for the five supervised ML algorithms
(averaged over 3-folds) on the binary feature matrix and the PCA-transformed data. The numbers in
bold mark the highest values for each metric. It can be observed that decision tree classifiers trained
on the binary feature matrix perform well, with highest overall accuracy, f-score, and AUC.

Classifier Dataset
Precision Accuracy

Sensitivity

F-Score
Precision

Area under
the ROC

Curve (AUC)
Sensitivity

Class Bacteria Class Fungi

Logistic Regression
Binary Features 0.846 0.748 0.865 0.903 0.899 0.639 0.667
PCA Features 0.846 0.843 0.775 0.853 0.970 0.833 0.444

Logistic Regression
with Lasso

Binary Features 0.795 0.753 0.921 0.928 0.870 0.633 0.722
PCA Features 0.795 0.742 0.827 0.895 0.870 0.633 0.639

K-Nearest Neighbors
Binary Features 0.821 0.782 0.743 0.886 0.903 0.700 0.583
PCA Features 0.820 0.812 0.752 0.886 0.936 0.750 0.583

Support Vector
Machines

Binary Features 0.795 0.657 0.805 0.870 0.862 0.528 0.583
PCA Features 0.821 0.670 0.734 0.842 0.899 0.556 0.444

Random Forest
Classifier

Binary Features 0.872 0.937 0.951 0.881 0.982 0.980 0.555
PCA Features 0.744 0.570 0.779 0.794 0.903 0.444 0.194

2.2. Classifying Individual Bacterial Strains

The dataset consisted of 10 strains of bacteria, with three samples per strain. The training
set consisted of two samples per strain, while the third sample was placed in the test set. Even
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with this limited data set, the decision tree classifiers were able to classify 4 out of the 10 strains
in the test set accurately, while the SVM classifier was able to classify 5 out of the 10 strains
correctly. Two samples in the training set for each class limited variability introduced by the
up-sampling with SMOTE to train the learning models and avoid bias. Further work with larger
sample sets needs to be conducted to expand the dataset and validate the proposed method. The
observed results show the potential of this data processing workflow in pathogen identification.
Certain strains of bacteria were consistently classified correctly with a high degree of confidence
by all the trained classifiers. Interpreting the features of discriminatory importance from the
decision tree classifiers trained on the normalized and blank corrected MS data could help
determine the peaks used for discriminating Proteus mirabilis from the other strains of bacteria
highlighted in Figure 4.

Figure 4. Detected VOCs at m/z 478.3883, m/z 592.2332, and m/z 666.2437 for all 3 samples of
Proteus mirabilis (CDC-0029).

2.3. Discussions

While many reports have used data analytics, dimensionality reduction, and clustering
techniques to study mass spectra and identify useful markers, very few have focused on
the use of supervised ML algorithms for VOC profiling. One reason for this lack of success
is the lack of sufficient data to effectively train these supervised learning algorithms. In this
study, we used the synthetic minority oversampling technique (SMOTE) [37] to artificially
up-sample data by populating each class in the training set with convex combinations
of existing data points, ensuring that the new data points retain similar characteristics.
Our artificial upsampling and learning pipeline that makes it possible to train machine
learning algorithms on a few samples of SPME-DART-MS data, with high precision. Most
previous work [30–33] rely on an intermediate step of peak detection and identification
of VOCs using the NIST05 mass spectral library. In our work, an end-to-end pipeline is
developed using python, which takes the raw MS data as input and automatically performs
background subtraction, peak detection, feature identification, and classification.

Further analyzing the salient discriminatory features that were used for classification
shows that the ML algorithms are able to automatically identify peak locations in the MS
data that have discriminatory importance. Corresponding VOCs can be identified using
this information. This works marks progress in the field of data analytics and processing for
metabolite detection and identification, as it not only describes a fully automated method
to discriminate between pathogens using VOC signatures but also provides insight into the
salient discriminatory features of the VOC signatures so that the results can be interpreted
in a biological and chemical context.

To realize the goal of effective point-of-care diagnostics, it is necessary to develop
rapid, robust, and precise methods for the detection and diagnosis of these infectious
diseases [4]. This study describes a proof-of-principle method for pathogen identification
via VOC profiling using DART-SPME samples as a quick and accurate tool for detection of
infection. The novelty of this work lies in using SPME and DART ambient plasma ionization
MS to rapidly acquire VOC signatures of bacteria and fungi from human skin, designing a
data preprocessing pipeline for the MS data using SMOTE to tackle class imbalance, and
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training ML algorithms successfully in a low-data regime to achieve a precision of 0.92 for
identifying bacteria and a precision of 0.72 for identifying fungi.

The results show that supervised classifiers, trained on as few as 40 samples of data,
are able to differentiate between the two classes of pathogens with an accuracy close to
90%. With access to more data, it will likely be possible to extend the capabilities of this
model such that it can identify the type of pathogen and the specific strains of bacteria
and fungi. For this proof-of-principle study, we have limited our analysis to PCA followed
by supervised classification. The advantage of PCA is that it is quick, stable, and able
to retain interpretability in terms of identifying the peak locations in the MS data that
have discriminatory importance. A possible direction for future work would be to explore
other classes of multivariate analysis, in particular, Bray–Curtis dissimilarity with NMDS
(non-metric multidimensional scaling), which performs well on sparse data. It would
be interesting to see whether it can improve the identification of specific bacteria and
fungi strains.

Another limitation of this study was the lack of access to an external VOC database
to compare the accurate masses to. This could be used to perform structural elucidation
on discriminatory features. For the purpose of this study, the pathogen VOC signatures
were collected in a controlled laboratory environment. Future work would entail shifting to
real-world settings and sampling pathogen VOCs directly from the skin surface of patients.

3. Materials and Methods
3.1. Sample Preparation

Ten species of human pathogenic bacteria and three fungi were incubated at 37 ◦C
overnight on tryptic soy agar slants and sabouraud agar slants, respectively. Visible streaks
of microbial growth were observed on the agar surface. A tryptic soy agar and a sabouraud
agar slant with no microbes were used as a blank reference headspace. Each species of
bacteria and fungus used in this study is listed in Table 2. SPME of the slant headspace
was conducted using coated blade spray (CBS) blades with a hydrophilic-lipophilic coating
(Restek; Bellefont, PA, USA). Prior to headspace collection, blades were washed with high
purity liquid chromatography MS-grade methanol from Fisher Scientific (Hampton, NH,
USA) and air dried. Three SPME blades were inserted and sealed into each of the 15 slants
in this study. Each set of blades in the sealed slant was incubated at room temperature for
5 min. Blades were then removed after incubation and immediately stored in individual
microcentrifuge tubes until processing.

Table 2. This table lists the specific bacteria and fungus species evaluated using SPME-DART-MS in
this study.

Pathogen Strain

Bacteria

Staphylococcus aureus (LAC)
Staphylococcus aureus (UAMS-1)

Staphylococcus epidermidis (NRS-101)
Acinetobacter baumannii (CDC-0033)

Klebsiella pneumoniae (CDC-0004)
Pseudomonas aeruginosa (PA01)
Klebsiella aerogenes (NR-48555)
Enterococcus faecium ( HM-959 )

Escherichia coli (CDC-0346)
Proteus mirabilis (CDC-0029)

Fungi
Candida albicans ( NR-29340 )
Candida glabrata (CDC-0314)

Malassezia fufur (ATCC-12078)
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3.2. Ambient Plasma Ionization Mass Spectrometry

VOCs collected on SPME blades were desorbed and ionized by a DART simplified
voltage and pressure (SVP) ambient plasma ionization source from Ionsense (Saugus, MA,
USA). DART operates through a combined thermal desorption and metastable-induced
chemical ionization mechanism. A full description of the DART operation can be found
elsewhere [15]. Ultrahigh-purity helium from Airgas (Atlanta, GA, USA) was used to
sustain the DART plasma which was heated to 200 ◦C by the DART’s resistive element. The
DART source was coupled to a Waters (Milford, MA, USA) Synapt G2-S via Ionsense’s VA-
PUR interface for discovery and method optimization experiments. DART-MS experiments
were conducted with a 1 s scan time in time-of-flight-only sensitivity mode. The acquisition
range was 50–700 m/z in positive ion mode. The Synapt’s ion source inlet temperature
was set to 100 ◦C. The sample cone and source offset were set to 30 V and 50 V, respec-
tively. The Restek CBS blades were placed between the DART plasma stream and the mass
spectrometer inlet as shown in Figure 2a. Briefly, a coated blade was removed from the
microcentrifuge tube, mounted to a linear rail attached to the VAPUR interface, and then
slid into position between the DART plasma exit and the mass spectrometer atmospheric
pressure inlet. The flat nature of the CBS substrate ensured that the fluid dynamics were
favorable for effective ion injection [38]. After desorption of VOCs from the blade by DART
for 60 s, the blade was retracted and a new blade was mounted on the rail for conducting
the next analysis.

3.3. Data Preprocessing

The data processing pipeline is illustrated in Figure 2b. First, mass spectra were
normalized by subtracting the mean and dividing by the absolute maximum. Next, linear
interpolation was applied to the pathogen data to align the m/z axis with the blank spectra
for computation. The blank was then subtracted from the pathogen data. The blank-
subtracted pathogen spectra were then smoothed by a mean filter. Adaptive thresholding
was applied to windows of 50 m/z to gather peak locations. These peak locations were
encoded into a binary feature matrix that indicated whether a peak was present in a given
m/z interval. The data processing and subsequent classification were conducted using
Python in the Jupyter Notebook environment. All code is shared in a publicly available
GitHub Repository.

Since the dataset was limited to 39 samples and heavily imbalanced towards the
bacterial class, an artificial up-sampling technique called synthetic minority oversampling
technique (SMOTE) [37] was utilized to generate a new up-sampled training set for the
class with the lowest number of objects. This ensures ML models are more robust and have
better predictive abilities. The new data points were created by SMOTE through random
convex combinations of existing data points in feature space. This approach is useful
while training ML algorithms in low-data or imbalanced class scenarios. The open-source
imbalanced-learn library’s implementation of SMOTE [39] was used to up-sample this
dataset. Figure 5 shows Principal Component Analysis (PCA) on (a) original VOC data,
and (b) the dataset after SMOTE up-sampling.
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Figure 5. Principal component analysis on (a) original VOC data, and on (b) the dataset after SMOTE
upsampling. SMOTE is a dataset upsampling technique that was used in this study to add artificial
datapoints generated via random convex combinations of existing data points in the feature space.
This is useful while training ML algorithms on class-imbalanced datasets and low-data regimes.
In our study, the bacteria class (Class 0) had 30 samples and the fungi class (Class 1) had 9 samples.
SMOTE was used to combat the limited dataset and class imbalance issues to train our ML algorithms
with lesser bias.

3.4. Machine Learning Classification Algorithms

The primary objective of this work was to automatically classify a pathogen as bacteria
or fungi using its VOC mass spectrum. Automatic identification of specific bacterial strains
was explored as a secondary objective. The preliminary dataset consisted of 39 data points.
Each data point corresponded to the binary feature vector obtained after peak detection. A
train:test ratio of 7:3 was used to split the data, and the training set was populated using
SMOTE. The final unsampled dataset consisted of 84 train cases (42 bacteria and 42 fungi)
and 36 test cases (18 bacteria and 18 fungi). Principal component analysis (PCA) was
applied on this up-sampled dataset. The top 15 principal components were used as input
into the ML models. This number was decided by analyzing the elbow plot of explained
variance ratio to the number of components. Five different ML classification algorithms
were trained and tested for the classification task, implemented using Python’s scikit-learn
library. These five ML algorithms included:

1. Logistic Regression with ’L2’ regularization (Ridge Regression): This is a simple linear
classification model that achieves good performance for linearly separable classes. A
binary classifier was implemented with the stochastic average gradient (SAG) solver
and regularized with an ‘L2’ prior.

2. Logistic Regression with ’L1’ regularization (Lasso Regression): This is also a linear
model that promotes sparsity in the learnable parameters that are can be seen as
weights for each variable. The classifier was implemented with the stochastic average
gradient (SAG) solver and regularized with an ‘L1’ prior.

3. Decision Trees and Random Forests: The decision tree algorithm learns to predict
the class of a given input by a series of simple decision rules that are inferred from
the training data. Random forests are ensemble classifiers that train multitudes of
decision trees on different subsets of features, each being trained on a bootstrapped
subset of the training data. A random forest classifier was also trained on the PCA-
transformed data, as well as on the binary feature matrix. A huge advantage of these
methods is that they help identify subsets of input variables that may be most or least
relevant to the problem. In our case, we can see the exact peak locations that were of
discriminatory importance to the classifier (Figure 2b).
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4. Support Vector Machines (SVM): A support vector machine classifier works by finding
a classification boundary that best separates the data points in the training set. It is
not limited to finding a linear model and is able to find optimal separation in higher
dimensional subspaces. An SVM classifier was trained on both the PCA-transformed
data, as well as the binary feature matrix. A 5-fold cross-validation-based grid search
was used to choose between linear kernels, radial basis function (rbf) kernels, and
sigmoid kernels, as well as to choose the optimal hyperparameters.

5. K-Nearest Neighbors (KNN): The K-nearest neighbors algorithm classifies a new
data point by simply considering the class of a certain k number of data points
in the training set that lie closest to it in the feature space, and then choosing the
most frequently occurring class label. A KNN classifier was trained using 8 nearest
neighbors, this being determined using a 5-fold cross-validation-based grid search.

The methods listed above are supervised learning methods, i.e., the algorithm uses
knowledge of class labels of data points in the training set to learn parameters or rules for
predicting the class of a new, unlabeled data point. We also experiment with K-means clus-
tering, an unsupervised learning algorithm, which clusters data points that are most similar
(according to a set of salient features that are learned by the algorithm). The algorithm
attempts to find structure or patterns in the data without using explicit data labels (bacte-
ria/fungi). Results of the clustering are depicted in Figure 1.

4. Conclusions

This study presents a new approach to identify pathogens from volatile organic com-
pound (VOC) signatures collected from the skin, that is robust, rapid, and precise, and can
potentially be used as a non-invasive clinical diagnostic tool for point-of-care applications.
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