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Use of Surface Corrugations for
Energy-Efficient Chaotic Stirring in
Low Reynolds Number Flows

S.W. Gepner'™ & J. M. Floryan?

We demonstrate that an intensive stirring can be achieved in laminar channel flows in a passive manner
by utilizing the recently discovered instability waves which lead to chaotic particle movements. The
stirring is suitable for mixtures made of delicate constituents prone to mechanical damage, such as
bacteria and DNA samples, as collisions between the stream and both the bounding walls as well as
mechanical mixing devices are avoided. Debris accumulation is prevented as no stagnant fluid zones
are formed. Groove symmetries can be used to limit stirring to selected parts of the flow domain. The
energy cost of flows with such stirring is either smaller or marginally larger than the energy cost of flows
through smooth channels.

Mixing of fluids is a two-stage process composed of diffusion overlaid on top of mechanical stirring (advection)'.
The former is dictated by material properties and is in general slow, while the latter is associated with flow kine-
matics. Stirring promotes mixing in the sense that it leads to stretching and folding®” of fluid interfaces, increas-
ing concentration gradients and enabling the otherwise slow diffusion to act more rapidly and across shorter
distances.

For the vector field to produce chaotic particle trajectories, the flow must be either unsteady two-dimensional
or three-dimensional*®. Turbulization provides chaotic motions but cannot always be achieved and comes with
significant pressure losses. The first demonstration that chaos exists in laminar flows was provided by Arnold® and
Hénon’. The follow-up studies focused on “toy” flows whose forms are given analytically at the cost of truncated
physics, e.g., ABC (Arnold-Beltrami-Childress) flows®, blinking vortex®, double gyre'® or the pulsed source-sink'!,
and provided fertile grounds for concept development® and guidelines for creating real flows capable of chaotic
stirring. Passive methods focus on geometry modifications where stirring is accomplished by forcing the flow to
impact obstacles, e.g., partitioned pipe'?, serpentine channel'®, twisted pipe'4, herringbone surface!® and various
assemblies of bars and blades!® - stirring increases but at a cost of additional pressure losses. Active methods
employ external body forces', actuated particles'® and various stirrers® with all of them requiring an external
energy input. Three-dimensionality and unsteadiness do not guarantee chaos'*?, and not every chaotic state
guarantees good stirring; either Poincaré maps or Lyapunov exponents must be used to verify whether the result-
ing flow is both chaos- and stirring-capable.

We report here the existence of flow systems where small geometry modifications create bifurcations resulting
in a natural creation to new, chaos-capable states. These configurations are energetically efficient, i.e., maintaining
the new flow either requires less energy than the reference flow or the energy consumption increases at a marginal
rate. We focus on geometries that eliminate direct fluid collisions with the bounding walls in order to reduce
mechanical damage to the mixture constituents and geometries that avoid formation of stagnant fluid zones so
that any debris can be washed out by the stream. This leads us to analyze conduits with longitudinal grooves,
which we divide into symmetry preserving grooves and symmetry breaking grooves. We demonstrate that sepa-
rate stirring zones can be created in the former case without introducing any physical barriers.

Geometry Modifications

We begin by defining the reference flow which we shall use to demonstrate that chaotic state is produced with less
energy expenditures than those required to maintain the unmodified flow. The steady plane Poiseuille flow char-
acterized by the Reynolds number Re= W, h/v where W, is the maximum of the streamwise velocity, / is the
channel half-height and v is the kinematic viscosity, is chosen as the reference flow. It is driven by a constant
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Figure 1. Primary flow. Figure 1A (1D) - symmetry preserving (breaking) grooves; Fig. 1B (1E) - contour plot
of the streamwise velocity for the symmetry preserving (symmetry breaking) grooves forS = 0.4, « = 1(S=
0.8, o = 0.8). Grey color identifies zones of accelerated fluids. Figure 1C (1F) - variations of the flow rate as a
function of S and o for the symmetry preserving (symmetry breaking) grooves. Grey color identifies drag
reducing configurations. Q (Q,) stands for the flow rate of the modified (unmodified) flow driven by the same
pressure gradient.

pressure gradient dp/dz= —2/Re resulting in the velocity field W = [0, 1, 1 —y*] which produces the flow rate Q,
= 4/3. We now create spatial flow modulation by modifying the conduit geometry with grooves parallel to the
flow direction (Fig. 1); we require that the mean channel cross section remains the same. We use Fourier expan-
sions to characterize geometric patterns with commensurability factors (ratios of various geometric wave num-
bers) providing the means to create flow adjustments. Grooves on both walls lead to a pattern interaction problem
providing additional degrees of freedom. The analysis relies on numerical solutions utilizing finite-length com-
puter words which precludes access to non-commensurable topographies. Since various features of the
self-induced chaotic stirring can be demonstrated using very simple geometries, we defer the above complexities
to later analyses and focus the discussion on grooves described by a single Fourier mode. For detailed discussion,
we select conduits with either symmetry-preserving (Fig. 1A) or with symmetry-breaking (Fig. 1D) grooves. The
modified flow is steady, one-dimensional and Re-independent as scaling eliminates Re (see the methodology
section) without any promise for chaotic motions. Typical flow topologies (see Fig. 1B,E) demonstrate the forma-
tion of high-velocity stream tubes located in the widest channel openings where the fluid accelerates beyond the
maximum velocity of the reference flow. Conduits with grooves of sufficiently long wavelengths are more energy
efficient in the sense that the same pressure gradient generates a larger flow rate than in the unmodified conduit?'
(see Fig. 1C,F) with the symmetry-preserving grooves being more efficient than the similar symmetry-breaking
grooves. The most energy efficient grooves have universal constraint-dependent shapes, e.g., golden trapezoid,
Gaussian function??,

Flow bifurcation

The first step towards flow evolution to a chaotic state is the onset of the recently discovered inviscid®* instability
modes with the critical Re being as low as O(10%)?*-%¢. We illustrate in Fig. 2A,B the formation of flow bifurcations
with different classes of grooves having the same effective amplitude (ratio of the widest and narrowest channel
openings) to facilitate meaningful comparisons. The dark grey zones identify conditions leading to a reduction of
pressure losses while the light grey zones illustrate conditions leading to a small increase of losses, which we
define as losses of up to 10% of the reference flow rate. We use the linear stability theory to determine the critical
conditions, which are R, = 58.8, 3, = 0.4, 0., = (0.334, 0) for the conditions used in Fig. 2A, and R, = 65.43, (3,
= 0.3, 0., = (0.315, 0) for the conditions used in Fig. 2B. In the above, ( stands for the streamwise disturbance
wave number, the real part of o stands for the frequency and its imaginary part describes the amplification rate.
The flow resistance increases (and the flow rate decreases) as the system moves along a bifurcation branch towards
higher Re as the same pressure gradient drives a more complex flow.

We determine properties of saturation states through time integration of the complete flow equations as
explained in the Methodology section. When Re is small enough (Re < ~80), the modified conduits produce
a larger flow rate than the reference conduit (Fig. 2A,B). The saturation states have the form of high velocity
stream tubes modulated by instability waves (see the right sides of Fig. 2C,D and supplementary videos S1 and
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Figure 2. Bifurcation diagrams and instantaneous flow fields for the symmetry-preserving (Fig. 2A,C;

(o, S, B =(1,0.4, 0.4)) and symmetry-breaking (Fig. 2B,D; («, S, 3 = (0.8, 0.8, 0.3)) grooves. Q stands for the
flow rate of the modified flow, Re is the Reynolds number of the reference flow and Re,, is the bulk Reynolds
number of the modified flow based on the average streamwise velocity. Zones A in Fig. 2A,B identify conditions
leading to the reduction of pressure losses and zones B identify conditions leading to an increase of pressure
losses by up to 10% of the reference losses. Solid dots identify bifurcation points while crossed dots identify
conditions used in Fig. 2C,D. The left sides of Fig. 2C,D display helicity H definedas H = %’ - (V x u) with
arrows showing the direction of the instantaneous rotation while the right sides display contour plots of the
streamwise velocity component w (yellow color identifies stream tube with w > 1). A, is the groove wavelength
while )\ is the wave wavelength.

§2) producing a three-dimensional time-dependent flow. This flow contains zones of fluid rotating in opposing
directions above and below the stream tube (see helicity plots on the left sides of Fig. 2C,D) with the direction of
rotation changing every half wavelength with a small overlapping zone containing four layers of counter-rotating
fluid. As a result, fluid particles moving downstream experience periodic changes in the direction of rotation,
which is not unlike the effects created by the blinking vortex’, double gyre'®, pulsed source-sink'!, partitioned
pipe'?, serpentine channel'?, twisted pipe'* and herringbone surface®.

Chaotic states

We shall now demonstrate the formation of chaotic states by examining the advection of massless particles. We
place them in the flow at z = 0 along a straight line extending between (x,y) = (3.5,—0.5) and (4.5,0.5) and follow
their trajectories. We tested different placement times (instantaneous versus distributed) and different initial
positions and concluded that the process is ergodic and, therefore, dependence on the initial conditions averages
out for long enough tracings. Intersections of trajectories with transverse planes at different z-locations are shown
in Fig. 3; the images are organized in pairs of Re’s equally distant from the bifurcation points for both types of
grooves. The initially straight material lines loose coherence within approximately five wave wavelengths in the
streamwise direction; this is expected as these lines are made of a finite number of particles. The stirring process
is more rapid for larger Re’s which is also expected. In the case of symmetry-preserving grooves, the flow field is
divided along the line of symmetry into two zones with no advective transport taking place across the separatrix
for all Re’s considered. In the case of symmetry-breaking grooves, advection (understood as wandering of trajec-
tories) occurs in the whole domain. It is remarkable that particles spread in the spanwise direction well beyond
the groove segment where they were initially placed, i.e., chaotic movement does not obey the spanwise perio-
dicity condition, with this effect being more pronounced for the symmetry-breaking grooves. Poincaré sections
displayed in Fig. 4 demonstrate the ability of the flow to promote particle spreading as, when time progresses, an
increasing portion of the domain is visited by trajectories originating from the same initial set except for regions
near the walls, which is entirely expected. We did not find any elliptic islands'>? trapping the fluid for the condi-
tions considered in this study.

To quantify the ability of the flow field in creating folding and stretching of material lines, we measure the
length of an initially straight material line by following the trajectories of its elements until they intersect with a
transverse plane (z = const), and measure the length [ of the lines formed by the intersection points - this length
is defined as the Euclidian distance between the consecutive points. The initial length is [, at z = 0 and the ratio I/,
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Figure 3. Locations of particles in the (x,y)-planes at different z-locations. Blue and green (red and black)
colors identify particles placed below (above) the line y = 0. The left (right) column refers to the symmetry
preserving (breaking) grooves.

provides a measure of stretching. In the case of unmodified flow, [ = I, for all times as particles follow straight tra-
jectories always producing the same projections. These projections are not affected by the streamwise spreading
due to flow shear. In the case of modified flows, projections capture spanwise spreading which is entirely due to
chaotic mixing and begins to be observable at approximately one wave wavelength downstream from the particle
insertion point (Fig. 5A,B). The stretching increases initially proportionally to z? and then proportionally to z*
for all Re’s used in this study, with the growth rate reaching saturation more rapidly for higher Re for both types
of grooves (Fig. 5).

Stirring quantification
We shall use two different measures for stirring quantification. In the first one, we introduce 100 x 100 approxi-
mately equal bins uniformly distributed across five adjacent groove sections [z € (—2),, 3A,)] and define the
E/A measure as the ratio of the ever-occupied bins up to a given z-location to the total number of bins. Each bin
is turned on when at least one particle is found and remains turned on regardless whether the particle remains or
leaves - it can be interpreted as a quantification of Poincare sections. The particle spreading increases with dis-
tance, eventually approaching a Re-dependent saturation state (Fig. 6) which corresponds to E/A of up to 20% for
the drag reducing configurations and E/A of up to 80% for the configuration resulting in a slight increase of losses.
The second measure uses Shannon entropy?”*’. We measure the order of the system in terms of the probability
of finding a given state. Entropy takes low values when the probability of selecting one of the available states is
much higher than that for the others. In stirring, low values correspond to different constituents being separated
so that the presence (absence) of one of them can be easily predicted. High values correspond to well-stirred states
when identification of different components becomes difficult. We divide the domain intoi = 1, 2, ..., M “bins”
and introducei = 1, 2, ..., C species (particles of different colors). The probability of finding particles of a given
type in bin j is pj(i) = n; ;/n, where n, ; is the number of particles of type i in bin j and n; is the total number of
particles in bin j. The entropy for bin j is S = — Z?:]Pj (i)log[pj (i)] and the overall entropy averaged over all bins is

S=M 712;& S;- The results are normalized with the maximum possible entropy S, which corresponds to a
perfectly stirred state where the probability of finding a particle of each type in each bin is the same, i.e.,
pj(i) = 1/C. Thisleads to S,,,, = —M_lzj}ilc_llog(c_l), and the Shannon entropy is expressed as S, = S/S,,,,.
with S, < 1. We use the test domain consisting of one groove segment combined with spanwise periodicity for the
particle movement between grooves which means that the total number of particles in the test section remains the
same. We sub-divide the test domain into 100 x 100 approximately equal bins, organize them into four zones, fill
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Figure 4. Poincaré sections formed by particles’ trajectories between z = 0 and z = 50 . The initial particle
positions and colors are the same as in Fig. 3. The images were produced by displaying non-transparent particles
in the following order: blue, green, red, black.
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Figure 5. Stretching of material lines used in Fig. 3 as functions of the z-distance from their initial placement
for the symmetry preserving (Fig. 5A) and the symmetry breaking (Fig. 5B) grooves. The solid and dashed lines
correspond to the drag reducing and slightly drag increasing (10% increase) flow conditions. Horizontal axes
end at z = 400.
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Figure 6. Variations of the E/A measure of mixing intensity as a function of the z-distance from the particle
injection plane. The left (right) column refers to the symmetry-preserving (breaking) grooves. The solid and
dashed lines correspond to the drag reducing and slightly drag increasing (10% increase) conditions.

each zone at z = 0 with a uniform distribution of distinct species (Fig. 7A) and follow particles’ movement in the
downstream direction. S, increases with z and reaches a saturation within approximately 15 wave wavelengths
from the particles injection point - this saturation determines the maximum possible stirring which has been
found to correspond to S, ~ 0.4 for the symmetry-preserving grooves and S, & 0.5 for the symmetry-breaking
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Figure 7. The initial distribution of four distinct species is illustrated in Fig. 7A for the symmetry-preserving
grooves. Variations of the Shannon entropy S, as a function of the z-distance from the initial particles’
placement for the symmetry-preserving (Fig. 7B) and the symmetry-breaking (Fig. 7C) grooves. The solid and
dashed lines correspond to the drag reducing and slightly drag increasing (10% increase) conditions.

grooves (Fig. 7B,C). Stirring very closed to its maximum can be achieved with reduction of pressure losses below
those associated with the simple, unstirred reference flow. The difference between S,’s observed for both types of
grooves can be explained by noting that the flow domain is divided into two separate stirring zones in the sym-
metric channel (see Figs. 3-4). This means that only two species mix in each of the upper/lower portions of the
channel and, since the required travel distances are smaller, the final state is achieved faster. S, is the same for each
portion but should be halved if a complete channel is considered. The stirring occurs in the whole channel for the
symmetry-breaking grooves, the particles must travel over longer distances and, as a result, the best possible
mixed states are achieved further downstream. These states are however characterized by larger S,’s than those
achieved using the symmetry-preserving grooves (Figs. 3, 5 and 7).

Conclusions

We have demonstrated that the use of properly shaped grooves reduces flow losses and forces the flow to bifurcate
to a form which produces chaotic states. The flow field has a regular time- and spatially- periodic structure but it
generates chaotic particle trajectories. The chaotic character of the trajectories was confirmed through evaluation
of folding and stretching of the test material lines, and through construction of Poincaré sections. The resulting
stirring has been quantified using two measures. In the first one, test particles were injected into the flow field
which was divided into a system of small bins and the ratio of the ever-occupied bins to the total number of bins
was determined. The second measure used the Shannon entropy concept. The stirring can occur either in the
complete flow domain or in different subdomains depending on the system symmetries — no physical barrier is
required to separate stirring subdomains in the latter case. The energy cost of such stirring can be smaller than the
energy cost of the reference flow without any stirring.

Methodology -

We solve the incompressible Navier-Stokes equations 2 + 77" - Vi’ = fV_p) + R'AW, -V - W = 0with

(u, v, w) being the spanwise x-, normal-to-the-wall y- and streamwise z- components of the velocity vector, and

p denoting pressure. The flow is driven by a constant pressure gradient applied along the z-direction. The channel

geometry for the symmetry-breaking grooves is given as y, (x, z) = —1 + Scos(ax), y,(x, z) = 1and for the

symmetry-preserving grooves as y, (x, z) = —1 + Scos(ax), y,(x, z) = 1 — Scos(ax) where S and a stand for

the groove amplitude and wavenumber, respectively.

0%w
ox W

discretized using the spectral element method?® with the resulting linear algebraic equations solved using stand-

ard solvers.

The stability of the primary state was analyzed using temporal linear stability in the asymptotic (modal) for-
mulation. Disturbances were assumed to be in the form %)(x, y, z, t) = u(x, y)e'™ 7 1 CC where
uy = (uy, v, wy) is the disturbance velocity vector, u,(x, y) is the amplitude function vector, § is the spanwise
wave number, 3 is the streamwise wave number, o is the complex amplification rate and CC stands for the com-
plex conjugates. The spectral element discretization®® was used to convert the resulting eigenvalue problem for the
partial differential equations for the modal functions into an algebraic eigenvalue problem which was then solved
using standard methods®**.

Nonlinear saturation states were obtained by direct numerical time integration of the full field equations using
the spectral elements in the spanwise x- and normal-to-the-wall y-directions and Fourier decomposition in the
z-direction® combined with the second-order velocity-correction scheme®. A regular, structured mesh made of
quadrilateral elements was generated using the GMSH package®'. We used 12 elements in the x-direction and 10
in the y-direction per single corrugation. Spectral discretization within each element used nine modified Jacobi
polynomials and nine Gauss-Lobatto-Legendre quadrature points in each direction”. We used NEKTAR++
implementations®? of these methods in our work.

2
The field equations for the primary state reduce to a single equation of the form 6?7“2’ + = —2 which was
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The numerical error is dictated by several factors. The Fourier expansion was truncated after M modes with M
selected to make ratio of kinetic energies of this mode and mode zero small enough (10~%° was used in the com-
putations). The spectral element mesh as well as the local expansions were selected based on the convergence
studies carried out previously in the context of stability and nonlinear saturation studies'*?***. Sufficient temporal
accuracy and resolution were achieved with the step size of At= 2e-2?%%, which translates to approximately 1000
timesteps per period of the oscillatory flow. The computational box extended over two groove wavelengths in the
spanwise direction and over a single wavelength of the travelling wave in the streamwise directions to account for
possible x- and z-subharmonics, but none were found. The adequacy of the box size was tested by repeating cer-
tain cases with doubling of its size and no differences within an acceptable numerical error were found.

Lagrangian particle tracking rehed on numerical solution of % = 7’ (x t) which was carried out using a

4%_order Runge-Kutta method. Here X is the position vector and u (%', t) is the instantaneous velocity vector.
The error in tracking of material lines was controlled through the use of a large number of material points and by
limiting the length of simulation time interval.
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