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Use of Surface corrugations for 
Energy-Efficient Chaotic Stirring in 
Low Reynolds number flows
S. W. Gepner1 ✉ & J. M. floryan2

We demonstrate that an intensive stirring can be achieved in laminar channel flows in a passive manner 
by utilizing the recently discovered instability waves which lead to chaotic particle movements. The 
stirring is suitable for mixtures made of delicate constituents prone to mechanical damage, such as 
bacteria and DNA samples, as collisions between the stream and both the bounding walls as well as 
mechanical mixing devices are avoided. Debris accumulation is prevented as no stagnant fluid zones 
are formed. Groove symmetries can be used to limit stirring to selected parts of the flow domain. The 
energy cost of flows with such stirring is either smaller or marginally larger than the energy cost of flows 
through smooth channels.

Mixing of fluids is a two-stage process composed of diffusion overlaid on top of mechanical stirring (advection)1. 
The former is dictated by material properties and is in general slow, while the latter is associated with flow kine-
matics. Stirring promotes mixing in the sense that it leads to stretching and folding2,3 of fluid interfaces, increas-
ing concentration gradients and enabling the otherwise slow diffusion to act more rapidly and across shorter 
distances.

For the vector field to produce chaotic particle trajectories, the flow must be either unsteady two-dimensional 
or three-dimensional4,5. Turbulization provides chaotic motions but cannot always be achieved and comes with 
significant pressure losses. The first demonstration that chaos exists in laminar flows was provided by Arnold6 and 
Hénon7. The follow-up studies focused on “toy” flows whose forms are given analytically at the cost of truncated 
physics, e.g., ABC (Arnold-Beltrami-Childress) flows8, blinking vortex9, double gyre10 or the pulsed source-sink11, 
and provided fertile grounds for concept development5 and guidelines for creating real flows capable of chaotic 
stirring. Passive methods focus on geometry modifications where stirring is accomplished by forcing the flow to 
impact obstacles, e.g., partitioned pipe12, serpentine channel13, twisted pipe14, herringbone surface15 and various 
assemblies of bars and blades16 - stirring increases but at a cost of additional pressure losses. Active methods 
employ external body forces17, actuated particles18 and various stirrers9 with all of them requiring an external 
energy input. Three-dimensionality and unsteadiness do not guarantee chaos19,20, and not every chaotic state 
guarantees good stirring; either Poincaré maps or Lyapunov exponents must be used to verify whether the result-
ing flow is both chaos- and stirring-capable.

We report here the existence of flow systems where small geometry modifications create bifurcations resulting 
in a natural creation to new, chaos-capable states. These configurations are energetically efficient, i.e., maintaining 
the new flow either requires less energy than the reference flow or the energy consumption increases at a marginal 
rate. We focus on geometries that eliminate direct fluid collisions with the bounding walls in order to reduce 
mechanical damage to the mixture constituents and geometries that avoid formation of stagnant fluid zones so 
that any debris can be washed out by the stream. This leads us to analyze conduits with longitudinal grooves, 
which we divide into symmetry preserving grooves and symmetry breaking grooves. We demonstrate that sepa-
rate stirring zones can be created in the former case without introducing any physical barriers.

Geometry Modifications
We begin by defining the reference flow which we shall use to demonstrate that chaotic state is produced with less 
energy expenditures than those required to maintain the unmodified flow. The steady plane Poiseuille flow char-
acterized by the Reynolds number Re = Wmax h/v where Wmax is the maximum of the streamwise velocity, h is the 
channel half-height and v is the kinematic viscosity, is chosen as the reference flow. It is driven by a constant 
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pressure gradient dp/dz = −2/Re resulting in the velocity field → = −u y[0, 1, 1 ]2  which produces the flow rate Qr 
= 4/3. We now create spatial flow modulation by modifying the conduit geometry with grooves parallel to the 
flow direction (Fig. 1); we require that the mean channel cross section remains the same. We use Fourier expan-
sions to characterize geometric patterns with commensurability factors (ratios of various geometric wave num-
bers) providing the means to create flow adjustments. Grooves on both walls lead to a pattern interaction problem 
providing additional degrees of freedom. The analysis relies on numerical solutions utilizing finite-length com-
puter words which precludes access to non-commensurable topographies. Since various features of the 
self-induced chaotic stirring can be demonstrated using very simple geometries, we defer the above complexities 
to later analyses and focus the discussion on grooves described by a single Fourier mode. For detailed discussion, 
we select conduits with either symmetry-preserving (Fig. 1A) or with symmetry-breaking (Fig. 1D) grooves. The 
modified flow is steady, one-dimensional and Re-independent as scaling eliminates Re (see the methodology 
section) without any promise for chaotic motions. Typical flow topologies (see Fig. 1B,E) demonstrate the forma-
tion of high-velocity stream tubes located in the widest channel openings where the fluid accelerates beyond the 
maximum velocity of the reference flow. Conduits with grooves of sufficiently long wavelengths are more energy 
efficient in the sense that the same pressure gradient generates a larger flow rate than in the unmodified conduit21 
(see Fig. 1C,F) with the symmetry-preserving grooves being more efficient than the similar symmetry-breaking 
grooves. The most energy efficient grooves have universal constraint-dependent shapes, e.g., golden trapezoid, 
Gaussian function22,23.

flow bifurcation
The first step towards flow evolution to a chaotic state is the onset of the recently discovered inviscid24 instability 
modes with the critical Re being as low as O(102)24–26. We illustrate in Fig. 2A,B the formation of flow bifurcations 
with different classes of grooves having the same effective amplitude (ratio of the widest and narrowest channel 
openings) to facilitate meaningful comparisons. The dark grey zones identify conditions leading to a reduction of 
pressure losses while the light grey zones illustrate conditions leading to a small increase of losses, which we 
define as losses of up to 10% of the reference flow rate. We use the linear stability theory to determine the critical 
conditions, which are Rcr = 58.8, βcr = 0.4, σcr = (0.334, 0) for the conditions used in Fig. 2A, and Rcr = 65.43, βcr 
= 0.3, σcr = (0.315, 0) for the conditions used in Fig. 2B. In the above, β stands for the streamwise disturbance 
wave number, the real part of σ stands for the frequency and its imaginary part describes the amplification rate. 
The flow resistance increases (and the flow rate decreases) as the system moves along a bifurcation branch towards 
higher Re as the same pressure gradient drives a more complex flow.

We determine properties of saturation states through time integration of the complete flow equations as 
explained in the Methodology section. When Re is small enough (Re < ~80), the modified conduits produce 
a larger flow rate than the reference conduit (Fig. 2A,B). The saturation states have the form of high velocity 
stream tubes modulated by instability waves (see the right sides of Fig. 2C,D and supplementary videos S1 and 

Figure 1. Primary flow. Figure 1A (1D) - symmetry preserving (breaking) grooves; Fig. 1B (1E) - contour plot 
of the streamwise velocity for the symmetry preserving (symmetry breaking) grooves for α= . =S 0 4, 1 (S = 
0.8, α = 0.8). Grey color identifies zones of accelerated fluids. Figure 1C (1 F) - variations of the flow rate as a 
function of S and α for the symmetry preserving (symmetry breaking) grooves. Grey color identifies drag 
reducing configurations. Q (Qr) stands for the flow rate of the modified (unmodified) flow driven by the same 
pressure gradient.
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S2) producing a three-dimensional time-dependent flow. This flow contains zones of fluid rotating in opposing 
directions above and below the stream tube (see helicity plots on the left sides of Fig. 2C,D) with the direction of 
rotation changing every half wavelength with a small overlapping zone containing four layers of counter-rotating 
fluid. As a result, fluid particles moving downstream experience periodic changes in the direction of rotation, 
which is not unlike the effects created by the blinking vortex9, double gyre10, pulsed source-sink11, partitioned 
pipe12, serpentine channel13, twisted pipe14 and herringbone surface15.

Chaotic states
We shall now demonstrate the formation of chaotic states by examining the advection of massless particles. We 
place them in the flow at z = 0 along a straight line extending between (x,y) = (3.5,−0.5) and (4.5,0.5) and follow 
their trajectories. We tested different placement times (instantaneous versus distributed) and different initial 
positions and concluded that the process is ergodic and, therefore, dependence on the initial conditions averages 
out for long enough tracings. Intersections of trajectories with transverse planes at different z-locations are shown 
in Fig. 3; the images are organized in pairs of Re’s equally distant from the bifurcation points for both types of 
grooves. The initially straight material lines loose coherence within approximately five wave wavelengths in the 
streamwise direction; this is expected as these lines are made of a finite number of particles. The stirring process 
is more rapid for larger Re’s which is also expected. In the case of symmetry-preserving grooves, the flow field is 
divided along the line of symmetry into two zones with no advective transport taking place across the separatrix 
for all Re’s considered. In the case of symmetry-breaking grooves, advection (understood as wandering of trajec-
tories) occurs in the whole domain. It is remarkable that particles spread in the spanwise direction well beyond 
the groove segment where they were initially placed, i.e., chaotic movement does not obey the spanwise perio-
dicity condition, with this effect being more pronounced for the symmetry-breaking grooves. Poincaré sections 
displayed in Fig. 4 demonstrate the ability of the flow to promote particle spreading as, when time progresses, an 
increasing portion of the domain is visited by trajectories originating from the same initial set except for regions 
near the walls, which is entirely expected. We did not find any elliptic islands12,27 trapping the fluid for the condi-
tions considered in this study.

To quantify the ability of the flow field in creating folding and stretching of material lines, we measure the 
length of an initially straight material line by following the trajectories of its elements until they intersect with a 
transverse plane (z = const), and measure the length l of the lines formed by the intersection points – this length 
is defined as the Euclidian distance between the consecutive points. The initial length is l0 at z = 0 and the ratio l/l0 

Figure 2. Bifurcation diagrams and instantaneous flow fields for the symmetry-preserving (Fig. 2A,C; 
(α β =S, ,  (1, 0.4, 0.4)) and symmetry-breaking (Fig. 2B,D; (α β =S, ,  (0.8, 0.8, 0.3)) grooves. Q stands for the 
flow rate of the modified flow, Re is the Reynolds number of the reference flow and Reb is the bulk Reynolds 
number of the modified flow based on the average streamwise velocity. Zones A in Fig. 2A,B identify conditions 
leading to the reduction of pressure losses and zones B identify conditions leading to an increase of pressure 
losses by up to 10% of the reference losses. Solid dots identify bifurcation points while crossed dots identify 
conditions used in Fig. 2C,D. The left sides of Fig. 2C,D display helicity H defined as = → ⋅ ∇ × →H u u( ) with 
arrows showing the direction of the instantaneous rotation while the right sides display contour plots of the 
streamwise velocity component w (yellow color identifies stream tube with ≥w 1). λα is the groove wavelength 
while λβ is the wave wavelength.
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provides a measure of stretching. In the case of unmodified flow, l = l0 for all times as particles follow straight tra-
jectories always producing the same projections. These projections are not affected by the streamwise spreading 
due to flow shear. In the case of modified flows, projections capture spanwise spreading which is entirely due to 
chaotic mixing and begins to be observable at approximately one wave wavelength downstream from the particle 
insertion point (Fig. 5A,B). The stretching increases initially proportionally to z2 and then proportionally to z4 
for all Re’s used in this study, with the growth rate reaching saturation more rapidly for higher Re for both types 
of grooves (Fig. 5).

Stirring quantification
We shall use two different measures for stirring quantification. In the first one, we introduce 100 × 100 approxi-
mately equal bins uniformly distributed across five adjacent groove sections λ λ∈ − α αz[ ( 2 , 3 )] and define the 
E/A measure as the ratio of the ever-occupied bins up to a given z-location to the total number of bins. Each bin 
is turned on when at least one particle is found and remains turned on regardless whether the particle remains or 
leaves – it can be interpreted as a quantification of Poincare sections. The particle spreading increases with dis-
tance, eventually approaching a Re-dependent saturation state (Fig. 6) which corresponds to E/A of up to 20% for 
the drag reducing configurations and E/A of up to 80% for the configuration resulting in a slight increase of losses.

The second measure uses Shannon entropy27,27. We measure the order of the system in terms of the probability 
of finding a given state. Entropy takes low values when the probability of selecting one of the available states is 
much higher than that for the others. In stirring, low values correspond to different constituents being separated 
so that the presence (absence) of one of them can be easily predicted. High values correspond to well-stirred states 
when identification of different components becomes difficult. We divide the domain into = …i M1, 2, ,  “bins” 
and introduce = …i C1, 2, ,  species (particles of different colors). The probability of finding particles of a given 
type in bin j is =p i n n( ) /j i j j, , where ni j,  is the number of particles of type i in bin j and nj is the total number of 
particles in bin j. The entropy for bin j is = −∑ 



=S p i log p i( ) ( )j i

C
j j1  and the overall entropy averaged over all bins is 

= ∑−
=S M Sj

M
j

1
1 . The results are normalized with the maximum possible entropy Smax which corresponds to a 

perfectly stirred state where the probability of finding a particle of each type in each bin is the same, i.e., 
=p i C( ) 1/j . This leads to = − ∑−

=
− −S M C log C( )max j

M1
1

1 1 , and the Shannon entropy is expressed as =S S S/e max 
with ≤S 1e . We use the test domain consisting of one groove segment combined with spanwise periodicity for the 
particle movement between grooves which means that the total number of particles in the test section remains the 
same. We sub-divide the test domain into 100 × 100 approximately equal bins, organize them into four zones, fill 

Figure 3. Locations of particles in the (x,y)-planes at different z-locations. Blue and green (red and black) 
colors identify particles placed below (above) the line y = 0. The left (right) column refers to the symmetry 
preserving (breaking) grooves.
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each zone at z = 0 with a uniform distribution of distinct species (Fig. 7A) and follow particles’ movement in the 
downstream direction. Se increases with z and reaches a saturation within approximately 15 wave wavelengths 
from the particles injection point – this saturation determines the maximum possible stirring which has been 
found to correspond to ≈ .S 0 4e  for the symmetry-preserving grooves and ≈ .S 0 5e  for the symmetry-breaking 

Figure 4. Poincaré sections formed by particles’ trajectories between z = 0 and z = 50 λβ. The initial particle 
positions and colors are the same as in Fig. 3. The images were produced by displaying non-transparent particles 
in the following order: blue, green, red, black.

Figure 5. Stretching of material lines used in Fig. 3 as functions of the z-distance from their initial placement 
for the symmetry preserving (Fig. 5A) and the symmetry breaking (Fig. 5B) grooves. The solid and dashed lines 
correspond to the drag reducing and slightly drag increasing (10% increase) flow conditions. Horizontal axes 
end at z = 400.

Figure 6. Variations of the E/A measure of mixing intensity as a function of the z-distance from the particle 
injection plane. The left (right) column refers to the symmetry-preserving (breaking) grooves. The solid and 
dashed lines correspond to the drag reducing and slightly drag increasing (10% increase) conditions.
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grooves (Fig. 7B,C). Stirring very closed to its maximum can be achieved with reduction of pressure losses below 
those associated with the simple, unstirred reference flow. The difference between Se’s observed for both types of 
grooves can be explained by noting that the flow domain is divided into two separate stirring zones in the sym-
metric channel (see Figs. 3–4). This means that only two species mix in each of the upper/lower portions of the 
channel and, since the required travel distances are smaller, the final state is achieved faster. Se is the same for each 
portion but should be halved if a complete channel is considered. The stirring occurs in the whole channel for the 
symmetry-breaking grooves, the particles must travel over longer distances and, as a result, the best possible 
mixed states are achieved further downstream. These states are however characterized by larger Se’s than those 
achieved using the symmetry-preserving grooves (Figs. 3, 5 and 7).

conclusions
We have demonstrated that the use of properly shaped grooves reduces flow losses and forces the flow to bifurcate 
to a form which produces chaotic states. The flow field has a regular time- and spatially- periodic structure but it 
generates chaotic particle trajectories. The chaotic character of the trajectories was confirmed through evaluation 
of folding and stretching of the test material lines, and through construction of Poincaré sections. The resulting 
stirring has been quantified using two measures. In the first one, test particles were injected into the flow field 
which was divided into a system of small bins and the ratio of the ever-occupied bins to the total number of bins 
was determined. The second measure used the Shannon entropy concept. The stirring can occur either in the 
complete flow domain or in different subdomains depending on the system symmetries – no physical barrier is 
required to separate stirring subdomains in the latter case. The energy cost of such stirring can be smaller than the 
energy cost of the reference flow without any stirring.

Methodology
We solve the incompressible Navier-Stokes equations + → ⋅ ∇→ = − ∇

→
+ ∆→ ∇ ⋅ → =∂→

∂
−

u u p R u u, 0u
t

1  with 
u v w( , , ) being the spanwise x-, normal-to-the-wall y- and streamwise z- components of the velocity vector, and 

p denoting pressure. The flow is driven by a constant pressure gradient applied along the z-direction. The channel 
geometry for the symmetry-breaking grooves is given as α= − + =y x z Scos x y x z( , ) 1 ( ), ( , ) 1L U  and for the 
symmetry-preserving grooves as α α= − + = −y x z Scos x y x z Scos x( , ) 1 ( ), ( , ) 1 ( )L U  where S and α stand for 
the groove amplitude and wavenumber, respectively.

The field equations for the primary state reduce to a single equation of the form + = −∂

∂

∂

∂
2w

x
w

y

2

2

2

2  which was 
discretized using the spectral element method28 with the resulting linear algebraic equations solved using stand-
ard solvers.

The stability of the primary state was analyzed using temporal linear stability in the asymptotic (modal) for-
mulation. Disturbances were assumed to be in the form → = → +δ β σ+ −u x y z t u x y e CC( , , , ) ( , )d a

i x z t( )  where 
→ =u u v w( , , )d d d d  is the disturbance velocity vector, →u x y( , )a  is the amplitude function vector, δ is the spanwise 
wave number, β is the streamwise wave number, σ is the complex amplification rate and CC stands for the com-
plex conjugates. The spectral element discretization28 was used to convert the resulting eigenvalue problem for the 
partial differential equations for the modal functions into an algebraic eigenvalue problem which was then solved 
using standard methods24,25.

Nonlinear saturation states were obtained by direct numerical time integration of the full field equations using 
the spectral elements in the spanwise x- and normal-to-the-wall y-directions and Fourier decomposition in the 
z-direction29 combined with the second-order velocity-correction scheme30. A regular, structured mesh made of 
quadrilateral elements was generated using the GMSH package31. We used 12 elements in the x-direction and 10 
in the y-direction per single corrugation. Spectral discretization within each element used nine modified Jacobi 
polynomials and nine Gauss-Lobatto-Legendre quadrature points in each direction29. We used NEKTAR++ 
implementations32 of these methods in our work.

Figure 7. The initial distribution of four distinct species is illustrated in Fig. 7A for the symmetry-preserving 
grooves. Variations of the Shannon entropy Se as a function of the z-distance from the initial particles’ 
placement for the symmetry-preserving (Fig. 7B) and the symmetry-breaking (Fig. 7C) grooves. The solid and 
dashed lines correspond to the drag reducing and slightly drag increasing (10% increase) conditions.
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The numerical error is dictated by several factors. The Fourier expansion was truncated after M modes with M 
selected to make ratio of kinetic energies of this mode and mode zero small enough (10−20 was used in the com-
putations). The spectral element mesh as well as the local expansions were selected based on the convergence 
studies carried out previously in the context of stability and nonlinear saturation studies19,26,33. Sufficient temporal 
accuracy and resolution were achieved with the step size of ∆ =t  2e-226,33, which translates to approximately 1000 
timesteps per period of the oscillatory flow. The computational box extended over two groove wavelengths in the 
spanwise direction and over a single wavelength of the travelling wave in the streamwise directions to account for 
possible x- and z-subharmonics, but none were found. The adequacy of the box size was tested by repeating cer-
tain cases with doubling of its size and no differences within an acceptable numerical error were found.

Lagrangian particle tracking relied on numerical solution of = → →→
u x t( , )

dx
dt

 which was carried out using a 
4th-order Runge-Kutta method. Here →x  is the position vector and → →u x t( , ) is the instantaneous velocity vector. 
The error in tracking of material lines was controlled through the use of a large number of material points and by 
limiting the length of simulation time interval.
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