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A robust spike sorting method 
based on the joint optimization 
of linear discrimination analysis 
and density peaks
Yiwei Zhang1, Jiawei Han1,2, Tengjun Liu1, Zelan Yang1, Weidong Chen1,3* & Shaomin Zhang1

Spike sorting is a fundamental step in extracting single-unit activity from neural ensemble recordings, which 
play an important role in basic neuroscience and neurotechnologies. A few algorithms have been applied in 
spike sorting. However, when noise level or waveform similarity becomes relatively high, their robustness 
still faces a big challenge. In this study, we propose a spike sorting method combining Linear Discriminant 
Analysis (LDA) and Density Peaks (DP) for feature extraction and clustering. Relying on the joint 
optimization of LDA and DP: DP provides more accurate classification labels for LDA, LDA extracts more 
discriminative features to cluster for DP, and the algorithm achieves high performance after iteration. We 
first compared the proposed LDA-DP algorithm with several algorithms on one publicly available simulated 
dataset and one real rodent neural dataset with different noise levels. We further demonstrated the 
performance of the LDA-DP method on a real neural dataset from non-human primates with more complex 
distribution characteristics. The results show that our LDA-DP algorithm extracts a more discriminative 
feature subspace and achieves better cluster quality than previously established methods in both simulated 
and real data. Especially in the neural recordings with high noise levels or waveform similarity, the LDA-DP 
still yields a robust performance with automatic detection of the number of clusters. The proposed LDA-DP 
algorithm achieved high sorting accuracy and robustness to noise, which offers a promising tool for spike 
sorting and facilitates the following analysis of neural population activity.

The development of neuroscience has put forward high requirements for analyzing neural activity at both single 
 neuron1–4 and population  levels5–7. The basis of neural data analysis is the correct assignment of each detected spike to 
the appropriate units, a process called spike  sorting8–11. Spike sorting methods will encounter difficulties in the face of 
noise and perturbation. Since the algorithms commonly fall into two  processes12,13, feature extraction and clustering, 
an outstanding spike sorting algorithm needs to be highly robust in the feature extraction and clustering process.

For feature extraction methods, the extracted features are descriptions of spikes in low-dimensional space. An 
appropriate feature extraction method can reduce data dimensions while ensuring the degree of  differentiation1. 
Currently, extracting the geometric features of waveforms is the simplest way, including peak-to-peak value, 
width, zero-crossing feature, etc.14. Although this method is easy to operate with extremely low complexity, it has 
a low degree of differentiation for similar spikes and is highly sensitive to  noise12,13. First and Second Derivative 
Extrema (FSDE) calculates the first and second derivative extrema of spike waveform, which is relatively simple 
and has certain robustness to  noise15. Other methods like Principal Components Analysis (PCA)13,16 and Discrete 
Wavelet Transform (DWT)17–19 have certain robustness to noise. In recent years, deep learning methods have 
been proposed, such as the 1D-CNNs20 and the Autoencoder (AE)21. However, the deep learning methods are 
limited in practical use because of their high computational complexity and high demands on the training set.

So far, many previous methods tend to be perturbed by noise or the complexity of the data. They cannot effectively 
extract the features with high differentiation, resulting in poor effect in the subsequent clustering, especially in the case 
of high noise level and data similarity. For solving this problem, some studies improved the robustness by using super-
vised feature extraction and clustering iteration to get the optimal subspace with strong clustering  discrimination22–25.
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Clustering algorithms are also developing with the update of data analysis methods. Early on, the commonly 
used method was  manually26 segmenting clusters. When more channels come, the workload of operations becomes 
higher, so it is less used later. K-means (Km)13 is a widely used clustering method because it is simple to calculate. 
However, it requires users to determine the number of clusters in advance. Thus, it is sensitive to the initial param-
eters and lacks  robustness27,28. Some distribution-based methods, such as Bayesian  Clustering13 and Gaussian Mix-
ture  Model29–31, represent the data with Gaussian-distribution assumptions. Some methods based on neighboring 
relations can avoid assumptions, for example, the Superparamagnetic  Clustering19,32. In addition, Neural  Networks33, 
T-distribution34, Hierarchical  Clustering35, and Support Vector  Machines36,37 are also used in spike sorting.

For supervised feature extraction methods, the clustering method has a powerful influence on the perfor-
mance of feature extraction and further affects the performance of the whole algorithm. Ding et al. proposed the 
LDA-Km algorithm, which used K-means to obtain classification labels and LDA to find the feature space based 
on the labels and then continuously iterated the two algorithms to  convergence24,25. Keshtkaran et al. introduced 
a Gaussian Mixture Model (GMM) based on LDA-Km and put forward the LDA-GMM  algorithm22, which had 
high accuracy and strong robustness against noise and outliers. LDA-GMM needs to iterate several times by 
changing the initial value of important parameters (such as the initial projection matrix) to obtain the optimal 
result. Its operation also calls LDA-Km which brings additional computation complexity. Recently, the concept of 
joint optimization of feature extraction and clustering has been adopted to construct a unified optimization model 
of PCA and Km-like  procedures38, which integrates the feature extraction and clustering steps for spike sorting.

Inspired by these efforts, we proposed a framework that integrates the supervised feature extraction and the 
clustering to make them benefit each other. Thus, a remarkable clustering method is also crucial. Density Peaks 
(DP) proposed by Rodriguez et al. define the cluster centers as local maxima in the density of data  points39. This 
algorithm does not assume the data distribution and can well adapt to the nonspherical distribution, which is 
more applicable to the complex distribution of spikes in vivo, making it a win–win for robustness and computation 
cost. Therefore, this paper integrates the LDA and DP as a joint optimization model LDA-DP for spike sorting.

Methods
An overview of the LDA-DP algorithm. This study proposed a spike sorting algorithm combining LDA 
with DP. LDA is a supervised machine learning method that requires prior information about cluster labels. The 
data is initially projected into an initial subspace and then clustered by Density Peaks to obtain cluster labels. Thus, 
we need an initial projection matrix W . As summarized in Algorithm 1, the projection matrix W is initialized by 
executing PCA on spike matrix X , cutting the first d coefficients, and assigning it to W . We chose d = 3 for overall 
consideration to maintain performance and computation complexity, in line with the other feature extraction 
methods compared in this study. In each iteration, the algorithm updates a clustering result L . When the updated 
L is relatively consistent with the result in the previous iteration ( L_pre ) or the number of iterations reaches the 
upper limit MaxIte , the iteration ends. The minimum number of iterations MinIte ensures that the algorithm 
iterates adequately. The suggested value for minimum iteration MinIte is 5 and maximum iteration MaxIte is 50. 
Finally, in the last step of the algorithm, the similar clusters are merged and we obtain the sorting result Lmerge

Algorithm 1. Spike sorting based on LDA-DP

Input: X = { 1, . . . , }, matrix of  spikes

Input: , the minimum number of iterations

Input: , the maximum number of iterations

Initialize: ← ∅, ← 0

Do PCA on X to obtain initial projection matrix 0

← 0 

repeat

Y ←  

L_pre ←  

Do DP on to  to obtain clustering result L

Do LDA using L to obtain projection matrix 

← + 1 

until ( =  and  > ) or  = 

Do cluster merging on  to determine the number of clusters, obtaining final 

result 

Output: , 

.
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Discriminative feature extraction using Linear Discriminant Analysis. Linear Discriminant Anal-
ysis (LDA), also known as "Fisher Discriminant Analysis", is a linear learning method proposed by  Fisher23. LDA 
is a supervised machine learning method that finds an optimal feature space, where the intra-class scatters are 
relatively small and inter-class scatters are relatively large.

For a multi-cluster dataset, the quality of clusters can be measured by the intra-class scatter metric Sw and 
the inter-class scatter metric Sb , as shown in Formula (1) and (2):

xi denotes the i th data point in the k th cluster Ck , µk denotes the mean value of data points in Ck , nk denotes 
the number of data points in Ck , µ denotes the mean value of all data points, and n denotes the total number of 
data points.

To calculate the projection matrix W , LDA performs optimization by maximizing objective function J (For-
mula (3)).

Then data points can be projected to a d-dimensional subspace which captures discriminative features by the 
obtained projection matrix W . In this study, d was fixed to 3 by default.

Clustering features based on Density Peaks. The principle of the Density Peaks Algorithm (DP)39 
is very simple. For each data point, two parameters are calculated, the local density ρ of the point and the 
minimum distance δ between the current point and the data point with a larger local density. The DP algorithm 
assumes that if a point is a cluster center, it will satisfy two conditions: (1) its local density ρ is high; (2) it is far 
away from another point that has a larger local density. That is, the center of the cluster is large for both ρ and δ . 
After the cluster centers are identified, the remaining data points are allocated according to the following prin-
ciple: each point falls into the same cluster with its nearest neighbor point n_up who has a higher local density.

In this study, the Gaussian kernel is adopted to calculate local density. Local density ρ of the i th point is 
shown in Formula (4):

dij denotes the Euclidean distance between the sample yi and yj , as is shown in Formula (5):

dc denotes the cutoff distance. In this study, we defined cutoff distance by selecting a value in ascending sorted 
sample distances d_sort:

t  is the cutoff distance index, and as a rule of thumb, it generally ranges from 0.01 to 0.02, and f (·) denotes the 
rounding function.

The minimum distance δ and the nearest neighbor point n_up is calculated in Formula (7) and (8) where ρmax 
denotes the maximum local density:

To  automate39 the search for the cluster centers where both ρ and δ are large, we creatively defined the DP 
index � as the product of ρ and δ , as shown in Formula (9).

The algorithm selects K data points with the largest DP index as the clustering centers. If the data is randomly 
distributed, then the distribution of � is in line with the monotonically decreasing power function, and the DP 
index of the cluster centers is significantly higher, which makes it feasible to select cluster centers according 
to the DP index � . As iteration times increase, the DP index difference between the center and the non-center 
increases. As the K value is determined, the method can be automated. K denotes the initial number of clusters, 

(1)Sw =

K
∑

k=1

nk
∑

xi∈Ck

(xi − µk)(xi − µk)
T

(2)Sb =

∑K
k=1nk(µk − µ)(µk − µ)T

n

(3)J =
tr(WTSbW)

tr(WTSwW)

(4)ρi =

n
∑

j=1,j �=i

e−(
dij
dc

)2
− 1

(5)dij = (yi − yj)
T (yi − yj)

(6)dc = d_sortf (nt)

(7)δi =







max
j

(dij) ρi = ρmax

min
j:ρj>ρi

(dij) ρi �= ρmax

(8)n_upi =

{

i ρi = ρmax

j ρi �= ρmax , δi = dij

(9)�i = δiρi
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its value actually affects the performance of the algorithm. Since one channel in sparse electrodes could com-
monly record no more than 4 single units, the default value of K in this study is 4, for an overall consideration of 
sorting accuracy and running time. See Supplementary Fig. S1 for information on the effects of different initial 
K on the sorting accuracy and running time. In some rare instances, more units might be recorded if the probes 
are thinner, in which case the K value should be adjusted according to the electrodes.

For dataset X which contains n data points X = {(xi)}
n
i=1 , giving cutoff distance index t  and the initial number 

of clusters K , the flow of the DP clustering algorithm is as follows:

Step 1:  Calculate the distance between every two data points dij(i, j = 1, 2, . . . n, i < j) , as shown in Formula 
(5).

Step 2:  Calculate the cutoff distance dc as shown in Formula (6).
Step 3:  For each data point, calculate the local density ρ , the minimum distance δ, and nearest neighbor point 

n_up , as shown in Formulas (4) (7) and (8).
Step 4:  For each data point, calculate the DP index � , as shown in Formula (9).
Step 5:  Select cluster centers: the point with the largest � is the center of Cluster 1, the point with the second-

largest � is the center of Cluster 2, and so on to get K centers.
Step 6:  Classify non-center points: rank the non-center points in descending order according to their local 

density ρ , traversing each non-center point, and then the label Li of the i th point is calculated as For-
mula (10):

where Ln_upi denotes the cluster label of the nearest neighbor point of the i th point.
Here, we demonstrated the process using the testing set C1_005 (see “Evaluation”). In the feature extraction 

step, LDA finds out the feature subspace with the optimal clustering discrimination through continuous iteration 
(Fig. 1a). For each data point, our algorithm calculates its local density ( ρ ) and the minimum distance ( δ ). As 
described in the previous section, cluster centers are the points whose ρ and δ are relatively large. DP screens the 
cluster centers using a previously defined DP index � that is the product of ρ and δ . Figure 1b shows a schematic 
diagram where ρ and δ are set as the horizontal and vertical axes in the case of screening three cluster centers. 
The screened centers are the three points with the largest � . They are circled in three colors corresponding to 
three clusters. The defined DP index is competent for center point screening for the screened points all have a 
large ρ and δ value. As a result, Density Peaks clustering obtains the three clusters (Fig. 1c), and Fig. 1d shows 
the waveforms of each cluster center.

Automatic detection of the number of clusters. The last step of the algorithm is a cluster merging 
step, through which the number of clusters will be determined. The purpose of cluster merging is to avoid similar 
clusters being over-split. After the merging step, the number of clusters is determined automatically. The num-
ber of clusters is a critical parameter required by many spike sorting algorithms. However, manually setting the 
number of clusters in advance relies heavily on the experience of operators and may cause problems in practice. 
Thus, a merging step is crucial to automatically determine the number of clusters, in order to reduce the work-
load and artificial error of manual operation. The cluster merging finds similar clusters, combines them, and 
repeats the process. Here, a threshold is used to end the cluster merging process. Once the similarity between 
the most similar clusters goes below the threshold, the merging is stopped, and thus the number of clusters is 
automatically determined.

The similarity between clusters can be measured in several ways. Common distance metrics include the 
Minkowski distance, the cosine distance and the inner product  distance40. According to the Davis-Bouldin Index 
(DBI)40–43, we defined cluster similarity as the ratio R of the compactness CP and the separation SP.

Intra-class distance is a parameter to evaluate the internal compactness of a cluster. Thus, the compactness 
CP can be calculated by (11).

CPk denotes the within-class distance of the cluster Ck , yi denotes the i th data point in the k th cluster Ck , yck 
denotes the center of Ck.

Inter-class distance is a parameter to evaluate the separation of clusters. Thus, the separation SP can be cal-
culated by (12).

SPab denotes the inter-class distance between the cluster Ca and Cb , and yca and ycb denotes the center of the 
cluster Ca and Cb , respectively.

Similarity metric R is shown in Formula (13)

If two clusters have high similarity, the two clusters are merged. We set the threshold Rth as a proportional 
function of the mean value of R , as is shown in Formula (14)

(10)Li = Ln_upi

(11)CPk =
1

nk

∑

yi̇∈Ck

||yi − yck||2

(12)SPab = ||yca − ycb||2

(13)Rab =
CPa + CPb

SPab
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α denotes the threshold coefficient. The threshold should be significantly higher than the mean value, and as a 
rule of thumb, α is above 1.4.

The flow of the cluster merging process is as follows:

Step 1:  Calculate the compactness CP for each cluster, as shown in Formula (11)
Step 2:  Calculate the separation SPab(a, b = 1, 2, . . .K , a < b) for every two clusters, as shown in Formula (12)
Step 3:  Calculate similarity metric Rab for for every two clusters, as shown in Formula (13)
Step 4:  Calculate the threshold Rth , as shown in Formula (14)
Step 5:  Find the maximum similarity Rab . If Rab > Rth , merge cluster a and cluster b , set the center of cluster 

a as the new center, K = K − 1 , return to step 1; Otherwise, stop merging.

Notably, the threshold coefficient α largely affects the merging results. Figure 2a shows the influence of the 
threshold coefficient α on algorithm performance (accuracy) on Dataset A (see “Evaluation”). The mean accuracy 
reaches the highest when α = 1.6 . Therefore, we found an appropriate value of α = 1.6 to make the algorithm 
achieve a general optimal performance on all datasets. In subsequent evaluation, we fixed α as 1.6.

To visualize the effects of the merging process, we selected the testing set C1_020 (see “Evaluation”) for illus-
tration. We obtained the threshold Rth in Formula (14) with α = 1.6 . The number of clusters is 4 before merging 
in Fig. 2b and is 3 after merging in Fig. 2c. Figure 2d,e show the similarity between every two clusters measured 
by  DBI40 before and after merging respectively. It is worth noting that the cluster similarity between cluster 3 
and 4 is above the threshold (threshold = 0.99) before the merging process (Fig. 2d), while all cluster similarity 
reaches below the threshold (threshold = 0.73) after the merging (Fig. 2e). Thus, our proposed algorithm can 
automatically determine the number of clusters through the cluster merging process.

(14)Rth = α

∑K
a=1

∑K
b=a+1Rab

n(n− 1)/2

Figure 1.  Running scenario of the DP clustering stage using Dataset C1_005. (a) Data points projected in a 
two-dimensional feature subspace after LDA. This subspace is considered to be optimal for the within-class 
scatters are relatively small and intra-class scatters are relatively large. (b) Schematic diagram with the local 
density ρ and the minimum distance δ as the horizontal and vertical axes. The points circled in three colors 
are the screened cluster centers. (c) Scatter plot of 3 clusters obtained by DP. The three colors of red, green and 
blue respectively represent the clustering results of cluster 1, cluster 2 and cluster 3. The black dots represent the 
cluster centers. (d) The waveforms of three cluster centers.
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Evaluation
Datasets. Spike waveform data containing cluster information are generally obtained in two ways. One way 
is to use simulated data that quantifies algorithm performance and compares different algorithms. The other 
way is in-vivo extracellular recordings capturing the variability inherent in spike waveforms, which lacks in the 
simulated data.

Dataset A: simulated dataset wave_clus. In this study, we used one common simulated dataset wave_clus pro-
vided by Quiroga et al.19. In the simulation study, spike waveforms have a Poisson distribution of interspike 
intervals, and the noise is similar to the spikes in the power spectrum. In addition, the spike overlapping, elec-
trode drift and explosive discharge under real conditions are simulated. To date, wave_clus has been used by 
many spike sorting algorithms for evaluating sorting  performance19–22,24.

Dataset A contains four sets of data C1, C2, C3 and C4. Each testing set contains three distinct spike waveform 
templates, in which template similarity levels are significantly different (C2, C3 and C4 > C1) and the background 
noise levels are represented in terms of their standard deviation: 0.05, 0.10, 0.15, 0.20 (C1, C2, C3 and C4), 0.25, 
0.30, 0.35, 0.40 (C1). Both similarity levels and noise levels will affect the classification performance. In this 
study, the correlation coefficient (CC) was used to evaluate the similarity levels of spike waveforms. The higher 
the correlation of the two templates, the higher the similarity of the waveforms and the more difficult it will be 
to distinguish the two clusters.

According to spike time information, the waveforms were extracted from the wave_clus dataset, and then the 
spike alignment was conducted. Each waveform lasts about 2.5 ms and is composed of 64 sample points. The 
peak value was aligned at the 20 th sample point.

Dataset B: public in‑vivo real recordings HC1. HC1 is a publicly available in-vivo dataset, which contains the 
extracellular and intracellular signals from rat hippocampal neurons with silicon  probes44. It is a widely used 
benchmark recorded with sparse  electrodes22,31,38. We used the simultaneous intracellular recording as the label 
information of extracellular recording to obtain partial ground  truth44. In a recent study, SpikeForest, a valida-
tion platform has evaluated the performance of ten major spike sorting toolboxes on  HC145.

For all the datasets, raw data were filtered by a Butterworth bandpass filter (filter frequency band 
300–3000 Hz), and the extracellular spikes were detected by double thresholding using Formula (15).

Since intracellular recording had little noise, single threshold detection was adopted to obtain intracellular 
action potentials. If the difference between the extracellular spike time and the intracellular peak time is within 
0.3 ms, they are regarded as the same action potential. After analysis, we obtained some spikes in the extracellular 
recording, which corresponded to the action potentials in the intracellular recording. Thereafter we call them 
the marked spikes, and the rest spikes are called unmarked spikes. With regard to the typical dataset d533101 
in HC1, d533101:6 contains the intracellular potential of a single neuron, while the dataset d533101:4 contains 
simultaneous waveforms of this single neuron as well as some other neurons. We detected 3000 extracellular 
spikes from extracellular recording (dataset d533101:4) and 849 intracellular action potentials from intracellular 
recording (dataset d533101:6). After alignment, 800 marked spikes in the extracellular recording corresponded 
to the action potential in the intracellular recording and were used as ground truth. The rest 2200 spikes are 
unmarked spikes.

Dataset C:in‑vivo real recordings from a non‑human primate. We also compared the performance of spike 
sorting algorithms on in-vivo recordings from a macaque performing a center-out task in a previous  study46. 
All methods involved in the experiment on macaques are reported in accordance with the ARRIVE guide-
lines. In brief, the 96-channel intracortical microelectrode array (Blackrock Microsystems, US) was chronically 
implanted in the primary motor cortex (M1) of a male rhesus monkey (Macaca mulatta). The monkey took 
roughly a week to recover from the surgery, after which the in-vivo neural signals were recorded through the 
Cerebus multichannel data acquisition system (Blackrock Microsystems, US) at a sample rate of 30 kHz. Testing 
sets were obtained from 30 stable channels by measuring the stationarity of spike waveforms and the interspike 
interval (ISI) distribution. All experimental procedures involving animal models described in this study were 
approved by the Animal Care Committee of Zhejiang University.

Performance measure metrics. One of the performance measure metrics is the sorting accuracy which is 
the percentage of the detected spikes labeled correctly. For sample set D , the accuracy of classification algorithm 
f  is defined as the ratio of the number of spikes correctly classified to the total number of spikes used for clas-
sification. The calculation is shown in formula (16):

Another metric is  DBI40 that does not require prior information of clusters. DBI calculates the worst-case 
separation of each cluster and takes the mean value, as shown in Formula (17).

(15)Vth = ±4×median{| · |/0.6745}

(16)Accuracy(f ,D) =
1

m

m
∑

i=1

(f (xi) = yi)
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K  denotes the number of clusters. R denotes the similarity between the clusters for quantitatively evaluating 
cluster quality. A small DBI index indicates a high quality of clustering.

To evaluate algorithm performance on real dataset HC1 with partial ground  truth45, we considered it as a 
binary classification problem. The classification results were divided into four cases: True Positive (TP), False 
Positive (FP), True Negative (TN), and False Negative (FN). We evaluated the performance of the algorithm in 
terms of precision rate and recall rate, as shown in Formula (18) and Formula (19), referring to the validation 
platform  SpikeForest45.

(17)DBI =
1

K

K
∑

a=1

max
a �=b

(Rab)

(18)Precision = 1− False Positive Rate

(19)Recall = 1− False Negative Rate

Figure 2.  An illustration of determining the number of clusters. (a) Accuracy on all testing sets in dataset 
A versus threshold coefficient α . The error bars represent the standard error of the mean. (b,c) The results of 
classification before and after merging. Before merging, data points are clustered into four clusters (denoted by 
four colors: red, violet, green and blue), while after merging, we obtain three clusters (denoted by three colors: 
red, green and blue). (d) Heatmap of similarity between clusters before merging. The black solid line and the 
arrow mark the threshold (threshold = 0.99, see Formula (14)). It can be seen from the heatmap, the similarity 
between cluster 3 and cluster 4 is above the threshold, thus merging cluster 3 and cluster 4. (e) Heatmap of 
similarity between clusters after merging. At this time the number of clusters is 3, and the similarity between 
clusters is below the threshold (threshold = 0.73, see Formula (14)), the merging stage terminates. The number of 
clusters is finally determined to be 3.
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Ethics. All surgical and experimental procedures conformed to the Guide for The Care and Use of Labora-
tory Animals (China Ministry of Health) and were approved by the Animal Care Committee of Zhejiang Uni-
versity, China (No. ZJU20160353).

Results
In this study, our LDA-DP algorithm was compared with five typical spike sorting methods on one simulated 
dataset and two real datasets concerning several performance measure metrics. For comparison, we choose the 
algorithm LDA-GMM22, which has the same feature extraction method as LDA-DP, and choose the algorithm 
PCA-DP, which has the same clustering method. Then we select two classic and widely-used spike sorting 
algorithms, PCA-Km13 and LE-Km27, along with a recently proposed algorithm  GMMsort31. SpikeForest has 
compared the performance of ten spike sorting methods on several neural datasets from both high-density 
probes (like neuropixel) and sparse probes (like classical tetrodes or microwire arrays). IronClust outperforms 
the other 9 methods on Dataset  B47. Thus we quoted these results and compared them with our LDA-DP and 
the above-mentioned 5 algorithms. These algorithms are all unsupervised and automated, except that GMMsort 
needs some manual operation in the last step of clustering. In comparison, the feature subspace dimension was 
fixed as 5 for  GMMsort31 by default and 3 for the rest  algorithms13,22,27.

Performance comparison in the simulated Dataset A. A prominent feature extraction method can 
find the low-dimensional feature subspace with a high degree of differentiation, which is the basis of the high 
performance of the whole algorithm. Thus, we compared the robustness of different feature extraction methods.

As the noise level or waveform similarity increases, the feature points of different clusters will gradually get 
closer in the feature subspace, the inter-class distance will decrease, and the boundary will be blurred, increas-
ing classification difficulty. Thus, we chose the testing set C3 with high waveform similarity as the testing set to 
compare the performance and the noise resistance for five feature extraction methods (PCA-KM and PCA-DP 
used the same feature extraction method PCA).

When the noise level increases, the standard deviation of each waveform template increases (Waveforms 
column in Fig. 3), bringing difficulties to feature extraction. In this case, feature points extracted by the LDA 
method in LDA-DP and LDA-GMM are clustered separately, while in the contrast, feature points from the rest 
three methods are overlapped to some degree. Even under the worst condition when the noise level rises to 
0.20, the proposed LDA-DP algorithm has the least overlapped feature points among the five methods (see Sup-
plementary Fig. S2 for feature subspace during the iteration process). It notes that the feature extracted by the 
LDA-DP algorithm has high robustness to noise and waveform similarity.

We examined the performance of the 6 algorithms (PCA-Km, LE-Km, PCA-DP, LDA-GMM, GMMsort, 
and LDA-DP) on the Dataset A, excluding the overlapping spikes. In order to compare the robustness of each 
algorithm, two performance metrics were employed in this study: sorting accuracy and cluster quality. For each 
testing set, fivefold cross-validation was performed. For PCA-Km and LE-Km, the number of clusters was set to 3; 
And for PCA-DP, LDA-GMM, GMMsort, and LDA-DP, the number of clusters can be determined automatically.

Table 1 presents the average and the standard deviation (std) of the sorting accuracy. It is worth noting that the 
average sorting accuracy of LDA-DP on most of the testing sets is higher than that of the other methods. At the 
same time, LDA-DP also achieves a lower standard deviation of the average accuracy on most of the testing sets.

In the testing set C1 whose classification difficulty is low, most algorithms achieve high accuracy. As the 
noise level rises to 0.40, the sorting accuracy of the rest five algorithms drops below 90%, but the accuracy of 
LDA-DP is still up to 90.7%. Moreover, in the testing set C2, C3 and C4, when both the waveform similarity and 
the noise level increase, only LDA-DP and LDA-GMM can maintain high accuracy relatively. The comparative 
results indicate that these two algorithms have a great power to distinguish waveforms and are highly resistant 
to noise. LDA-DP is especially outstanding because it maintains a higher sorting accuracy steadily (> 85%). On 
average, the mean accuracy of LDA-DP reaches 96.2%, which is the highest in all 6 algorithms. At the same time, 
LDA-DP achieves the lowest mean standard deviation (std = 4.5).

To further visualize the robustness of each algorithm concerning noise, we plotted the changing curve of 
performance with four or eight noise levels on 4 simulated datasets (C1, C2, C3 and C4). Figure 4a,c,e,g show the 
accuracy curve, while Fig. 4b,d,f,h show the DBI curve. In Fig. 4, as the noise level increases, the performance of 
all algorithms drops (The sorting accuracy decreases and the DBIs increase). When the noise level is low, all of 
the 6 algorithms get high accuracy and low DBI. The gaps between algorithms are not obvious. However, when 
the noise levels increase, the performance of PCA-Km, LE-Km, PCA-DP and GMMsort deteriorates. And in 
most cases, LDA-DP performs better than LDA-GMM. In all simulated data, LDA-DP displays a high level of 
performance: the sorting accuracy rate is above 85%, and the DBI is below 1.5, which is generally superior to 
other algorithms and shows high robustness to noise.

We also compared the robustness concerning waveform similarity. In the right side of Fig. 5a, the shapes of 
the three waveform templates were plotted for four testing sets. The correlation coefficients (CC) of the three 
templates were used to measure the similarity level in each testing set (Fig. 5a left). The results indicate that the 
waveform similarity in C2, C3 and C4 is significantly higher than that in C1 (Paired t test, p < 0.01), thus the 
classification of C2, C3 and C4 is relatively more difficult. In order to intuitively show the algorithm performance 
differences, we chose to plot the accuracy and DBIs of 6 algorithms on the four testing sets: C1_020, C2_020, 
C3_020 and C4_020, in which the waveform similarity is diverse and the noise level remains the same (Fig. 5b,c). 
In Fig. 5b, LDA-DP is superior to the other algorithms in terms of sorting accuracy. In the case of high waveform 
similarity, the accuracy of other algorithms fluctuates somewhat, while the accuracy of LDA-DP still maintained 
at a high level. For the DBIs (Fig. 5c), the cluster quality of LDA-DP is also promising.
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Performance comparison in the in-vivo Dataset B. To further evaluate the performance of our algo-
rithm on in-vivo datasets, we compared the performance of LDA-DP and the above 5 algorithms on Dataset 
B. For PCA-Km and LE-Km, the number of clusters was manually set to 3; And for PCA-DP, LDA-GMM, 
GMMsort, and LDA-DP, the number of clusters can be determined automatically. Firstly, one dataset d533101 
in Dataset B, which was widely adopted in previous  studies22,31,38, was chosen for illustration. Figure 6a shows 
the two-dimensional feature subspace extracted by each method. Data points are grouped into three clusters in 
the subspace and the waveform panel shows the average spike waveforms of the three clusters obtained by LDA-
DP. The figure suggests that the LDA method successfully extracts optimal feature subspace, benefiting from the 

Figure 3.  Two-dimensional feature subspace for algorithms on dataset C3 under four noise levels. For 
comparing the feature extraction capability of each algorithm, the data points were colored according to the 
ground truth. Red, green and blue dots represent the features extracted from three clusters, respectively. The 
last column shows the average spike waveforms of three clusters obtained by LDA-DP, and the shaded part 
represents the standard deviation.

Table 1.  Average sorting accuracy percentage on the Dataset A (simulated dataset wave_clus ) (with no 
overlapping spikes) for 6 algorithms. The standard deviation of the accuracy is in parenthesis. The bold 
number represents the best performance in each testing set.

Dataset PCA-Km LE-Km PCA-DP GMMsort LDA-GMM LDA-DP

C1_005 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)

C1_010 100 (0.0) 100 (0.0) 100 (0.0) 99.9 (0.2) 100 (0.0) 100 (0.0)

C1_015 99.9 (0.1) 99.8 (0.1) 99.9 (0.1) 99.9 (0.1) 99.9 (0.1) 99.9 (0.1)

C1_020 99.4 (0.3) 98.8 (0.6) 99.2 (0.4) 97.5 (2.3) 92.9 (10.3) 99.4 (0.3)

C1_025 97.6 (0.2) 96.7 (0.6) 97.2 (0.3) 96.5 (0.9) 91.7 (12.6) 97.7 (1.0)

C1_030 93.8 (1.5) 81.8 (22.9) 81.7 (21.0) 92.0 (2.9) 97.5 (1.0) 96.4 (2.3)

C1_035 66.9 (22.7) 78.6 (19.7) 76.1 (11.9) 76.7 (15.8) 93.3 (2.3) 94.9 (3.2)

C1_040 62.5 (21.7) 79.8 (13.6) 67.3 (12.8) 69.7 (12.4) 83.3 (16.6) 90.7 (8.5)

C2_005 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)

C2_010 98.2 (0.6) 99.9 (0.1) 98.2 (0.6) 81.6 (16.7) 86.8 (16.2) 93.2 (13.5)

C2_015 87.5 (1.2) 96.4 (0.8) 79.5 (9.6) 66.3 (17.3) 85.4 (18.0) 86.3 (16.7)

C2_020 72.9 (1.1) 82.3 (1.6) 36.8 (4.9) 61.9 (5.2) 96.5 (6.4) 97.0 (5.5)

C3_005 99.6 (0.3) 100 (0.0) 100 (0.0) 93.4 (13.1) 96.2 (7.5) 100 (0.0)

C3_010 89.9 (0.9) 97.2 (0.9) 73.9 (12.4) 77.2 (14.2) 95.6 (8.8) 91.8 (11.7)

C3_015 76.3 (2.1) 85.0 (0.8) 42.3 (9.7) 80.9 (12.2) 93.2 (12.7) 99.6 (0.3)

C3_020 55.7 (9.3) 62.6 (6.9) 37.2 (6.5) 43.9 (8.5) 70.3 (29.1) 91.1 (11.0)

C4_005 99.6 (0.4) 100 (0.0) 99.8 (0.1) 100 (0.0) 100 (0.0) 100 (0.0)

C4_010 94.1 (1.0) 97.2 (0.7) 73.1 (10.7) 94.5 (7.7) 96.5 (7.0) 99.8 (0.3)

C4_015 63.4 (19.6) 68.2 (22.7) 65.7 (4.5) 68.7 (8.1) 96.5 (5.9) 96.9 (1.2)

C4_020 50.9 (15.0) 58.6 (4.9) 43.5 (10.8) 49.0 (15.0) 90.3 (13.3) 88.4 (4.9)

Average 85.4 (5.4) 89.1 (5.4) 78.5 (6.5) 82.4 (8.5) 93.3 (9.3) 96.2 (4.5)
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credible feedback of the clustering method (DP) through several iterations. The three clusters are much more 
distinct in the subspace of LDA (GMM) and LDA (DP) than in other methods.

According to the partial ground truth, we analyzed the classification results of algorithms by evaluating the 
precision rate and the recall rate on the d533101 (SNR = 7.10). Figure 6b shows the classification results of 6 
algorithms, along with one outstanding spike sorting software package,  IronClust47, which is benchmarked by 
the  SpikeForest45. Compared with other methods, LDA-DP has a maximum precision rate, as well as a maximum 
recall rate. Although IronClust is a density-based sorter and shows the top average precision and recall rate 
among the 10 toolboxes validated in SpikeForest, its precision rate on the sparse recording is inferior to some 
algorithms developed for sparse neural recording.

For further performance evaluation, we compared LDA-DP and IronClust on all the 43 datasets in Dataset B, 
with regard to signal-to-noise ratio (SNR). In Fig. 6c, LDA-DP has the higher precision rate on 25 datasets among 
all 43 datasets. Moreover, under a lower SNR (SNR < 4.0), the precision of LDA-DP is higher on 17 datasets out of 
23 datasets. In Fig. 6d, LDA-DP has the higher recall rate on 28 datasets among all 43 datasets. Especially, under 
the lower SNR (SNR < 4.0), the recall rate of LDA-DP is higher on 21 datasets out of 23 datasets, demonstrating 

Figure 4.  The sorting performance of 6 spike sorting algorithms on Dataset A concerning noise levels. (a) We 
compared sorting accuracy of PCA-Km, LE-Km, PCA-DP, LDA-GMM, GMMsort and LDA-DP with respect 
to noise on the testing set C1 (noise level: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4). Error bars represent s.e.m.. (b) 
DBI comparison concerning noise on the testing set C1. The evaluation was performed as in a. (c–h) Sorting 
accuracy and DBI concerning noise on the testing set C2, C3 and C4 respectively.
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Figure 5.  The sorting performance of 6 spike sorting algorithms concerning waveform similarity using the 
testing set C1_020, C2_020, C3_020 and C4_020. (a) Comparing the similarity of waveform templates in four 
testing sets. Left: bar graph of the correlation coefficient (CC) of the three waveform templates for four datasets. 
Black, gray and white respectively represent CC of template 1 and template 2, CC of template 1 and template 
3, and CC of template 2 and template 3. Right: Waveform templates of each testing set. Red, blue and green 
represent template 1, template 2 and template 3, respectively. (b) Bar graph of sorting accuracy of 6 spike sorting 
algorithms on the testing set C1_020, C2_020, C3_020 and C4_020. Error bars represent s.e.m. (c) Bar graph of 
DBI of 6 spike sorting algorithms on the testing set C1_020, C2_020, C3_020 and C4_020. Error bars represent 
s.e.m.
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robustness convincingly. The results show that the state-of-art high-density spike sorters are still inferior to the 
specialized sparse algorithm, such as LDA-DP, in the face of sparse electrode data. Our results indicate that 
LDA-DP also outperforms other algorithms on Dataset B.

Performance comparison in the in-vivo Dataset C. In order to test the robustness of the algorithm in 
the real case with more complex distribution characteristics, we also compared the performance of 6 algorithms 
on the in-vivo Dataset C (Fig. 7 and Supplementary Fig. S3). In particular, as shown in Fig. 7a, spikes from one 
typical channel 54 in dataset C present a more messy distribution in the two-dimensional feature subspaces 
extracted by each method. The data points are colored by the sorting results and are grouped into four clusters. 
The Waveforms column shows the shapes of the four spikes due to the sorting results of LDA-DP. It indicates that 
these four spikes have highly similar shapes. The above complication may pose huge challenges to feature extrac-
tion. As Fig. 7a suggests, features extracted by LDA(DP) are apparently more separable than all other methods, 
leading the subsequent clustering to be more accurate. We notice that the data points show nonspherical-dis-
tributed in the LE subspace. Since clustering methods, such as K-means, have poor performance in identifying 
the clusters of nonspherical distribution, LE-Km may encounter difficulties in clustering features. We further 
compared the cluster quality of 6 algorithms using the spikes in this channel. For PCA-Km and LE-Km, the 
number of clusters was manually set to 4; And for PCA-DP, LDA-GMM, GMMsort, and LDA-DP, the number of 
clusters can be determined automatically. In Fig. 7b, the DBI index of LDA-DP is significantly lower than those 
of other algorithms (*p < 0.05, **p < 0.01, Kruskal–Wallis test), indicating that LDA has higher cluster quality 
and better performance than other algorithms. Moreover, we conducted a comparison on all 30 channels in 
Dataset C. The results are presented in Fig. 7c, the median of the DBI index for the LDA-DP is lower. Although 
the performance of PCA-DP and LDA-DP is similar in median value, in one channel with SNR = 2.82, the DBI 
of LDA-DP is 1.56, while for PCA-DP is 3.05 in one of the folds of cross-validation. The PCA-DP has some high 
DBIs, which are up to 3, indicating bad clustering. Our LDA-DP presented a more stable performance (the std of 
PCA-DP is 0.54, while the std of LDA-DP is 0.43). In general, LDA-DP has a significantly higher cluster quality 
(*p < 0.05, ***p < 0.001, Kruskal–Wallis test). Thus, LDA-DP also demonstrates outstanding robustness advan-
tages on Dataset C, which is consistent with the results from the previous two datasets.

Figure 6.  The sorting results on the in-vivo Dataset B when comparing 6 spike sorting algorithms. (a) Two-
dimensional feature subspace extracted by each method. The data points are colored according to the sorting 
results, in which red, green and blue represent cluster 1, cluster 2 and cluster 3 respectively. The waveform panel 
shows the average spike waveforms of three clusters obtained by LDA-DP, and the shaded part represents the 
standard deviation. (b) The precision rate and the recall rate obtained according to partial ground truth on 
dataset d533101 in HC1. (c,d) The precision rate and recall rate comparison with regard to SNR on all the 43 
datasets in Dataset B.
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Discussion
In this study, our proposed LDA-DP competed with six algorithms on both simulated and real datasets. The 
LDA-DP exhibits high robustness on both simulated and real datasets. For the simulated dataset  wave_clus19, 
the LDA-DP maintains an outstanding sorting accuracy and cluster quality, indicating high robustness to noise 
and waveform similarity. And on the real dataset  HC144, the comparison further illustrates the robustness of 
LDA-DP under low SNR. We finally evaluated the algorithm on real data from non-human  primates46. The LDA-
DP presents a more stable performance, especially under low SNR. Therefore, the performance of LDA-DP also 
exceeds other algorithms when facing more complex data distributions.

In this study, the performance of LDA-DP and LDA-GMM is significantly better than the other 4 algorithms 
(Figs. 4, 5, 6, 7). We can see the gap between LDAs and non-LDAs, for example, LDA-DP and PCA-DP. It is 
probably because the LDAs are supervised methods while the other methods are unsupervised. Through multiple 

Figure 7.  The sorting results on Dataset C when comparing 6 spike sorting algorithms. (a) Two-dimensional 
feature subspace extracted by each method. The data points are colored according to the sorting results, in 
which red, green, yellow and blue represent cluster 1, cluster 2, cluster 3 and cluster 4 respectively. The last 
column shows the average spike waveforms of four clusters obtained by LDA-DP, and the shaded part represents 
the standard deviation. (b) Comparison of cluster quality using spikes from one particular channel 54 in Dataset 
C. We conducted a fivefold cross-validation and draw boxplots of the DBI index for 6 algorithms. *p < 0.05, 
**p < 0.01, ***p < 0.001, Kruskal–Wallis test. (c) Comparison of cluster quality using spikes from all 30 channels 
in Dataset C. We conducted a fivefold cross-validation for each channel and then drew the violin plot. The 
dashed lines represent the median of the DBI. *p < 0.05, ***p < 0.001, Kruskal–Wallis test.
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iterations, LDA finds the optimal feature subspace based on the feedback provided by the clustering method, 
while unsupervised methods get no feedback. Therefore, the advantages of LDA-DP and LDA-GMM benefit 
from the combination of the feature extraction method LDA and the cluster method (DP or GMM). This kind 
of advantage might not be obvious in some cases when SNR is high, but the gap between the LDAs and the non-
LDAs is significant when under low SNR (Fig. 7c). Our results are consistent with previous  studies22,24.

Although two LDAs have high performance, LDA-DP has a better performance than LDA-GMM (Figs. 6, 7) 
on in-vivo datasets. Due to the joint optimization framework, the feature extraction method LDA also benefits 
from an outstanding clustering method. Since DP does not make any assumption about data distribution, the 
 DP39 method has more advantages when processing real data with more complex characteristics.  GMM48, as its 
name implies, assumes that data follows the Mixture Gaussian Distribution. This sort of fitting often encounters 
difficulties in dealing with more complex situations, where real data are not perfectly Gaussian distributed. 
Several studies in other fields have encountered similar  problems49–53.

Additionally, some classic clustering methods, such as K-means, specify the cluster centers and then assign 
each point to the nearest cluster  center28. Thus, this kind of methods perform poorly when applied to nonspheri-
cal data. In the contrast, the DP algorithm is based on the assumption that the cluster center is surrounded by 
points with lower density than it, and the cluster centers are relatively far apart. According to this assumption, 
DP identifies cluster centers and assigns cluster labels to the rest points. Therefore, it can well deal with the dis-
tribution of nonspherical data. This is one of the potential reasons for the outstanding performance of LDA-DP.

It is worth noting that LDA-DP is an automated algorithm. Although the values of some parameters may 
affect the final results, we can still preset some optimized values to avoid manual intervention during operation. 
For example, in this study, we fixed the threshold coefficient α as 1.6 and verified its high performance on one 
simulation dataset and two in-vivo real datasets. Although whether this optimal value fits all datasets needs to 
be tested and evaluated with more data, the current evaluation has fully demonstrated the general applicability 
of this value.

Most methods compared in our study were employed to sort the spike data from a single microelectrode. 
These spike data can be collected through sparse probes such as Utah arrays and microwire arrays that are widely 
used in neuroscience and have advantages in the stability of long-term recording. Thus our algorithm cannot be 
verified on the data from high-density electrodes. The comparison with IronClust is a supplement to the evalu-
ations. The results show that the state-of-art high-density spike sorters are still not as good as the specialized 
sparse sorters when facing the data from sparse electrodes. As a supplement, we also compared the LDA-DP with 
4 state-of-art high-density algorithms in SpikeForest (Supplementary Fig. S6). The comparison results further 
illustrated this point. Actually, it is not the main issue of this paper. In the future, we will try to swap out the 
clustering steps in high-density spike sorters such as  Kilosort54 or  Mountainsort10 with DP to see whether the 
DP would bring an accuracy improvement in the neural recordings from high-density probes. Moreover, The 
advantages of our LDA-DP lie in its high robustness. For some cases that may cause waveform deformation, 
such as electrode drifts and spike overlapping, the study did not propose a novel solution yet. It is also the target 
improvement of the algorithm in the future.

Conclusion
By combining LDA and DP to construct a joint optimization framework, we proposed an automated spike 
sorting algorithm and found it is highly robust to noise. Based on the iteration of LDA and DP, the algorithm 
makes the feature extraction and clustering benefit from each other, continuously improving the differentiation 
of feature subspace and finally achieves high spike sorting performance. After evaluation on both simulated and 
in-vivo datasets, we demonstrate that the LDA-DP meets the requirements of high robustness for sparse spikes 
in the cortical recordings.

Data availability
The code of the LDA-DP used in the current study is available at https:// github. com/ EveyZ hang/ LDA- DP.
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