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Abstract

Background: P-selectin glycoprotein ligand-1 (PSGL-1) plays a critical role in recruiting leukocytes in
inflammatory lesions by mediating leukocyte rolling on selectins. Core-2 O-glycosylation of a N-terminal
threonine and sulfation of at least one tyrosine residue of PSGL-1 are required for L- and P-selectin binding. Little
information is available on the intra- and inter-species evolution of PSGL-| primary structure. In addition, the
evolutionary conservation of selectin binding site on PSGL-1 has not been previously examined in detail.
Therefore, we performed multiple sequence alignment of PSGL-1 amino acid sequences of 14 mammals (human,
chimpanzee, rhesus monkey, bovine, pig, rat, tree-shrew, bushbaby, mouse, bat, horse, cat, sheep and dog) and
examined mammalian PSGL-1| interactions with human selectins.

Results: A signal peptide was predicted in each sequence and a propeptide cleavage site was found in 9/14
species. PSGL-1 N-terminus is poorly conserved. However, each species exhibits at least one tyrosine sulfation
site and, except in horse and dog, a T [D/E]PP [D/E] motif associated to the core-2 O-glycosylation of a N-terminal
threonine. A mucin-like domain of 250-280 amino acids long was disclosed in all studied species. It lies between
the conserved N-terminal O-glycosylated threonine (Thr-57 in human) and the transmembrane domain, and
contains a central region exhibiting a variable number of decameric repeats (DR). Interspecies and intraspecies
polymorphisms were observed. Transmembrane and cytoplasmic domain sequences are well conserved. The
moesin binding residues that serve as adaptor between PSGL-1 and Syk, and are involved in regulating PSGL-1-
dependent rolling on P-selectin are perfectly conserved in all analyzed mammalian sequences. Despite a poor
conservation of PSGL-I N-terminal sequence, CHO cells co-expressing human glycosyltransferases and human,
bovine, pig or rat PSGL-1 efficiently rolled on human L- or P-selectin. By contrast, pig or rat neutrophils were
much less efficiently recruited than human or bovine neutrophils on human selectins. Horse PSGL-1, glycosylated
by human or equine glycosyltransferases, did not interact with P-selectin. In all five species, tyrosine sulfation of
PSGL-1 was required for selectin binding.

Conclusion: These observations show that PSGL-I amino acid sequence of the transmembrane and cytoplasmic
domains are well conserved and that, despite a poor conservation of PSGL-1 N-terminus, L- and P-selectin binding
sites are evolutionary conserved. Functional assays reveal a critical role for post-translational modifications in
regulating mammalian PSGL-1 interactions with selectins.
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Background

Leukocyte recruitment in inflammatory lesions is depend-
ent on the sequential interactions of adhesion receptors
with their ligands [1-3]. Leukocyte rolling along inflamed
blood vessels is mediated by selectins [4-6]. L-selectin is
expressed by leukocytes while activated endothelium and/
or platelets express E- or P-selectin [5]. Early in inflamma-
tory reactions [2,3], P-selectin mediates leukocyte rolling
on its major ligand P-selectin glycoprotein ligand-1
(PSGL-1) [7]. PSGL-1 is a homodimeric mucin-like glyco-
protein [8,9], which is expressed on leukocyte microvilli
and functions as a common ligand for the three selectins
[10,11]. PSGL-1 interactions with L-selectin strongly
amplify leukocyte recruitment by supporting free-flowing
leukocyte rolling on leukocytes adherent to microvascular
endothelium or leukocyte membrane fragments [11,12].
Moreover, E-selectin interactions with PSGL-1 and CD44
and/or other potential ligands support leukocyte slow
rolling along inflamed endothelium [13-15].

Fucosylated core-2 O-glycans, bearing sialyl Lewis-x (sLeX)
and/or Lex determinants, attached to human PSGL-1 Thr-
57 are required for optimal binding of all three selectins
[16-19]. Sulfation of Tyr-46, -48 and -51 is necessary for
optimal binding of L- and P-selectin to PSGL-1 but not E-
selectin [16-18,20-22]. Murine and human PSGL-1 may
differ in their interactions with P-selectin, as sulfation of a
single tyrosine residue is sufficient for optimal binding of
murine PSGL-1 to P-selectin [23].

Human, mouse, rat, bovine and equine PSGL-1 sequences
encode a signal peptide and, except for bovine and equine
PSGL-1, a propeptide, which is predicted to be cleaved by
paired basic amino acid converting enzymes (PACE)
[9,24-26]. These sequences encode a common PSGL-1 pri-
mary structure with a N-terminal peptide expressing
potentially sulfated tyrosine residues and a O-glycosylated
threonine [9,24,25], and a mucin-like domain constituted
of a variable number of decameric repeats (DR) [24-26].
Comparison of these mammal sequences shows that the
transmembrane and cytoplasmic domains are highly con-
served [9,27,28]. Little information is however available
on the intra- and inter-species evolution of decameric
motives and on the conservation of PSGL-1 N-terminus.
Multiple sequence alignment of a large number of mam-
malian PSGL-1 sequences is necessary to examine these
points and define motives associated with the core-2 O-
glycosylation of the N-terminal threonine, homologous
to Thr-57 on human PSGL-1.

Whether the selectin binding site on mammalian PSGL-1
is evolutionary conserved has not been studied in detail.
As PSGL-1 is an attractive target for anti-inflammatory
therapy [7,29-39], this information might be helpful to
design inhibitors of inflammatory and/or thrombotic
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reactions [40-42]. We therefore compared PSGL-1
sequences of 14 mammals (9 sequences described herein
by us and 5 reported by others; [9,24-26] and performed
flow adhesion assays using neutrophils or CHO cells
expressing mammalian homologues of human PSGL-1.
Despite a poor conservation of the N-terminal amino-acid
sequences, we show that L- and P-selectin binding sites are
evolutionary conserved and that most mammalian PSGL-
1 bind to human selectins. Importantly, these interactions
are strongly dependent on PSGL-1 glycosylation and sul-
fation.

Results

Conservation of PSGL-1 sequence

Multiple alignment of mammalian PSGL-1 sequences is
presented in figure 1. A signal peptide (SP) cleavage site is
predicted between residues 17 and 18 in most sequences.
Equine PSGL-1 is an exception with a predicted cleavage
site between residues 18 and 19. Nine sequences includ-
ing human have a propeptide predicted to be cleaved by
paired basic amino acid-converting enzymes (PACE/furin;
[9,43] at residue 41 (38 for northern tree shrew). By con-
trast, the PACE consensus sequence, RX [R/K]R is not
observed in bovine, sheep, cat, bat and equine PSGL-1

(Fig. 1).

N-terminal tyrosine sulfate residues and threonine O-
linked glycans are high affinity binding sites for P- and L-
selectin to human and mouse PSGL-1 [16-18,20,44-46],
which contribute to stabilize leukocyte rolling [16]. A
threonine residue, homologous to human PSGL-1 Thr-57,
is present in the various species studied here (Fig. 1). Thr-
57 belongs to the consensus sequence T [D/E|PP [D/E] in
12 out of 14 species. The region preceding the conserved
threonine contains 1 to 3 potentially sulfated tyrosine res-
idues in an acid-rich region (5 species contain 3 tyrosines,
6 contain 2, and 3 only 1; Fig. 1).

A mucin-like domain is present in all studied species. It
lies between the conserved N-terminal O-glycosylated
threonine (Thr-57 in human) and the transmembrane
domain, and contains a central region exhibiting deca-
meric repeats (DR). This region was analyzed using the
MEME program, whose parameters were applied to each
sequence individually and/or simultaneously to all
sequences. DR-containing central regions were aligned
considering the intra- and inter-species evolution of deca-
meric motives. The degree of inter-species conservation in
the N- and C-terminal ends of the mucin-like domain
(which sometimes contains traces of mutated decamers)
is low. The mucin-like domain is composed of 247 to 322
residues and the number of DR varies from 7 in pig to 18
in chimpanzee and rhesus monkey (Table 2). The number
of DR varies in human from 14 to 16 repeats [47-50]. We
also observed a polymorphism in rat. One of the three

Page 2 of 15

(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:166

A

Human
Chimp
Rh_monkey
Mouse

Rat
Tree-shrew
Bushbaby
Dog

Human
Chimp
Rh_monkey
Mouse

Rat
Tree-shrew
Bushbaby
Dog

Equine

Human
Chimp
Rh_monkey
Mouse

Rat
Tree-shrew
Bushbaby
Dog

Equine

Human
Chimp
Rh_monkey
Mouse

Rat
Tree-shrew
Bushbaby
Dog

Bovine rH

224
P P A
Bat PAAABA P A
A

Equine

Human
Chimp
Rh_monkey
Mouse

Rat
Tree-shrew
Bushbaby
Dog

Equine

Human
Chimp
Rh_monkey
Mouse

Rat
Tree-shrew
Bushbaby
Dog

Equine

SP
Human P
Cat P
Sheep

Figure |

Al
A
A
A
A
A

http://www.biomedcentral.com/1471-2148/7/166

> > P>

[AEalaXalakaXaKaXaXaXaXal
>>>>>>>>>>>>

Amino acid sequences of mammalian PSGL-1. (A) Multiple alignment of 12 complete PSGL-| amino acid sequences and
(B) of N-terminal sequences from putative PSGL-I proteins of cat and sheep, which were inferred respectively from partial
genomic sequence and EST sequences identified through homology searches (EMBL/Genbank/DDBJ respective accession num-
bers: AANGO01098304 and DY506895). The putative signal peptide (SP) and propeptide (Pro) cleavage sites are indicated by
arrows. The consensus sequence for propeptide cleavage (RX [R/K]R), recognized by PACE, is boxed. Threonine homologous
to human Thr-57 is indicated by a black arrowhead. Arbitrary gaps have been added in each sequence in order to isolate and
align separately the mucin-like region containing the decameric repeats, which is surrounded by a frame. The transmembrane
domain (TM) is marked by a bar. Asterisks indicate the amino acids involved in moesin binding.
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Table 2: Length of the mucin-like domain from the conserved
threonine up to the juxta-membrane cysteine

threonine cysteine  length number of
position  position (aa) decameric repeats
human 57 320 263 16
chimpanzee 57 340 283 18
rhesus monkey 57 340 283 18
mouse 58 307 249 10
rat 59 330 271 Il
tree shrew 55 332 277 13
bushbaby 56 378 322 13
dog 59 346 287 13
pig 58 315 257 7
bovine 55 335 280 Il
bat 37 328 291 12
equine 41 288 247 12

aa, amino acid

available sequences contains 12 DR [51], whereas only 11
repeats have been observed in the sequences cloned by us
(Fig. 1) and others [25]. This polymorphism suggests a
dynamic intraspecies evolution of this region.

The analysis of the sequences of PSGL-1 mucin-like
regions showed that several constitutive repeats of 10
amino acids can be identified in the center of these
regions, while both ends are made up with unconserved
amino acids. The best permutation motif, which is the
most consistent with the different sequences and which
optimizes the number of repeated units per sequence, is
AATEAQTTQP.

Interestingly, in canine PSGL-1, 3 DR strongly differ in
their sequences from the others (Fig. 1A). These units are
identical to each other and are located every 30 positions.
Combining decamera to form repeats of 30 amino acids
displays a greater consensus between repeats suggesting
that duplication of 30 amino acid units (itself created by
two duplications of 10 amino acid units followed by
mutations in the third one) arose at least twice in the evo-
lution of dog PSGL-1. The same kind of phenomenon is
observed in bat, where the best repeated unit has a length
of 15 amino acids. Similarly, equine repeated units
exhibit a greater consensus when they are formed of 20
residues units instead of 10 [52].

A transmembrane domain of 23 residues is predicted in
all sequences immediately after the conserved cysteine
involved in PSGL-1 dimerization (Fig. 1A). A short extra-
cellular juxta-membrane region is involved in binding
versican G3 domain, whose interaction with PSGL-1 pro-
motes leukocyte aggregation [53]. Interestingly, three
positions in this region are perfectly conserved in all stud-
ied species (Asp-313, Val-317, Lys-318). The transmem-
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brane domain is followed by a cytoplasmic tail, which is
made up of two highly conserved regions. Over the 31 first
positions of the cytoplasmic domain, 20 are completely
conserved and 5 contain conservative substitutions (Fig.
1A). Among the conserved positions, Ser-346, Arg-347,
Lys-348 and Ser-358 (Fig. 1A) are involved in moesin
binding to the cytoplasmic domain of human PSGL-1
[54]. In all sequences, the C-terminal region is ended by
11 almost perfectly conserved residues.

Human L- and P-selectin interact with human, rat, bovine,

pig or equine CHO-PSGL-1 cells

CHO cells co-expressing human FucT-VII and C2GnT-I
and human, bovine, pig, rat or equine PSGL-1 were pre-
pared. The five transfectants expressed similar levels of
sLex and CLA. PSGL-1 expression was detected using a
mAD reacting with PSGL-1 C-terminal 6 x His tag (Invitro-
gen). The anti-human PSGL-1 mAbs PL1, KPL1 and PL2
[28,55] did not react with bovine, pig, rat or equine PSGL-
1 (data not shown). Flow cytometric analysis of human P-
or L-selectin/p binding to the various CHO-PSGL-1 trans-
fectants showed that P- and L-selectin/u bind similarly to
human, bovine, pig, rat or equine PSGL-1 expressed by
transfected CHO cells. As the reactivity of mouse PSGL-1
with human selectins was previously described [23], we
did not repeat these analyses (Fig 2).

Human L-, P- and E-selectin bind heterogeneously to
human, bovine, pig or rat neutrophils

PSGL-1 expressed by CHO transfectants differ in their gly-
cosylation pattern from mammalian neutrophil PSGL-1.
In CHO transfectants, the various mammalian PSGL-1 are
glycosylated by FucT-VII and C2GnT-I of human origin,
while in mammalian neutrophils PSGL-1 is glycosylated
by their own glycosyltransferases. As the glycosylation
pattern may affect PSGL-1 interactions with L- or P-selec-
tin, we examined the reactivity of human selectins with
mammalian neutrophils (Fig. 3). L- and P-selectin/p chi-
mera strongly reacted with human and bovine PSGL-1,
while a weaker reaction was observed with pig and rat.
The L- and P-selectin carbohydrate ligands sLexand CLA,
identified by CSLEX-1 and HECA-452 mAbs respectively,
were strongly expressed by human neutrophils and also,
surprisingly, by equine neutrophils (mean fluorescence
intensity + SD: human: 74 + 1, n=2and 79 £ 12, n = 2;
equine: 173 + 9, n = 2 and 108 + 34, n = 2). By contrast,
despite significant selectin binding, sLex and CLA were
undetectable on bovine, pig and rat neutrophils (not illus-
trated). As selectin binding is dependent on cell surface
expression of fucosylated ligands, we examined FucT-VII
mRNA expression by RT-PCR amplification of total RNA
from bovine, pig, rat and equine neutrophils. FucT-VII
mRNA transcripts were detected in all investigated species
(data not shown). Thus, as previously established for
mouse leukocytes [56], the lack of reactivity of mAbs
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Human L- and P-selectin/u chimera cross-react with CHO cells expressing mammalian homologues of PSGL-
I. CHO cells, stably expressing similar levels of human C2GnT-l, FucT-VIl and human (h), bovine (b), pig (p), rat (r) or equine
(e) PSGL-1, were incubated with saturating concentrations of human P- or L-selectin/p chimeras (filled histogram). Chimera
binding was abrogated by 10 mM EDTA (open histogram). Human P- and L-selectin chimera did not bind (< 2%) to mock-trans-
fected CHO cells (not shown). The percentage of positive cells and the mean fluorescence intensity are indicated in each histo-

gram. Histograms are representative of 3—4 experiments.

CSLEX-1 and HECA-452 with most mammalian PSGL-1 is
likely due to the strong specificity of these mAbs for
human oligosaccharides. Moreover, the observation that
mAbs CSLEX-1 and HECA-452 strongly react with equine
neutrophils suggests that human and equine neutrophils
exhibit common carbohydrate structures, which are not
detectable in mouse, rat, pig or bovine.

CHO cells expressing mammalian PSGL-1 efficiently roll
on human L- or P-selectin

The role of PSGL-1 in regulating CHO-PSGL-1 cell rolling
on human L- or P-selectin was assessed under hydrody-
namic flow conditions. Human PSGL-1 expressing cells
were less recruited on human P-selectin than CHO cells
expressing bovine PSGL-1. Moreover, on human L-selec-
tin, cell recruitment of CHO cells expressing human
PSGL-1 was less efficient than that of cells expressing
bovine, pig or rat PSGL-1 (Fig. 4A). Surprisingly, CHO
cells expressing equine PSGL-1 did not roll on P-selectin
and were weakly recruited on L-selectin.

Previous studies showed that N-terminal tyrosine sulfate
residues are involved in supporting human PSGL-1-
dependent rolling on L- and P-selectin [16,20,45].
Human, bovine, rat and pig PSGL-1 exhibit two or three
potential N-terminal tyrosine sulfation sites, whereas
equine PSGL-1 contains only one single site (Fig. 1A). The

contribution of PSGL-1 sulfation to cell rolling was
assessed by comparing recruitment of CHO cells express-
ing control or desulfated human, bovine, rat, pig and
equine PSGL-1 on L- or P-selectin (Fig. 4B). Inhibition of
PSGL-1 sulfation strongly reduced L- and P-selectin-
dependent rolling. The recruitment of CHO cells express-
ing human PSGL-1, on P-selectin, was inhibited by 88 +
5%, whereas the recruitment of cells expressing bovine,
rat and porcine PSGL-1 was almost abrogated (Fig. 4B).
Rolling inhibition induced by desulfation was also seen
on L-selectin (although to a lesser degree than on P-selec-
tin). Thus, as previously described for human PSGL-1, sul-
fation of bovine, pig, rat or equine PSGL-1 N-terminal
tyrosine residues is required to support PSGL-1-depend-
ent rolling on L- or P-selectin.

Interestingly, multiple sequence alignment of mamma-
lian L- or P-selectin shows partial or complete conserva-
tion of amino acid residues that regulate human selectin
binding to PSGL-1 tyrosine sulfate residues [16,18]. Ser-
47, Lys-112 and His-114 on human P-selectin bind to
human PSGL-1 Tyr-48, while human L-selectin Lys-85
and P-selectin Arg-85 interact with Tyr-51 (Fig. 4C)
[16,18]. In mammalian P-selectins, Ser-47 is conserved,
except for bat and rhesus monkey, and Lys-112 and His-
114 is either conserved or replaced by arginine, which
may interact with sulfated Tyr-48. Except for pig and
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Figure 3

Human L-, P- or E-selectin/p chimeras bind to
human, bovine, pig or rat neutrophils. Neutrophils
were incubated with saturating concentrations of human L-,
P- or E-selectin/p chimera (filled histogram). Chimera binding
was abrogated by 10 mM EDTA (open histogram). The per-
centage of positive cells and the mean fluorescence intensity
are indicated in each histogram. Histograms are representa-
tive of 2—3 experiments.

horse, Arg-85, which binds to human PSGL-1 Tyr-51, is
conserved or replaced by lysine (Fig. 4C). L-selectin Ser-
47, which binds to human PSGL-1 Tyr-48, is conserved or
replaced by a threonine, except for mouse, tree shrew and
cat, while L-selectin Lys-85, which interacts with human
PSGL-1 Tyr-51, is perfectly conserved. Results of Fig. 4B
and alignment of Fig. 4C suggest that, like in human
PSGL-1, tyrosine sulfation of mammalian homologues is
critical for L- and P-selectin interactions. Sulfation of a
unique tyrosine sulfate residue was sufficient to support
equine PSGL-1-dependent rolling on human L-selectin
(Fig. 4B). However, the recruitment of CHO cells express-
ing equine PSGL-1 on L-selectin was much less efficient
than that of all other CHO cell transfectants (Fig. 4A).

http://www.biomedcentral.com/1471-2148/7/166

Mammalian neutrophil recruitment on human L- or P-
selectin is heterogeneous

The impact of PSGL-1 glycosylation by mammalian FucT-
VII and C2GnT-I on PSGL-1-dependent rolling on human
L- or P-selectin was assessed under various shear stresses
(0.5 to 2.0 dynes/cm?; Fig. 5). The recruitment of bovine,
porcine, rat and equine neutrophils on human L- or P-
selectin strongly differed from that of the corresponding
CHO-PSGL-1 cells (Kruskal-Wallis test, P < 0.0001; Fig.
4A). At 1.5 and 2.0 dynes/cm?, bovine and human neu-
trophils rolled similarly on P-selectin. However, at lower
shear stresses, bovine neutrophils were significantly less
recruited than human neutrophils. Human and bovine
neutrophil recruitment on L-selectin was similar at 1.0
and 2.0 dynes/cm? (Fig. 5). Above 0.5 dynes/cm?, porcine,
rat and equine neutrophils were less recruited on L- or P-
selectin than human or bovine neutrophils (Fig. 5). At 1.5
dynes/cm?, recruitment of porcine, rat and equine neu-
trophils was respectively 4-, 290- and 3-fold lower on L-
selectin and 53- and 36-fold lower on P-selectin than that
of human neutrophils. As observed with CHO cells
expressing equine PSGL-1, equine neutrophils did not roll
on P-selectin. At all shear stresses, rat neutrophils poorly
rolled on human L- or P-selectin. These observations are
in agreement with results of human selectin chimera
binding to neutrophils (Fig. 3); both assays showed that
bovine neutrophil PSGL-1 strongly interacts with human
L- or P-selectin whereas interactions are weaker between
human selectins and porcine neutrophil PSGL-1 and
almost absent with rat and equine PSGL-1 (Fig. 5). These
results are in contrast with those obtained with CHO cells
expressing pig or rat PSGL-1, which are much more effi-
ciently recruited on human selectins (Fig. 4A). Interspe-
cies differences in PSGL-1 core-2 O-glycosylation may
explain these observations.

Rolling velocities of CHO-PSGL-I transfectants and of
mammalian neutrophils on human L- or P-selectin
Rolling velocities of CHO cells and neutrophils expressing
human, bovine, pig, rat or equine PSGL-1 were measured
under constant shear stress (Fig. 6). Velocities significantly
differed among species (Fig. 6A, P < 0.001). CHO cells
expressing human PSGL-1 rolled on P- or L-selectin with
the slowest velocities (median rolling velocity (mrv) on P-
selectin: 3.6 um/s; on L-selectin: 24.1 pm/s, n = 3). The
fastest mrv were exhibited by CHO cells expressing rat
PSGL-1 on P-selectin (36.9 um/s) and by CHO cells
expressing equine PSGL-1 cells on L-selectin (121.5 pm/
s). Mrv of CHO cells expressing bovine PSGL-1 on P-selec-
tin appeared three times faster than that of CHO cells
expressing human PSGL-1 (11.9 vs. 3.6 um/s, P < 0.001),
while they were similar on L-selectin (Fig. 6A). Rolling
velocities of CHO cells expressing pig or rat PSGL-1 were
significantly higher than that of CHO cells expressing
human PSGL-1 on both L- and P-selectin (Fig. 6A, P <
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Figure 4

Rolling of CHO cells expressing human, bovine, pig, rat or equine PSGL-1 on L- or P-selectin. (A) CHO-PSGL-1
cells were perfused under constant shear stress (1.5 dynes/cm2) on recombinant human P-selectin or at 1.0 dyne/cm2 on
human L-selectin/p. chimera adsorbed on a coverslip, precoated with goat anti-human IgM antibody, and bound to the bottom
of the flow chamber. Cell recruitment was analyzed by videomicroscopy at 4-5 min of perfusion. Results represent the mean +
SEM of 3-5 experiments (***, P < 0.001; NR: no rolling). (B) Impact of sulfation on PSGL-|-dependent rolling. Control (black
columns) and desulfated CHO cells (white columns) were pretreated with proteinase K. Desulfated cells were cultured for 72
h in MEMoa medium containing 60 mM sodium chlorate and exposed for 60 min to arylsulfatase. Results are expressed as mean
percentage of rolling cells + SEM of 3 experiments (***, P < 0.001). (C) Amino acid sequence alignments of mammalian homo-
logues of P- and L-selectin lectin domains. Homologues of human residues [16, 18] interacting with sulfated Tyr-48 or -51 are
respectively indicated by asterisks or arrowheads. The percentages of identity between aligned sequences are grey shaded
(dark grey: > 80%, grey: > 60% and light grey: > 40%).
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Figure 5

L- and P-selectin-dependent recruitment of neu-
trophils is species-dependent. Human, bovine, porcine,
rat and equine neutrophils were perfused under 0.5-2.0
dynes/cm? on human P-selectin/p or on human L-selectin/p
chimera adsorbed on coverslips precoated with goat anti-
human IgM antibody. PSGL-I-dependent neutrophil rolling
was abolished in presence of 10 mM EDTA. Cell recruitment
was assessed at 4-5 min of perfusion. Results represent the
mean + SEM of 3—4 experiments (¥, P < 0.05, *** P < 0.001).

0.001). Compared to CHO cells expressing human PSGL-
1, increased velocities of CHO cells expressing bovine
PSGL-1 on P-selectin may have resulted in increased cell
recruitment on human selectins (Fig. 4).

The rolling velocities of human and bovine neutrophils
on human P-selectin did not differ significantly (mrv: 4.2
pm/s vs. 4.1 um/s, n = 3, Fig. 6B, left panel), whereas
human neutrophils rolled slower on L-selectin than
bovine neutrophils (57.2 um/s vs. 67.1 um/s, n =3, P <
0.01, Fig. 6B, right panel). Surprisingly, porcine neu-
trophils rolled with the fastest velocities on human P-
selectin (mrv: 25.3 um/s, P < 0.001, n = 3; Fig. 6B, left

http://www.biomedcentral.com/1471-2148/7/166

panel), whereas they rolled, like equine neutrophils, with
the slowest velocities on L-selectin (46.8 pm/s and 48.9
um/s, respectively P < 0.001, Fig. 6B, right panel).

The stability of rolling velocities was assessed by measur-
ing CHO-PSGL-1 cell and neutrophil displacements on
human L-selectin within successive video frames (0.1 ms).
Peaks represent increases in velocity and valleys decreases
(Fig. 7). The stability of CHO-PSGL-1 cell rolling veloci-
ties on human L-selectin was heterogeneous among the
studied species. Although CHO cells expressing human
and bovine PSGL-1 had similar mrv, rolling velocities of
CHO cells expressing bovine PSGL-1 (mean SD + SD: 21
+ 3 um/s) were less stable than those of cells expressing
human PSGL-1 (11 + 2 um/s). CHO cells expressing rat
PSGL-1 were the least stable (48 + 9 um/s, Fig. 7A). The
stability of neutrophil rolling velocities was also highly
heterogeneous among the studied species (Fig. 7B).
Human and equine neutrophils exhibited the most stable
rolling velocities (mean SD + SD: 33 + 4 um/s vs. 32 + 6
um/s, n = 10, NS, Fig. 7B), whereas rat neutrophils were
the least stable (67 + 40 um/s, n = 4). Interestingly, pig
neutrophils exhibited periods of very slow rolling (mean
velocity < 10 um/s) alternating with sudden acceleration,
rapidly followed by deceleration (Fig. 7B). Bovine and
equine neutrophils had similar behaviors. Despite the
presence of oligosaccharides recognized by HECA-452
and CSLEX-1 mAbs on both CHO cells and neutrophils
expressing equine PSGL-1, transfected CHO cells rolled
significantly faster and less stably than equine neu-
trophils, suggesting that other structures regulate equine
neutrophil rolling.

Discussion

Selectins and PSGL-1 play a critical role in regulating leu-
kocyte migration in inflammatory lesions [4]. Whether
human selectins can bind to mammalian PSGL-1 had not
been previously studied. As PSGL-1 is an attractive target
for anti-inflammatory therapy [29-33,35,37-39], the iden-
tification of conserved PSGL-1 functional regions may be
helpful to design selectin inhibitors mimicking PSGL-1.
We therefore analyzed PSGL-1 amino acid sequences of
several mammals (5 previously described sequences;
[9,24-26] as well as 9 new sequences described herein, 7
complete and 2 N-terminal sequences; Fig. 1A-B) identi-
fied by us or others [25,26]. Multiple sequence alignments
(Fig. 1) show that conservation of sequence is not homo-
geneous along the protein, and that the primary sequence
of the site of interaction of L- or P-selectin [16,18] is not
perfectly conserved. All sequences contain a threonine
homologous to the core-2 O-glycosylated Thr-57 in
human, and a T [D/E]PP [D/E] motif, which is conserved
in all species, except in horse and dog. Nevertheless, even
if the region preceding this threonine always contains at
least one tyrosine residue in an anionic environment (pre-
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Figure 6

Rolling velocities of CHO-PSGL-1 transfectants or neutrophils on human L- or P-selectin. (A) CHO cells express-
ing human, bovine, pig, rat or equine PSGL-| or (B) neutrophils were perfused under a constant shear stress on recombinant
human P-selectin (1.5 dynes/cm?) or L-selectin/p chimera (1.0 dyne/cm?). Cell velocities were measured at 4-5 min of per-
fusion. Curves were constructed in (A) using 183-755 or (B) 25-381 independent determinations of cell-rolling velocities and
are representative of three experiments. Median rolling velocities, representative of 3 experiments, are indicated.

dicting sulfation; [57] its length in the mature protein, as
well as the number (1 to 3) and positions of the poten-
tially sulfated tyrosine residues are variable. Desulfation
and sulfation inhibition studies suggest that tyrosine sul-
fation plays a key role in supporting mammalian PSGL-1
interaction with human L- and P-selectin (Fig. 4B). Data
presented here indicate that L- and P-selectin binding sites
on PSGL-1 are evolutionary conserved and emphasize the
role of threonine-linked core-2 O-glycans and tyrosine
sulfate residues in supporting mammalian PSGL-1 inter-
actions with human selectins.

A signal peptide is predicted to be cleaved in all PSGL-1
sequences between positions 17 and 18, except in horse

where cleavage is predicted between Leu-18 and GIn-19.
Nine out of fourteen sequences exhibit a propeptide
sequence ended by a PACE cleavage site, whereas five oth-
ers (horse, bat, bovine, cat and sheep) do not contain it.
Of note, the cleavage predictions of both the signal pep-
tide and the propeptide have been corroborated in rat by
N-terminal sequencing of PSGL-1.[25] Cleavage predic-
tions suggest that the mature PSGL-1 protein starts at posi-
tion 42 of the precursor in most studied species, but at
position 18 or 19 in five other species (bovine, bat, horse,
cat, sheep), and that the length of the N-terminal
sequence preceding the O-glycosylated threonine varies
from 14 amino acids in bushbaby to 39 in cat and sheep.
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PACE cleaves PSGL-1 propeptide on human neutrophils.
In contrast, the propeptide remains on CHO-PSGL-1 cells,
which do not express the PACE protease. The lack of
PSGL-1 cleavage by PACE in bovine and equine neu-
trophils did not prevent PSGL-1 interactions with
selectins. The importance of propeptide cleavage is
unclear: whether it may facilitate tyrosine sulfation or N-
terminal O-glycosylation remains to be determined [21].

The T [D/E|PP [D/E] sequence, which is associated on
human and mouse PSGL-1 with threonine O-glycosyla-
tion [9,18,58], is observed in most mammals except dog
and horse, in which it is respectively replaced by TDAPE
and TDLLK sequences. Despite these changes, equine neu-
trophils rolled on human L-selectin (Fig. 5). By contrast,
neither equine neutrophils nor CHO cells expressing
equine PSGL-1 significantly interacted with human P-
selectin (Fig. 4, 5). This suggests that the T [D/E|PP [D/E]
motif may be important for mammalian leukocyte rolling
on human P-selectin.

We observed that the sequence AATEAQTTQP is the best
permutation motif to optimize the number of decameric
units per sequence and that the most similar units lie at
the center of the mucin-like region, while unconserved
amino acids are more frequently present at both ends.
This suggests that decamera located at the center of the
mucin-like domain might be the most recent and that the
evolution of this region might have proceeded by duplica-
tions of decameric units, followed by mutations and dele-
tions. This process allowed the conservation of the length
of the mucin-like domain with a 250-280 amino acid
length (except in bushbaby), despite a variable number of
repeated units among species (from 7 DR in pigto 18 DR
in monkeys, Table 2). The preservation of PSGL-1 length
may play a role in supporting the rolling on human
selectins of leukocytes or CHO cells expressing human,
bovine, pig or rat PSGL-1 (Fig. 4).

Transmembrane and cytoplasmic domain sequences are
well conserved (Fig. 1). The juxta-membranous cysteine
residue, involved in human PSGL-1 dimerization and in
stabilizing leukocyte rolling on P-selectin [27,28,59] is
perfectly conserved. A role for PSGL-1 as signaling mole-
cule was indicated by its involvement in activating GTPase
Ras and mitogen-activated protein kinases, as well as in
inducing the secretion of inflammatory molecules [60-62]
or in activating aMf, or oL, integrins [63-65]. The high
degree of conservation of the cytoplasmic domain sug-
gests that PSGL-1-mediated intracellular signaling is evo-
lutionary conserved. Human PSGL-1 engagement induces
Syk phosphorylation and recruitment in lipid rafts as well
as the expression of the early-immediate gene c-fos
[54,66]. Syk activity, which is critically involved in regu-
lating PSGL-1-dependent rolling on P-selectin [66], is
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dependent on the binding of PSGL-1 cytoplasmic domain
to moesin, which serves as adaptor between PSGL-1 and
Syk [54]. Importantly, the moesin binding residues, corre-
sponding to Ser-346, Arg-347, Lys-348, and Ser-358 in
human PSGL-1 [54] are perfectly conserved in all ana-
lyzed mammalian sequences. Of note, these amino acids
are located within a group of 31 amino acids, among
which 20 are identical and 5 similar.

On L-selectin, rolling velocities of CHO cells expressing
human, bovine, and pig PSGL-1 were similar, whereas the
median rolling velocity of CHO cells expressing rat or
equine PSGL-1 was 4- and 5-fold higher respectively than
that of CHO cells expressing human PSGL-1 (Fig. 6). The
increased rolling velocities of CHO cells expressing
bovine, pig or rat PSGL-1 on P-selectin may partially
explain the preserved cell recruitment on P-selectin (Fig.
4A). As all CHO-PSGL-1 transfectants are glycosylated by
human C2GnT-I and FucT-VII, differences in CHO-PSGL-
1 cell recruitment and rolling velocities may mainly result
from differences in N-terminal amino-acid residues inter-
acting with the lectin domain of human L- or P-selectin.
Among these residues, tyrosine sulfate residues may criti-
cally regulate PSGL-1 interactions with L- or P-selectin,
like in human PSGL-1 [16,18,22,45]. The strong inhibi-
tion of CHO-PSGL-1 cell interactions with P- or L-selectin
after desulfation and inhibition of sulfation supports this
possibility (Fig. 4B). In addition, in most studied mam-
mals, the amino acids regulating selectin interactions with
potentially sulfated tyrosine residues are conserved (Fig.
4C). In mouse, Tyr-54 and Thr-58 regulate PSGL-1 inter-
actions with P-selectin.[23] Because only one tyrosine is
used, it was suggested that mouse PSGL-1 binding may
rely more on O-glycans attached to Thr-58 than does
human PSGL-1.[23] This may also occur in other mam-
mals, which exhibit a single tyrosine residue (tree shrew,
bat and horse, Fig. 1).

Differences in tyrosine sulfation and O-glycosylation may
affect the stability of rolling velocities on L-selectin. Thus,
the patterns of bovine, pig and equine neutrophil dis-
placements differed from those of CHO cells expressing
mammalian PSGL-1. In particular, pig neutrophils, and
also bovine and equine neutrophils, exhibited periods of
very slow rolling velocity, alternating with rapid accelera-
tions and decelerations (Fig. 7). These observations
emphasize the role of post-translational modifications in
regulating PSGL-1 binding to human selectins.

Conclusion

Data presented here indicate that mammalian PSGL-1
share a common primary structure and has evolutionary
conserved interactions with L- and P-selectin. As in
human, PSGL-1-dependent rolling is regulated by core-2
O-glycosylation of a conserved threonine residue and by
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Stability of rolling velocities of CHO-PSGL-I trans-
fectants or mammalian neutrophils on human L-
selectin. Frame-by-frame rolling velocities of (A) CHO-
PSGL-I transfectants or (B) human, bovine, pig, rat or equine
neutrophils on human L-selectin. The velocity of tracked cells
was determined by measuring cell displacements within suc-
cessive video frames (0.1 ms) in the flow direction under a
shear stress of 1.0 dyne/cm?2. Cells were tracked for 4 to 6 s.
Data are representative of 4-10 experiments.

tyrosine sulfation. The high degree of conservation of
PSGL-1 cytoplasmic domain suggests, as for human PSGL-
1, a potential involvement in signal transduction and in
regulating cell rolling. These results provide additional
insights into the structure and function of PSGL-1 and
may be helpful to design PSGL-1 peptidomimetics.

Methods

Bovine, porcine, murine and equine PSGL-I and FucT-VII
cDNAs

RNA was extracted from mammalian lymphocytes using
TRIzol® (Invitrogen, Basel, Switzerland). Bovine, pig and
rat homologues of human PSGL-1 cDNAs were generated
from lymphocyte total RNA using GeneRacer™ Kit (Invit-
rogen), according to the manufacturer protocols. Primer
design was based on sequence homologies between
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human and mouse PSGL-1 [9,24]. Primers are listed in
Table 1.

Full-length PSGL-1 cDNAs were obtained using primers
specific for each species (Table 1): forward human,
bovine, pig, rat and equine PSGL-1 contain an AflII restric-
tion site and reverse PSGL-1 primers an Agel and a Clal
restriction site removing the stop codon. Forty amplifica-
tion cycles were performed using the Platinum® Pfx DNA
Polymerase (Invitrogen; 30 s at 94°C, 45 s at 54°C, 2 min
at 72°C). PCR products were gel-purified, sequenced,
digested with Aflll/Agel and cloned in the pcDNAS5/FRT/
V5-His-TOPO® expression vector containing, C-termi-
nally, 6 x His tag (Invitrogen).

al-3 fucosyltranferase-VII (FucT-VII) mRNAs from
human, bovine, pig, rat and equine neutrophils were
amplified using the Superscript™ One-Step RT-PCR with
platinum®Taq Kit (Invitrogen). Primers were derived from
human and mammalian FucT-VII sequences (Table 1). B-
actin transcripts were used as control.

Cells

Mammalian lymphocytes were isolated by blood centrifu-
gation on Ficoll and polymorphonuclear cells (PMN)
were obtained by dextran sedimentation and erythrocyte
hypotonic lysis [10]. Flp-In™-CHO-K1 cells (Invitrogen)
stably expressing core2 B(1,6)-N-acetyglucosaminyltrans-
ferase-I (C2GnT-I) and FucT-VII [16] were transfected
using TransIT®-LT1 (Mirus Corporation, Madison, WI)
with human, bovine, pig, equine or rat PSGL-1 constructs.
CHO cells were cultured in MEMa medium (Invitrogen)
containing 10% fetal calf serum (FCS), 800 ug/mL G418
(Invitrogen) and 700 pg/mL Hygromycin B (Calbiochem-
Novabiochem, Schwalbach, Germany). CHO cells co-
expressing similar levels of sialyl Lewis x (sLeX), cutaneous
lymphocyte antigen (CLA) and PSGL-1 terminated by C-
terminal polyhistidine (6 x His) tag were isolated by lim-
iting dilution. CHO-P-selectin and 300.19-L-selectin cells
were cultured as described [19].

Inhibition of sulfation

CHO-PSGL-1 cells (107 cells in 1 mL of PBS) were treated
with proteinase K (170 pg/mlL; Roche Diagnostics,
Rotkreuz, Switzerland) for 20 min at 37°C.[67] After pro-
teinase K inhibition with phenylmethylsulphonylfluoride
(Sigma-Aldrich, St-Louis, USA), cells were cultured for 72
h in sulfate-deficient MEMa medium containing 10% dia-
lyzed FCS and 60 mM sodium chlorate (Sigma [68]). They
were then further desulfated, for 60 min at 37°C, with
Aerobacter aerogenes arylsulfatase (1 U/ml in PBS, type VI,
Sigma).
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Table I: Sequences of primers used for RACE and RT-PCR analysis

primer name Sequence Ta
GeneRacer™ 5' 5'-CGACTGGAGCACGAGGACACTGA-3' 64°C
Reverse GSP 5'-CAGACCATCTCGGTGGGGGAGTA-3'

GeneRacer™ 5' Nested 5'-GGACACTGACATGGACTGAAGGAGTA-3' 55°C
Reverse Nested GSP 5'-CACAGTGCACACGAAGAAGATAGTG-3'

GeneRacer™ 3' 5'GCTGTCAACGATACGCTACGTAACG-3' 55°C
Forward GSP 5'-ACTCCACTGGCAGCCACAGAGG-3'

GeneRacer™ 3' Nested 5'CGCTACGTAACGGCATGACAGTG-3' 56°C
Forward Nested GSP bovine 5'-CCCTTCCTGTGGCCTCTGATACTC-3'

Forward Nested GSP pig 5'-ACCAGCACCCACGGAGGCACAGACC-3'

Forward Nested GSP rat 5'-CCCTGCCAGGGAGTTCAGATCTC-3'

Forward hPSGL- I/Aflll 5'-AGCCTTAAGCCACCATGCCTCTGCAACTCC-3' 54°C
Forward b, pPSGL-1/Aflll 5 -TATCTTAAGCCACCATGTTTCTGCAACTCC-3'

Forward rPSGL-I/Aflll 5'-CGCCTTAAGCCACCATGTTCCCACACT-3'

Forward ePSGL- I/Aflll 5'-AGCCTTAAGCCACCATGCCTCTGCCGCTC-3'

Reverse h, b, p, r, ePSGL-1/Agel/Clal 5'-TGGACCGGTATCGATAGGGAGGAAGCTGTG-3'

Forward h, b, p, rFucT-VII 5-TCCTTGTCTGGCACTGG-3' 50°C
Reverse h, b, p, rFucT-VII 5'-GCGGTGCTGGGAGTTCT-3'

Forward h, b, p, rp-actin 5'-GAGACCTTCAACACCCC-3' 50°C

Reverse h, b, p, r-actin

5-GTGGTGGTGAAGCTGTAGCC-3'

Ta, annealing temperature; GSP, gene specific primer; h, human; b, bovine; p, pig; r, rat; e, equine; FucT-VII, a.1-3 fucosyltranferase-VII.

Immunophenotypic analysis

Cell staining with mAbs or L-, P-, or E-selectin/IgM heavy
chain (p) chimera was performed and analyzed with a
Cytomics™ FC 500 cytofluorimeter (Beckman Instru-
ments, Nyon, Switzerland), as described [19].

Flow adhesion assays

Cells (10¢/mL) were perfused in a parallel plate flow
chamber (GlycoTech Corp., Rockville, MD) mounted on
a glass coverslip covered with a confluent monolayer of
CHO cells or coated with L-selectin/p (2.0 pg in 100 pL
0.1 M borate buffer, pH 8.5, surface: 75 mm?2) or P-selec-
tin/p (0.1 pg in 100 pL borate buffer) chimera or recom-
binant P-selectin (0.5 pg in 100 uL borate buffer) (R&D
Systems, Minneapolis, MN) adsorbed on goat anti-
human IgM antibody (2.0 pg in 100 pL 0.1 M borate
buffer, pH 8.5; Caltag Laboratories, Burlingame, USA;
[16,19,69]. CHO-PSGL-1 cell and neutrophil interactions
were recorded for 5 min by videomicroscopy [16,19,69].
Rolling velocities illustrated in Fig. 6 were measured by
tracking individual cells every 0.1 s, for 1-20 s, using a
digital image analysis system (Mikado software, GPIL SA,
Martigny, Switzerland; [16,19,69]. 183-755 independent
determinations of cell rolling velocities were measured to
analyze the velocities of transfectants and 25-381 deter-
minations for the analysis of neutrophil velocities. Frame-
by-frame velocities (Fig. 7) were measured by tracking
cells every 0.1 s for 6 s, within 0.28 mm?2 microscopic
fields. The mean velocity of frame-by-frame tracked cells
was included between percentiles 40-60 of the velocity of
each cell population illustrated in Fig. 6. L- and P-selectin-
dependent rolling was inhibited (>95%) by 10 mM EDTA

or LAM1-3 or WAPS12.2 mAbs (data not shown). Mock-
transfected CHO cells did not roll on L- or P-selectin.
CHO transfectants used in adhesion assays expressed sim-
ilar levels of cell surface PSGL-1 and sLex[19].

Sequences

PSGL-1 amino-acid sequences were either retrieved from
the Uniprot database [70], or deduced from our own
cDNA sequences (bovine, equine, pig and rat respective
accession numbers [EMBL: AM778464, AM778465,
AM778466, AM778467]), or inferred from their gene
sequences identified through homology searches (chim-
panzee, thesus monkey, dog, bat, northern tree shrew,
and bushbaby respective EMBL/Genbank/DDBJ accession
numbers: AADAO01122192, AANUO01210210,
AAEX02034222, AAPE01064070, AAPY01200400, and
AAQRO01577322).

Most selectin sequences were retrieved from Uniprot.
Accession numbers of human, chimpanzee, rhesus mon-
key, rat, mouse and bovine L-selectins are P14151,
Q95237, Q95198, Q63762, P18337 and P98131, respec-
tively. Those of human, rat, mouse, bovine, dog, pig,
equine and sheep DP-selectin are P16109, P98106,
Q01102, P42201, Q28290, Q29097, Q5J3Q6 and
P98109, respectively. The chimpanzee and rhesus mon-
key P-selectin sequences were retrieved from the Refseq
database#® (IDs: XM_001137240 and XM_001094728).
Dog, pig, northern tree shrew, bushbaby, cat L-selectins,
and bat, northern tree shrew and cat P-selectins were pre-
dicted from their DNA sequences (EMBL/Genbank/DDBJ
respective  accession  numbers: AAEX02026138,
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BW973806, AAPY01338510, AAQRO1653637,
AANG01023786, AAPE01015496, AAPY01338519,
AANG01023773).

Sequence analysis

Multiple alignments were obtained by analyzing local and
global similarities between PSGL-1 (Fig. 1) or selectin
sequences (Fig. 4) using Clustal-W, T-Coffee and MEME
programs [71-73]. Alignment was edited and colored
using the Jalview program [74]. Signal peptides, propep-
tides and transmembrane domains were predicted with
the SignalP, ProP, and TMHMM programs [75-77].

Statistical Analysis

Analysis of variance and the Bonferroni multiple compar-
ison test or the Kruskal-Wallis non-parametric ANOVA
test were used to assess statistical significance of differ-
ences between groups. The Mann-Whitney test was used
to compare the medians of two unpaired groups. P values
< 0.05 were considered as significant.
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