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Purpose: Automatic multilabel classification of multiple fundus diseases is of impor-
tance for ophthalmologists. This study aims to design an effective multilabel classifi-
cation model that can automatically classify multiple fundus diseases based on color
fundus images.

Methods: We proposed a multilabel fundus disease classification model based on
a convolutional neural network to classify normal and seven categories of common
fundus diseases. Specifically, an attention mechanism was introduced into the network
to further extract information features from color fundus images. The fundus images
with eight categories of labels were applied to train, validate, and test our model. We
employed the validation accuracy, areaunder the receiver operating characteristic curve
(AUC), and F1-score as performance metrics to evaluate our model.

Results:Ourproposedmodel achievedbetterperformancewithavalidationaccuracyof
94.27%, an AUC of 85.80%, and an F1-score of 86.08%, compared to two state-of-the-art
models. Most important, the number of training parameters has dramatically dropped
by three and eight times compared to the two state-of-the-art models.

Conclusions: This model can automatically classify multiple fundus diseases with not
only excellent accuracy, AUC, and F1-score but also significantly fewer training parame-
ters and lower computational cost, providing a reliable assistant in clinical screening.

Translational Relevance: The proposed model can be widely applied in large-scale
multiple fundus disease screening, helping to create more efficient diagnostics in
primary care settings.
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Introduction

Millions of people in the world are affected
by fundus diseases such as diabetic retinopathy
(DR),1 age-related macular degeneration (AMD),2
glaucoma,3 cataract,4 and hypertensive retinopathy.5
Early detection and timely diagnosis may not be avail-
able with manual diagnosis due to the complexity of
fundus diseases and the increasing number of patients.
These diseases may lead to irreversible blurred vision
and even blindness without accurate diagnosis and
timely treatment. Therefore, the accurate diagnosis and
treatment of fundus diseases are very important.

Convolutional neural networks (CNNs) can
automatically learn the high-level information on
features of images, which has demonstrated promis-
ing performance in fundus disease classification.6–9
Several studies focused on the screening of DR based
on fundus image classification.10–13 Automatic single-
label classification of multiclass retinal diseases has
been reported based on color fundus images and
optical coherence tomography images.14–18 These
studies ignored the fact that a fundus image in the real
world is likely to contain multiple fundus diseases.

Recently, some works began to explore multilabel
fundus disease classification.19–21 Peking University
launched a fundus image database called Ophthalmic
Disease Intelligent Recognition (ODIR) for multil-
abel classification of multiple retinal diseases.22 For
example, He et al.23 proposed a dense correlation
network based on the ResNet network to classify
normal and seven types of fundus diseases by using
the spatial correlation between paired color fundus
images. The network was composed of a feature extrac-
tion module, a spatial correlation module, and a classi-
fier. The experiments showed that the network had
better performance than the corresponding bench-
mark. Gour et al.24 proposed two multilabel classifica-
tion models based on CNN and transfer learning for
fundus images of eight types of patients in the ODIR
database. Two different input modes and two differ-
ent optimization algorithms with stochastic gradient
descent (SGD) and Adam were used. In the training
process, pretrained ResNet, Inception V3, MoblieNet,
and VGG16 network were used as the feature extrac-
tors, respectively. The results showed that the VGG16
network with the SGD optimizer and feature stitch-
ing had better classification performance. Jordi et al.25
proposed a model to transform the multilabel retinal
disease classification into a multiclass retinal disease
classification. Three pretrained deep CNN networks
(VGG16, GoogLeNet, and InceptionV3) were used
to classify retinal images from the ODIR database.

This model outperformed other methods, but it cannot
detect multiple diseases in a fundus image at the same
time. Wang et al.26 proposed a multilabel classifica-
tion ensemble model based on CNN to detect multi-
ple diseases in the fundus images. The pretrained
EfficientNet network was used as the feature extrac-
tion network. The color images and gray images after
histogram equalization were input into the network
to obtain two models, respectively. The output proba-
bilities of the two models were averaged as the final
prediction result, which achieved an area under the
curve (AUC) of 0.74 and an F1-score of 0.89, but the
network parameters were set at a high level. Lin et
al.27 proposed two classification networks for multi-
label classification of fundus images with the ODIR
database and 2529 collected fundus. One was based
on graph convolutional networks, which were used to
replace the fully connected (FC) layer as a classifier to
capture the relevant information of multilabel fundus
images. The other was based on graph convolutional
networks and self-supervised learning, in which the
self-supervised learning was used to learn unlabeled
fundus images. The results showed the two networks
had better performance, but the training may be unsta-
ble.

The pretrained network based on the ImageNet
data set without structural optimization is mostly used
for multilabel classification of fundus diseases, which
limits the classification accuracy. In addition, it is
difficult to deploy the existing multilabel classifica-
tion model for various types of fundus diseases to
clinical diagnosis with more training parameters and
high computational cost. In this study, we proposed a
multilabel classification model based on CNN and the
squeeze-and-excitation (SE) module that can automat-
ically classify normal and seven types of common
fundus diseases. Our proposed model was evaluated
with the public ODIR database, achieving better
performance with a smaller number of training param-
eters and computing load compared to the two state-of-
the-art models.

Data Set

In this study, a public database was used, provided
by Peking University through a global grand challenge
named “International Competition on Ocular Disease
Intelligent Recognition (ODIR)” (https://odir2019.
grand-challenge.org). The data set is publicly available
in Li et al.22 This data set collects fundus images from
the left and right eyes of 5000 patients and diagnos-
tic keywords from doctors at different hospitals and

https://odir2019.grand-challenge.org
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Figure 1. Representative fundus images in ODIR database. (a) Fundus images with single label. (b) Fundus images with multiple labels.

Table 1. Demographics Characteristics of the ODIR Data Set

Characteristics Training On-Site Testing Off-Site Testing

No. of patients 3500 1000 500
No. of eyes 6999 2000 1000
Right 3500 1000 500
Left 3499 1000 500

No. of images 7000 2000 1000
Age, mean ± SD, y 57.85 ± 11.72 57.76 ± 12.45 58.15 ± 11.99
Gender, No.
Male 1885 537 269
Female 1615 463 231

medical centers in China. Demographic data for each
patient, including age and sex, are also provided in
the data set. Eight categories of disease labels are
provided for each patient, which refer to normal,
DR, glaucoma, cataract, AMD, hypertension, myopia,

and other abnormal diseases/abnormalities, as shown
in Figure 1. A fundus image is marked by either a single
label or multiple labels in eight categories, as shown
in Figure 1a and Figure 1b, respectively. The ODIR
database is divided into three parts: the training set, the

Table 2. Proportion of Images per Category in the ODIR Data Set22

Class Training, No. On-Site Testing, No. Off-Site Testing, No. Total

Normal 1138 324 162 1624
Diabetes 1130 327 163 1620
Glaucoma 215 58 32 305
Cataract 212 65 31 308
AMD 164 49 25 238
Hypertension 103 30 16 149
Myopia 174 46 23 243
Other diseases 982 275 136 1393
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on-site testing set, and the off-site testing set, consist-
ing of 3500, 1000, and 500 pairs of fundus images,
respectively. Table 1 reveals the details of demograph-
ics characteristics of the ODIR data set. Table 2 shows
the image distribution with respect to eight categories
of labels in the ODIR database. The ODIR database
has an unequal quantity of photos for each label,
resulting in a class imbalance problem where normal,
DR, and other abnormality categories have enough
images, while glaucoma, cataract, AMD, hypertensive
retinopathy, and myopia have significantly less fundus
images.

Method

Image Processing and Labeling

Before the network training, we processed the
fundus images in the ODIR database to confirm that
the images were of sufficient quality for the experi-
ment. First, we removed the poor-quality images for the
left or right eye. According to the diagnostic keywords
of the left eye and right eye, exclusion criteria for
images followed the rules: (1) images with lens dust,
(2) images with an optic disk photographically invis-
ible, (3) images with low image quality, (4) images
with image offset, or (5) images with only the label
of other abnormal. By manually browsing the fundus
images, we throw away the completely invisible images.

A total of 2824 images were abandoned from the total
of 10,000 fundus images in the ODIR database, leaving
7176 images. Second, the fundus images with a large
area of black background were cropped to remove
the black background areas by automatically reading
the upper, bottom, left, and right boundaries of the
images. As fundus images captured by various cameras
on the market resulted in varied sizes, we extracted the
retina region to 299 × 299 pixels based on the detected
retina circle. Here, the Hough Circles transformation
was used to detect the circle of the retina.28 To reduce
the influence of nonuniform illumination on images, we
then performed contrast-limited adaptive histogram
equalization on retinal fundus images. Two typical
original and processed images are shown in Figure 2.

The ODIR database only provides the disease labels
at the patient level, left eye diagnostic keywords,
and right eye diagnostic keywords. According to the
diagnostic keywords of the left eye and right eye,
eight categories of labels were assigned to each fundus
image to reduce the complexity of network construc-
tion, which enabled the model to detect the fundus
disease of an individual eye. After image processing
and labeling, the remaining 7176 images were used
for training and testing. Among these 7176 images,
966 fundus images from the off-site testing set were
used as the testing set, and 6210 images remained. In
Table 1, there is an extremely severe class imbalance
problem in the ODIR database. When there is one of
the underrepresented minority classes, oversampling

Figure 2. Representative original and processed images. (a) Original images. (b) Images with 299 × 299 pixels after cropping black
background. (c) Processed images.
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Figure 3. Our multilabel classification network.

techniques duplicate minority class samples to reduce
the risk of overfitting.29–31 In addition to the normal,
DR, and other abnormal diseases of 4513 images, the
other categories of 1697 images were only duplicated
four times to obtain 6788 images. The normal, DR, and
other abnormal diseases of 4513 images integrating the
augmented other categories of 6788 images resulted in
11,301 fundus images for network training and valida-
tion with a ratio of 9:1, or 10,171:1130.

Designing a Multilabel Classification
Network

Existing classification methods for multitype retinal
diseases based on CNN were computationally inten-
sive, restricting memory potency and training, which
affected the optimization of hyperparameters.32 Thus,
we designed a shallow CNN to reduce comput-
ing load, memory requirements, and hyperparameter
scale as the backbone of our multilabel classification
network, which can learn multilabel lesion features
for multitype retinal disease classification. The shallow
CNN consisted of four convolution layers, three max-
pooling layers, and three FC layers. Besides, to refine
feature representations more effectively, we further
introduced a channel attention mechanism with the
SE module33 to the shallow CNN. The architecture
of our proposed multilabel classification network is
presented in Figure 3. The proposed multilabel classi-
fication network was composed as follows: input layer,

convolution layer, namely Conv1, SE module1, max-
pooling layer, Conv2, SE module2, max-pooling layer,
Conv3, Conv4, max-pooling layer, FC1, FC2, FC3 and
output layer. TheReLUnonlinearity was applied to the
output of every convolution andFC layer except for the
last FC layer.

The SE module performed the recalibration of
feature maps in the channel dimension to automati-
cally obtain the importance values of different channels
in the feature maps. With these importance values, the
proposed network can selectively enhance the informa-
tive features useful for the current classification task
and suppress less useful ones. The principle of the
SE module is described as follows.33 First, the origi-
nal feature maps produced by convolutional opera-
tion are defined as U ∈ RH × W × C and the original
feature maps can be written as U = [u1, u2, … uC].
The original feature maps U are first passed through
a squeeze operation, which can incorporate the global
spatial information by generating channel-wise statis-
tics. Specifically, the H × W spatial dimensions of the
original feature maps are shrunk to generate the global
spatial feature Z ∈ RC. The c channel element of Z is
computed by

zc = 1
H ×W

H∑
i−1

W∑
j=1

uc (i, j), (1)

where the spatial dimension of the original feature
maps isH × W, and uc ∈ RH × W. Second, to make use
of the information aggregated in the squeeze operation,
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Table 3. Structure and Parameters of Our Proposed Network

Layer (Type) Output Shape Filter Size Stride Padding

Input layer (None, 299, 299, 3)
Zero padding (None, 302, 302, 3)
Convolution (None, 76, 76, 24) 11 × 11 4 × 4 Same
SE module (None, 76, 76, 24)
Max pooling (None, 38, 38, 24) 3 × 3 2 × 2 Same
Convolution (None, 38, 38, 64) 5 × 5 1 × 1 Same
SE module (None, 38, 38, 64)
Max pooling (None, 19, 19, 64) 3 × 3 2 × 2 Same
Convolution (None, 19, 19, 64) 3 × 3 1 × 1 Same
Convolution (None, 19, 19, 64) 3 × 3 1 × 1 Same
Max pooling (None, 9, 9, 64) 3 × 3 2 × 2 Valid
Flatten (None, 5184)
Dropout (0.5) (None, 5184)
FC (dense) (None, 512)
Dropout (0.6) (None, 512)
FC (dense) (None, 512)
FC (dense) (None, 8)

the aggregation is followed by an excitation operation
that aims to fully capture channel-wise dependencies.
For global spatial feature Z, the channel dimension of
C is reduced to C/R by the first FC layer and then is
activated by the ReLU function. The channel dimen-
sion of C/R is returned to the channel dimension of the
original feature maps by the second FC layer. Subse-
quently, a series of per-channel modulation weights
between 0 and 1 is produced by the sigmoid activa-
tion function. The global spatial featureZ is forwarded
to two FC layers to finally generate the channel atten-
tionmapS∈RC, encoding which channel to emphasize
or suppress. This process is called feature recalibration,
namely, the gating mechanism. A simple gating mecha-
nism is employed to achieve this objective:

S = σ (W2δ (W1Z)) , (2)

where δ denotes the ReLU function, σ refers to the
sigmoid function, W1 ∈ RC

R
× C and W2 ∈ RC × C

R are
the weights of the two FC layers, respectively. R is the
reduction ratio used to reduce the channel dimension
of the first FC layer in the SE module. Finally, the
output of the SE module is obtained by rescaling the
feature maps U with the channel attention map S:

X = U ⊗ S, xc = Fscale (uc, sc) = ucsc, (3)

where X = [x1, x2, … xC] and ⊗ denotes channel-wise
multiplication. Fscale (uc, sc) refers to the channel-wise
multiplication between the scalar sc and the feature
map uc ∈ RH × W.

The reduction ratios of the first SE module and
second SE module in the proposed multilabel classifi-
cation network were 8 and 3, respectively.

Training and Optimizing

We trained the proposed network from scratch
with the training set consisting of 10,171 images, as
described in “Image Processing and Labeling.” Each
image referred to one fundus image of the left or right
eye of a patient. Fundus images and the corresponding
ground truths stored in the CSV file were input into
the proposed network. The input images with 299 ×
299 pixels passed through RGB channels. We adopted
the Zero Padding operation to fill one, two, one, and
two layers of zeros in the upper, lower, left, and right
of the input images, respectively. The last FC layer of
the network was used as a classifier, and a sigmoid
was utilized as the last FC layer’s activation function.
Binary cross-entropy was adopted as the loss function.
Dropout was applied to prevent overfitting. At the
end, the proposed network outputs eight probability
values, corresponding to the eight categories of labels.
Compared with setting multiple independent classifiers
in the multilabel classification model,22,34 our setting
reduced the risk of overfitting. Table 3 shows the struc-
ture and parameters of our proposedmultilabel fundus
disease classification network.

SGD and Adam optimizers were adopted to
study the classification model of performance. Under
the same conditions, we carried out comparative
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Table 4. Configuration of Hyperparameter

Configuration Value

Optimizer Adam
Epoch 200
Batch size 32
Learning rate 5.00E-4
ReduceLROnPlateau monitor=’val_loss’, factor=0.1,

patience=10, min_lr=1.00E-07
EarlyStopping monitor=’val_acc’, patience=20
ModelCheckpoint monitor=’val_acc’,

save_best_only=True,
save_weights_only=True

experiments. It was found that the Adamoptimizer was
significantly better than the SGD optimizer in terms of
shortening training time and convergence. Therefore,
we selected Adam as the optimizer for our proposed
network. We trained the network for 200 epochs, and
the batch size was set to 32. To avoid overfitting and
save training time, we implemented an early stop trick.
If no progress was made on the accuracy of the valida-
tion data set in 20 successive epochs, the entire train-
ing process would be terminated early. After 80 epochs,
the training was stopped due to the absence of further
improvement in both validation loss and accuracy. The
best model was selected based on validation accuracy
for the validation phase. The learning rate was initially
set to 0.0005, and the learning rate decay strategy was
the learning rate multiplied by 0.1 when the validation
accuracy plateaued within 10 epochs. The configura-
tion of hyperparameters in our model or the multilabel
fundus disease classification model is shown in Table 4.

The experiments ran on a workstation equipped
with a NVIDIA GeForce GTX 1060 GPU, Intel Core
i7-8700, and 8 GB memory, and the running operating
system was Windows 10. The development platform
was based on pycham2019.1.3 Community Edition, in
which the designed implementation of the model was
based on Tensorflow1.7.0 and Kares2.6.0 framework.

Evaluating the Model

We employed the testing set to evaluate the perfor-
mance of our multilabel fundus disease classification
model. When the fundus images without correspond-
ing labels were input into the trained multilabel classi-
fication model, the model output eight probabilities
between 0 and 1 to predict the eight categories of
diseases, stored in a CSV file. Then, we applied three
evaluation metrics, such as validation accuracy, F1-
score, and AUC, to evaluate the performance of our
proposed model. Accuracy is used for classification

tasks, which corresponds to the proportion of correctly
classified images with identical label sets of prediction
and ground truth in all images. The accuracy of the
training set and validation set is used to observe the risk
of overfitting. The F1-score is the harmonic average of
precision and recall, which ranges from 0 to 1. AUC
represents the area under the receiver operating charac-
teristics curve, which is a trade-off parameter between
sensitivity and specificity parameters, usually measur-
ing the stability of themodel. The threshold is set at 0.5.
All these metrics are calculated by the sklearn package.
These evaluation metrics are given as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(4)

Precision = TP
TP + FP

(5)

Recall = TP
TP + FN

(6)

F1_score = 2 × Precision × Recall
Precision + Recall

(7)

TPR= TP
TP + FN

,FPR = FP
FP + TN

(8)

AUC =
∫ 1

x=0
TPR

(
FPR−1(x)

)
dx (9)

where TP, FP, TN, and FN refer to true-positive predic-
tions, false-positive predictions, true-negative predic-
tions, and false-negative predictions; TPR and FPR are
true-positive rate and false-positive rate.

Results

Tensorboard (https://tensorflow.google.cn/tensor
board), a visual tool of TensorFlow, was used to
observe the convergence of our multilabel fundus
disease classificationmodel. In ourmodel, the accuracy
and loss curves of the training set and validation set
are shown in Figure 4. After 80 epochs, the training
was stopped due to the absence of further improve-
ment in both accuracy and loss. In the loss curves, our
model converged rapidly, indicating that the param-
eters of this model were suitable for this multilabel
classification task of fundus diseases. In the processed
training set and validation set, our model obtained an
accuracy of 98.64% and 94.27%, respectively. These
results showed that our proposed model achieved

https://tensorflow.google.cn/tensorboard
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Figure 4. Accuracy and loss curves of training set and validation
set.

high accuracy in multidisease classification without
overfitting, even with a small number of images in the
training set.

Class-wise performance analysis is important in
the case of class imbalance for better insight into
the overall performance of a model. There is a class
imbalance since the training set had a class imbalance
problem, so we evaluated the class-wise performance
of our model on the images of the testing set. The
class-wise performance of our model is summarized in
Table 5 for accuracy, precision, sensitivity, and speci-

ficity parameters. The model showed high specificity
and accuracy toward disease classes having good repre-
sentation in the data set. The high precision of the
cataract and myopia classes may be because these
two types of image features are more obvious. The
high accuracy and specificity for the minority class
are because for that particular class, the number of
negative samples is much higher than positive samples.
However, the model failed to recognize the minority
class images well.

On the same data set, the performance of our
proposed model was compared with the results
mentioned in methods26,27 on F1-score, AUC, and
total number of training parameters. As summarized
in Table 6, our model was effectively enhanced in
performance compared to model I proposed in Wang
et al.26 The validation accuracy of our model was
improved by about 2.27% without overfitting. Our
model achieved an AUC of 85.80%, or a 11.8%
improvement, compared to model I. The F1-score was
86.08% in our proposed model, or 2.92% less than
that of model I. At the same time, the total number
of training parameters of our proposed model was
three times less than that of model I. Compared to
model II proposed in Lin et al.,27 our model was more
stable and performed better. In our model, the AUC
and F1-score obtained a 7.64% improvement and a
3.58% deterioration compared to those of model II.
Furthermore, the number of training parameters in
model II is nearly eight times higher than that in our
model. These results showed that our proposed model

Table 5. Class-Wise Performance of Our Model for Accuracy, Precision, Sensitivity, and Specificity

Class Accuracy Precision Sensitivity Specificity

Normal 0.63 0.57 0.45 0.76
Diabetes 0.69 0.43 0.43 0.80
Glaucoma 0.91 0.28 0.20 0.98
Cataract 0.94 0.63 0.89 0.98
AMD 0.96 0.57 0.18 0.99
Hypertension 0.93 0.13 0.03 0.99
Myopia 0.95 0.71 0.90 0.98
Other diseases 0.73 0.29 0.32 0.84

Table 6. Comparison of the Performance of Our Model with the State-of-the-Art Models

Model Train_Accurary (%) Val_Accurary (%) AUC (%) F1-Score (%) Training Parameters

Model I26 \ 92.00 74.00 89.00 >8.90M
Model II27 \ \ 78.16 89.66 >25.50M
SENet5033 98.14 92.97 81.12 85.11 >28.09M
Our model 98.64 94.27 85.80 86.08 3.05M
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Table 7. Results of Testing on the External Validation
Set

Model Precision Recall AUC F1-Score

Model I26 0.46 0.45 0.82 0.86
Model II27 0.46 0.46 0.69 0.86
SENet5033 0.42 0.40 0.73 0.85
Our model 0.54 0.47 0.85 0.88

achieved better performancewith a validation accuracy
of 94.27%, or a 2.27% improvement, and an AUC
of 85.80%, or a 7.64% improvement, compared to
the two state-of-the-art models. Most important, the
number of parameters has dramatically dropped by
three and eight times in our model compared to model
I and model II, respectively. To highlight the advan-
tages of introducing the SE module into our classifica-
tion network, we compared ourmodel with SENet50.33
In Table 6, the AUC and F1-score of SENet50 are
81.12% and 85.11%, respectively. Our model has the
highest AUC and F1-score with a relatively fast classi-
fication speed, but its number of training parameters
is only 3.05M, which is only about 10.86% of that of
SENet50. The advantage of ourmodel over SENet50 is
the implementation of multilabel retinal disease classi-
fication with fewer training parameters and a relatively
fast classification speed. The proposed model in our
work is a lightweight architecture, which has an advan-
tage over the models mentioned above in our experi-
ments.

In order to verify the validity of our model, we
collected 70 fundus images to build an external valida-
tion set from the collected data set in Lin et al.27
The external validation set contained 10 images of
normal, DR, glaucoma, cataract, AMD, hypertension,
and myopia, respectively. The external validation set
is used for testing the generalization performance of
the models mentioned in methods,26,27 SENet50, and
our model. Table 7 lists the experimental results of
the models on the external validation set in terms of
the precision, recall, AUC, and F1-score. As illustrated
in Table 7, our model achieves the highest precision
of 54.10%, the highest recall of 47.14%, the highest
AUC of 85.35%, and the highest F1-score of 88.39%
with relatively fewer training parameters. Its precision
is about 8%, 8%, and 11% higher than that of model I,
model II, and SENet50, respectively. Its recall is about
2%, 1%, and 5% higher than that of model I, model
II, and SENet50, respectively. Its AUC is about 2%,
16%, and 5% higher than that of model I, model II,
and SENet50, respectively. Its F1-score is about 2%,
2%, and 3% higher than that of model I, model II, and
SENet50, respectively. The result shows that our model

significantly improves the accuracy and robustness of
classification for multiple fundus diseases.

To demonstrate that the SE module can empha-
size lesion features extracted from fundus images and
enhance the representational power, we adopted the
gradient class activation map technique35 to show
the activation maps of the proposed model with and
without the SE module, respectively.

The gradient class activation map technique was
performed to identify the areas contributing the most
to our model’s classification of the predicted diagno-
sis. The activation maps of three representative images
are shown in Figure 5, where the important feature
areas in the image responsible for the classification are
highlighted in red and yellow. The three original images
with the pathologic features labeled by the ophthal-
mologist are shown in Figure 5a, d, and g; the class
activation maps without the SE module are shown in
Figure 5b, e, and h; and the class activation maps
with the SE module are shown in Figure 5f, and i. In
Figure 5c, arteriostenosis, cotton wool spot, superficial
retinal hemorrhage, and papilloedema are extracted
correctly in the class activation map, which is most
connected to the diagnosis of hypertensive retinopa-
thy. In Figure 5f, the loss of the optic disc rim is
identified correctly in the class activation map with
the SE module, which represents the classic damage of
glaucoma other than that without the SEmodule, while
the diffuse optical media opacity probably originates
from corneal edema secondary to intraocular hyper-
tension, causing poor imaging quality. In Figure 5i,
the peripapillary atrophy andmacular degeneration are
picked up correctly in the class activationmap, which is
most connected to the diagnosis of pathologic myopia.
These results were compatible with the judgment of the
ophthalmologist. It is found that our proposed model
with the SE module can better capture and empha-
size the pathologic features in the three representative
images.

Discussion

Currently, the classification models based on CNN
mostly focus on the detection of a single retinal disease.
In this article, we proposed a multilabel fundus disease
classification model to automatically classify normal
and seven types of retinal diseases. With modeling
interdependencies between channels, the SE module
made our model emphasize lesion features extracted
from fundus images and enhanced the representa-
tional power of the custom classification network.
Our experiment results demonstrated that our model



Multilabel Classification of Fundus Disease TVST | January 2023 | Vol. 12 | No. 1 | Article 22 | 10

Figure5. Three representative imageswith thedifferent pathologic features and the class activationmapswithout andwith the SEmodule.
(a) The original image with the pathologic features of hypertensive retinopathy labeled by the ophthalmologist. (b) Class activationmap for
hypertensive retinopathy without the SE module. (c) Class activation map for hypertensive retinopathy with the SE module. (d) The origi-
nal image with the pathologic features of glaucoma labeled by the ophthalmologist. The optic nerve rim loss (black arrowheads) and the
diffuse optical media opacity that probably originated from cataract or corneal edema secondary to intraocular hypertension (white dotted
circle) are labeled. (e) Class activation map for glaucoma without the SE module. (f ) Class activation map for glaucoma with the SE module.
(g) The original image with the pathologic features of myopia labeled by the ophthalmologist. The out-of-focus image as a result of a
supra high degree of intense myopia (white dotted circle) is labeled. (h) Class activation map for pathologic myopia without the SE module.
(i) Class activation map for pathologic myopia with the SE module.

achieved better accuracy andAUC formultilabel classi-
fication compared to the two state-of-the-art models
without overfitting, evenwith a small number of images
and the problem of imbalanced classes in the public

ODIR database. Our model contained about 3 million
parameters, replacing about 8.9 million and about
25.5 million network parameters in the two state-of-
the-art models. This indicated that ourmodel wasmore
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compatible with small data set sizes, requiring fewer
computational resources and time, thereby promoting
the deployment of clinical applications. The F1-score
of 86.08% decreased 2.92% and 3.58% compared to
the two state-of-the-art models. Color fundus images
and gray images were used as the inputs for model I
during the training process, which indirectly increased
the number of training images. The images from other
databases were used as additional training sets in
model II.

Although our model achieved better performance
for the detection of normal and seven types of fundus
diseases, its practical application in clinical trials is
still a great challenge. In the ODIR database, there
is more ambiguous information about other abnor-
mal diseases, and the number of some diseases is
very small, making it difficult to further improve the
performance of our model. The ODIR database only
provides patient-level ocular disease category labels.
This may reduce the number of images with two or
more retinal diseases, limiting the general performance
of the model. From Table 5 and Table 7, the recall
and precision of most diseases are low, and this issue
mainly reflects some challenges and deficiencies. First
of all, due to the broad source of the images, there
is a wealth of intraclass diversity. Although they are
labeled as the same category, there are large differences
in color, lighting, and shooting conditions. Second,
the classification of images with multiple diseases is
affected and confused by various fundus abnormali-
ties. Cataracts prevent the model from identifying hard
exudate. Hard exudation and drusen are difficult to
distinguish from each other, whichmakesmostmisclas-
sified images difficult to extract valid regional features
from the model and is also the reason why the sensitiv-
ity of cataract is relatively high in Table 5. In addition,
the ODIR database has serious class imbalances, as
shown in Table 2, where the low sensitivity in the case
of high specificity is because, for that particular class,
the number of negative images is much higher than
positive images. Just as in Jordi et al.,25 the sensitiv-
ity is higher than that of our model for normal and
other disease images. The sensitivity of our model is
higher for cataract andmyopiawith obvious pathologic
features, and the class-wise performance of our model
in terms of specificity is higher than that of the method
mentioned in Jordi et al.25 Third, local features are
not obvious. The determination of glaucoma requires
an accurate ratio of the optic cup and disc, and
AMD requires more detailed features of the macular
area.

In the future, we will improve the performance of
themodel on disease identification in the clinic scenario
by balancing the number of images of different diseases

types and adding more images with varying disease
severity to modify the existing data set or reconstruct
our data set. On the other hand, we intend to intro-
duce depth-wise separable convolution to the network
to greatly reduce the cost of computing and maintain
accuracy simultaneously.

Conclusion

We proposed a multilabel fundus disease classi-
fication model with high accuracy, achieving better
performance in validation accuracy, AUC, and F1-
score compared to two state-of-the-art models. Most
important, the number of parameters has dramatically
dropped by three and eight times compared to the two
state-of-the-art models. The proposed model is effec-
tive and reliable in the classification of normal fundus
and seven major fundus diseases, which will push deep
learning in clinical application.
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