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Multi-parametric tissue characterisation is demonstrated using a 4-minute protocol based
on diffusion trace acquisitions. Three diffusion regimes are covered simultaneously:
pseudo-perfusion, Gaussian, and non-Gaussian diffusion. The clinical utility of this
method for fast multi-parametric mapping for brain tumours is explored. A cohort of 17
brain tumour patients was measured on a 3T hybrid MR-PET scanner with a standard
clinical MRI protocol, to which the proposed multi-parametric diffusion protocol was
subsequently added. For comparison purposes, standard perfusion and a full diffusion
kurtosis protocol were acquired. Simultaneous amino-acid (18F-FET) PET enabled the
identification of active tumour tissue. The metrics derived from the proposed protocol
included perfusion fraction, pseudo-diffusivity, apparent diffusivity, and apparent kurtosis.
These metrics were compared to the corresponding metrics from the dedicated
acquisitions: cerebral blood volume and flow, mean diffusivity and mean kurtosis.
Simulations were carried out to assess the influence of fitting methods and noise levels
on the estimation of the parameters. The diffusion and kurtosis metrics obtained from the
proposed protocol show strong to very strong correlations with those derived from the
conventional protocol. However, a bias towards lower values was observed. The pseudo-
perfusion parameters showed very weak to weak correlations compared to their perfusion
counterparts. In conclusion, we introduce a clinically applicable protocol for measuring
multiple parameters and demonstrate its relevance to pathological tissue characterisation.

Keywords: diffusion MRI, trace, IVIM, kurtosis, fast acquisition
INTRODUCTION

The use of magnetic resonance imaging (MRI) is considered to be the standard clinical practice for
non-invasive, in vivo brain tumour characterisation. Traditionally, T1-, before and after contrast
agent administration, and T2-weighted images are acquired. Changes caused by contrast agents are
based on changes in the T1 relaxation time, and fluid-attenuated inversion recovery (FLAIR)
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contrast is based on the lengthened T2 relaxation time in the
tumour and oedema regions. However, these parameters are
seldom measured directly and the presence of these changes is
only assessed qualitatively.

In contrast, quantitative MRI (qMRI) enables the acquisition
of parameters that do not depend on either the scanning protocol
or the scanner, field strength notwithstanding. Applying such an
approach to tumour lesion assessment results in more accurate
evaluations and could, ultimately, improve diagnosis (1).
Furthermore, qMRI facilitates a meta-analysis of results from
different centres, enabling a greater breadth of research, i.e. larger
cohort studies.

In brain tumours, tumour tissue generally becomes
increasingly heterogeneous with disease progression (2). This
heterogeneity is mainly seen at a microscopic level as different
mutations in the cells result in regions of distinct underlying
microstructure (3). Consequently, no single contrast is able to
categorically characterise this whole range of differentiation, and,
therefore, a multi-parametric approach to tumour segmentation
and characterisation is required.

Several MRI measurable parameters can be used to probe
aspects relevant to the changes in brain environment due to
tumours [e.g. T1, T2, T

∗
2, chemical exchange saturation transfer,

magnetisation transfer, and diffusion MRI (dMRI) (4–7)].
Among these, dMRI is particularly useful as it is directly
sensitive to different regimes of water mobility and thus to
different microscopic environments of varying characteristic
lengths that are well below the voxel dimension (8).

Typically, a dMRI experiment assumes that diffusion in tissue
is Gaussian (9). This results in a mono-exponential signal decay
which is given by:

S(b)
S(0)

= e−b·Dapp (1)

where b is the diffusion weighting value (b-value), S(b) and S(0)
are the magnitude of the signal at diffusion weighting b and 0 s/
mm2, respectively, and Dapp is the apparent diffusivity (8).

When a diffusion sensitising gradient of low strength is
applied (low b-values), the presence of a fast-decaying
component in the diffusion-weighted signal is evident. This
fast component is often interpreted as the water moving within
randomly oriented capillaries. In the framework introduced in
(10), this is known as intravoxel incoherent motion (IVIM). At
diffusion weightings above b ≈ 200 s/mm2, this component is
suppressed and a tissue-characteristic decay becomes apparent at
higher b-values. The signal equation then becomes:

S(b)
S(0)

= f · e−b·D
∗
+ (1 − f ) · e−b·Dapp (2)

where f is the perfusion fraction, D* is the pseudo-diffusion
coefficient, and Dapp the apparent diffusivity. Previously, the
perfusion fraction, f, has been considered to be related to
cerebral blood volume (CBV), as obtained from dynamic
Frontiers in Oncology | www.frontiersin.org 2
susceptibility contrast (DSC) measurements, while the product
f.D* relates to cerebral blood flow (CBF) (11).

Since the contribution of D* to the signal is relatively small
[approximately 10% in the brain (12)], its effects can be neglected
even at moderately low b-values (>200/mm2). The mono-
exponential approximation of Eq.1, leading to an apparent
diffusion coefficient ADC, is most often considered.

Due to the presence of microscopic barriers, which hinder the
motion of water molecules, the apparent diffusivity of water in
tissue is substantially reduced by a factor of three or more,
compared to that of free water. This regime is still described by
Gaussian diffusion and characterises the hindered motion of
water in the extracellular space.

The application of Eq.1 is, however, limited by an upper b-
value. For b-values above 1000 s/mm2, diffusion can no longer be
considered Gaussian (13–15). This is due to the fact that the
microstructure of tissue is highly heterogeneous and has many
restrictive barriers to diffusion (16).

Diffusion in tissue can be characterised by a sum of two
exponentials: one reflecting the slow tissue diffusion effects, and
the other reflecting the fast tissue diffusion (13). At the voxel
level, the convolution of these components leads to the
observation of non-Gaussian diffusion (NG-diff). However, this
behaviour is only clearly apparent at large b-values (> 3000 s/
mm2) (13).

For an intermediate range of b-values, deviations from
Gaussian-diffusion are often characterised by describing the
first-order deviation from Eq.1 within the formalism of
diffusion kurtosis imaging (DKI) (14), quantified by an
additional term in the signal exponential:

S(b) = S(0) · e−b·Dapp+1
6·b

2 ·D2
app ·Kapp (3)

where Kapp is the apparent diffusional kurtosis coefficient. A plot
of the signal in the different regimes is shown in Figure 1.

In the context of tumour assessment, both the intricacy of the
microstructure and tissue irrigation are important parameters.
Due to the rapid growth of tumour cells, angiogenesis is
promoted in and around the lesion (17). This is typically
assessed by measuring the effect of contrast-agent on the brain
signal using high temporal resolution DSC. Increases in CBF,
derived from DSC, have been observed in tumour regions (18,
19). Furthermore, previous studies have suggested that mean
kurtosis (MK) can be successfully used to grade brain tumours
due to its higher sensitivity to the tissue microstructure as
compared to MD (20–22).

However, the images used to compute these parameters are
often acquired separately and either require the administration
of a contrast agent (as in DSC) or acquisition times that are too
long to be practicable in standard clinical examinations (as with
the use of a fully sampled DKI protocol). In order to address
these limitations, we propose a fast hybrid IVIM/NG-diff
protocol with the goal of being able to derive all of the
aforementioned parameters in a clinically acceptable
measurement time. By simultaneously acquiring this set of
September 2021 | Volume 11 | Article 554205
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largely complementary parameters, a multiparametric approach
to tumour characterisation can be achieved.

In this study, we propose a diffusion-weighted protocol based
on the trace acquisition of 16 b-values, used to probe three
diffusion regimes (IVIM, Gaussian, and non-Gaussian).
Requiring roughly four minutes of acquisition time, the
protocol is fast enough for standard clinical brain tumour
imaging and is also fast enough for use in more time-stringent
applications, such as sub-acute stroke.

We emphasise the fact that we use a diffusion acquisition
based on the scanner’s ‘trace images’, which we will refer to in the
following as a ‘trace-based design’. The ‘trace acquisition’ is
based on the combination on the scanner of only three
orthogonal diffusion weightings, and thus very seldom
corresponds to the rigorously determined tensor-derived trace.
It is, however, a diffusion measure commonly used in clinical
practice and a reasonable first approximation of the proper trace
in regions with low anisotropy.

We assessed the performance of the proposed method by
comparing its results to those obtained from standard perfusion
and non-Gaussian diffusion measurements. Preliminary results
have been reported in (23–25).

Presently, no single MRI-derived parameter appears powerful
enough to rival the specificity of positron emission tomography
(PET) to identify active tumour tissue. An MRI-based quantitative,
multiparametric approach to tumour characterisation might,
however, achieve this goal. The present protocol is able to provide
four parameters relevant to tumour environment (f and f.D*, as
blood volume and flow surrogates, and apparent diffusivity and
Frontiers in Oncology | www.frontiersin.org 3
kurtosis, as microstructural probes) and can contribute to defining
the unique quantitative multiparametric signature of each tumour.
This could be particularly relevant for diagnosis, staging and
treatment planning.
MATERIALS & METHODS

In Vivo Imaging
A cohort of 17 brain tumour patients was considered in this
study (seven female, mean ± std age 46.2 ± 12.4 years old).
Ethical approval was obtained from the University Hospitals of
Aachen, Cologne and Düsseldorf in accordance with the
requirements of the local ethics committees. Prior to scanning,
written, informed consent was given by the patients. Patients
underwent simultaneous PET and MRI measurements after
referral to our centre from the above-mentioned hospitals. The
measurements were acquired in a hybrid Siemens (Erlangen,
Germany) scanner, based on a 3T Tim-TRIO MR system with a
BrainPET insert (26).

The MRI dataset consisted of standard clinical protocols, such
as high-resolution, volumetric T1-weighted pre (T1) and post
gadolinium contrast (T1c), high-resolution volumetric T2-
weighted (SPACE), and T2-weighted with fluid attenuation
(FLAIR), and dynamic susceptibility contrast (DSC). Since the
PET acquisition required patients to be in the scanner for 50
minutes, it was possible to include research protocols during the
simultaneous MRI imaging, as well as a standard, clinically
FIGURE 1 | Signal decay vs. b-value between 0 and 2000 s/mm2. The lines represent a fitted curve taking into account the mono-exponential (red dashed),
the IVIM bi-exponential (green dash dotted), the kurtosis expansion (blue dotted), and the combined IVIM/NG-diff (green line). The influence of IVIM is apparent in
the lower b-value range (0-200 s/mm2) (inset), while at the higher b-values (1500-3000 s/mm2), the signal deviates from the mono-exponential, exhibiting evidence
of kurtosis.
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oriented examination. These research protocols included
quantitative MRI scans, such as diffusion kurtosis imaging
(DKI), multi-echo gradient echo (meGRE), further described
in (27), as well as the proposed protocol (IVIM/NG-diff).

Relevant imaging parameters for the proposed protocol
include: spin-echo echo planar imaging (SE-EPI) with TR/TE =
5100/92 ms, 3 orthogonal diffusion directions and 16 b-values (0,
50, 100, 200, 300, 500, 700, 1000, 1200, 1500, 1800, 2000, 2200,
2500, 2700 and 3000 s/mm2), with a voxel size of 2x2x2 mm3, 24
slices with a 1.4 mm slice gap, for a field-of-view (FOV) of
220x156 mm2, partial Fourier coverage of 5/8, iPAT of 2, and
bandwidth of 909Hz/pixel, totalling an acquisition time of 4 mins
19 secs.

For comparison, a DKI protocol was adapted from one of
clinical value used at our institute for measurements on brain
tumour patients. To reduce distortions and echo time, the
protocol was modified slightly to match the FOV and the
orientation of the trace-base acquisition and the bandwidth
was increased to the limit allowed by duty cycle constraints.
Both protocols were based on standard Siemens sequences.

The DKI dataset was acquired with the following parameters:
SE-EPI with TR/TE = 4000/115 ms, BW=1299Hz/pixel, no iPAT,
3 non-zero b-values (1000, 2000 and 3000 s/mm2), each with 30
non-colinear diffusion directions spread around the half-sphere.
A FOV of 220x160 was used, with the same voxel size, number of
slices, slice gap, and Fourier coverage as the proposed protocol.
The acquisition time amounted to 6 mins 01 secs.

For perfusion assessment, a contrast-enhanced DSC T2*-
weighted sequence was acquired. Single-shot EPI was used
with TR/TE = 1500/32 ms, a voxel size of 1.79x1.79x5 mm3, 20
slices with a 1.75 mm slice gap and an image matrix of 128×128.
The contrast agent (GdDTPA) was injected with a power injector
(Injektron 82 MRT, Medtron AG), via an 18- to 20-gauge
intravenous catheter at a dose of 0.1 mmol/kg of bodyweight
(flow rate, 5 mL/s). Images were acquired continuously for 1 min.

Simultaneously with the MR protocols, amino acid O-(2-18F-
fluoroethyl)-L-tyrosine (18F-FET) PET was acquired. The amino
acid was produced via nucleophilic 18F fluorination with
radiochemical purity above 98%, specific radioactivity greater
than 200 GBq/mol, and a radiochemical yield of around 60% (28).

Image Processing
Flowcharts of the complete image processing pipelines can be
found in Figure 2A.

To ensure similar data quality for all patients included in this
study, the first step included a visual quality check on all data
sets used.

Noise reduction was then performed on the multi-contrast
diffusion data obtained from either the DKI or from the trace-
based protocol, using a PCA-based algorithm (29). Its main
features have been previously described for different types of
multi-contrast acquisitions (30, 31) and are similar to those in
the method proposed by (32), albeit with some differences –
see Appendix.

For the data acquired with the DKI protocol, motion and
eddy current artefacts were corrected using FSL’s eddy (33) and a
Frontiers in Oncology | www.frontiersin.org 4
Gaussian filter with full-width-half-maximum and a kernel size
of 1.5 and 3x3x3 voxels, respectively, was applied as a final step.

The data from the proposed protocol were saved directly in
trace form. Therefore, due to the lack of information on the
directionality of the diffusion weighting, motion and eddy
current compensation was performed using FSL’s eddy_correct
(34). A Gaussian filter with the same properties as that used for
the DKI data was subsequently applied. Finally, the noise floor
was removed from the images by subtracting the average signal
of the voxels in the image corners.

Use of parallel imaging iPAT=2 for the trace-based protocol
helped with reducing the susceptibility-induced distortions in the
acquired images, thus the performance of the two different
algorithms (more powerful eddy and more basic eddy_correct)
on the two different data sets led to very comparable results.

Diffusion Data Fitting
The DKI data were used to estimate both the diffusion and
kurtosis tensors and several rotationally invariant metrics,
including mean diffusivity (MD), mean kurtosis (MK) and
fractional anisotropy (FA), using United DKI (35).

In contrast, the IVIM/NG-diff data in the same b-value range
were fit using three different approaches: a sequential fit, a
simultaneous fit, and a region of interest fit.

The sequential fit obtains Dapp from Eq. 2, using the
assumption that the IVIM effect is negligible at b<200 s/mm2.
Afterwards, f and D* are sequentially determined, using the
values previously obtained. Finally, Kapp is estimated using a
constrained variation of the Nelder-Mead simplex method (36),
as implemented in MATLAB (R2014a, MathWorks,
Massachussets, USA) fminsearch function, applied to Eq. 3. For
greater detail, please see Appendix.

The second fitting approach (simultaneous fit) aimed to
estimate all four parameters simultaneously (f, D*, Dapp, and
Kapp) using the same constrained fitting routine based on the
Nelder-Mead simplex algorithm. The target equation was then
set to the following:

S(b)
S(0)

= f : e−b :D
∗
+ (1 − f )e−b :Dapp+1

6 : b
2 :D2

app :Kapp (4)

The constraints were used both in an attempt to mitigate the
effects of local minima and to guarantee that each parameter
belonged to a biologically plausible interval, based on existing
literature. The perfusion fraction, f, was set to be between 0 and
0.3, D* between 0.004 and 0.05 mm2/s (12), Dapp between 0.0001
and 0.003 mm2/s, and Kapp between 0 and 3 (37).

Both the sequential fit and simultaneous fit routines were
conducted on a voxel-by-voxel (single voxel fit) basis and on a
kernel basis (neighbourhood fit). The kernel used was an in-slice
3x3 neighbourhood around the central voxel, where the signal of
the nine voxels was averaged and then fitted.

The third fitting approach used averaged signals from specific
tissue classes (see Tissue Classes section). The averaged signal was
fitted to Eqs. 1 (mono-exponential), 2 (kurtosis expansion), 3
(IVIM bi-exponential) and 4 (IVIM/NG-diff). This was done in
order to investigate the necessity of including terms describing
September 2021 | Volume 11 | Article 554205
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non-Gaussian diffusion in the fit when the signal-to-noise ratio
(SNR) is high enough to unequivocally distinguish between
models. The fitting parameters were obtained using the
simultaneous approach, i.e. for each equation, all unknowns
were determined using the same non-linear constrained fitting
routine as in the simultaneous fit. Additionally, sequential fitting
was also performed when fitting Eq. 4.

The fitting routines were performed on a MacBook Pro (early
2015), running Mac OSX 10.14.1 Mojave, with an Intel Core i5
2.7GHz processor and 16GB of RAM.
Frontiers in Oncology | www.frontiersin.org 5
Miscellaneous Processing
DSC data were processed using in-house built routines, as described
in (38). The tissue concentration time curve was deconvoluted from
the measured signal using singular value decomposition. The
arterial input function was automatically derived based on time-
to-peak and the signal fitting was corrected for leakage (39). Finally,
maps of CBV and CBF were extracted.

PET data were reconstructed using a 3D filtered back-
projection algorithm and later expressed as standard uptake
value (SUV) (40).
A

B

FIGURE 2 | (A) Flowcharts of the processing steps leading to the computed maps. (B) Flowcharts of the processing steps leading to the computed tissue masks.
September 2021 | Volume 11 | Article 554205
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Finally, all of the resulting maps were warped to the DKI
space using affine transformations determined by SPM12 (41).
Visual quality control was carried out at each step.

Tissue Classes
The performance of this new protocol was assessed in the context
of different underlying microstructures. For each subject, masks
were generated for each of the five tissue classes considered as
described below and as shown in the flowcharts of Figure 2B.

First, volumes from each modality acquired were manually
divided into the hemisphere containing the tumour (ipsilateral)
and the normal-appearing hemisphere (contralateral to the
tumour). Information from the clinical protocols, DKI, and
PET was included.

Normal-appearing grey (GM) and white (WM) matter
probability maps were obtained using the meGRE images and
SPM12 united segmentation (41). From these probability maps, a
threshold of 98% was applied to generate the GM and WM
masks. These masks were then warped to the DKI space, also
using affine transformations.

The WM class was further divided into two. From the DKI
data of the standard protocol, the FA maps were used to define
two classes, low FA (0.05<FA<0.3), and high FA (FA>=0.3).
These were then used to divide the WM mask into WM-lowFA
and WM-highFA. Given the structure of white matter on a
microscopic level, WM-lowFA includes voxels where fibre
arrangements are complex, e.g. crossing or fanning fibres,
mimicking isotropic diffusion at the voxel level, whereas WM-
highFA refers to voxels where the fibres are very well aligned,
resulting in highly anisotropic diffusion.

Active tumour tissue was identified using a high-SNR data set
obtained from the sum of the last four frames of the dynamic 18F-
FET scans. The tracer uptake in the WM of the hemisphere
contralateral to the tumour was defined as normal tissue value.
The voxels in the summed data set with an intensity equal or
higher than 1.6x that of normal tissue were considered to be
active tumour (40).
Frontiers in Oncology | www.frontiersin.org 6
Oedema masks were obtained using the morphological data
(T1, T1c, SPACE, and FLAIR) on the ANTsR framework (42).
The algorithm relies on random forests to perform the
segmentation and was trained using the data from the BRATS
2015 challenge, available from the Sicas Medical Image
Repository (www.smir.ch) (43).

This process led to the creation of five masks (GM, WM-
lowFA, WM-highFA, tumour and oedema), which, due to
different resolutions, point spread functions and thresholding
used for the different acquisition methods, might not be mutually
exclusive. Mask overlap was then resolved in the following way: if
a voxel belonged simultaneously to tumour and oedema masks, it
was removed from the oedema mask; if a voxel belonged
simultaneously to more than one mask of healthy appearing
tissue, the voxel was also removed from the analysis.

Simulations
Simulations were conducted to assess the influence of noise,
tissue-specific parameters and fitting procedure in the estimation
of the IVIM/NG-diff metrics. All simulations were implemented
in MATLAB.

Firstly, using the same b-value array used in the in vivo
acquisition and the results of the tissue class-based fit (see Results
section Table 1), a theoretical signal was generated from Eq. 4.
Then, five different levels of noise were added to the theoretical
signal, such that the SNR ranged between 20 and 60 in
increments of 10. Finally, each SNR level was fitted 10,000
different times, each iteration with independently drawn noise.
The accuracy and precision of the results given by each fitting
procedure were then assessed.

Statistical Analyses
When comparing in vivo sequential and simultaneous fitting
results, Spearman’s r correlation coefficients were obtained
between all the IVIM/NG-diff metrics (f, f.D*, Dapp, and Kapp)
and their canonical counterparts (CBV, CBF, MD, and
MK, respectively).
TABLE 1 | Subject level averages for the tissue class fitting routines to the IVIM/NG-diff model (Eq. 13). Significant differences between the fits are found in f and Dapp in

all the classes, and in D* in GM, (p-value < 0.05).

Simultaneous Fit

GM WM-lowFA WM-highFA Oedema Tumour

f 0.13 ± 0.04 0.03 ± 0.02 0.03 ± 0.01 0.03 ± 0.02 0.01 ± 0.01
D*
(x10-3 mm2/s)

8.43 ± 2.65 21.62 ± 12.52 23.02 ± 13.84 28.98 ± 14.98 29.53 ± 17.79

Dapp

(x10-3 mm2/s)
1.12 ± 0.12 0.94 ± 0.05 0.88 ± 0.04 1.42 ± 0.22 1.38 ± 0.41

Kapp 0.83 ± 0.04 1.03 ± 0.04 1.12 ± 0.05 0.74 ± 0.11 0.72 ± 0.22
Sequential Fit

GM WM-lowFA WM-highFA Oedema Tumour
f 0.20 ± 0.04 0.10 ± 0.02 0.10 ± 0.01 0.14 ± 0.04 0.11 ± 0.04
D*
(x10-3 mm2/s)

12.16 ± 1.46 17.63 ± 3.89 17.69 ± 2.63 19.96 ± 9.30 25.92 ± 10.95

Dapp

(x10-3 mm2/s)
0.86 ± 0.06 0.71 ± 0.03 0.66 ± 0.02 1.05 ± 0.15 1.06 ± 0.32

Kapp 0.83 ± 0.03 1.02 ± 0.04 1.11 ± 0.05 0.73 ± 0.10 0.73 ± 0.22
Se
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In order to determine the value of the added terms to the
mono-exponential representation in the description of the signal
decay, corrected Akaike information criteria (AICc) (44) were
obtained for the fits performed at the tissue class level. Lower
AICc shows an improved relationship between the residuals of
the fit and the information gain, i.e., models that represent the
data better will have a comparatively smaller AICc.

A comparison between the means of the metrics derived from
the sequential and simultaneous tissue class level signal fitting to
Eq. 4 was performed using the Wilcoxon signed-rank test. This
test was also performed to assess differences in the means of the
simulation results between both fits at the different SNR levels.

The reproducibility of the fits was assessed by calculating the
coefficient of variation (CV) for each parameter obtained from
the simulations.

All statistical analysis was carried out in MATLAB.
Hypothesis testing was conducted at a significance value of
95% (p-value < 0.05).
RESULTS

Noise Reduction
In order to demonstrate the effects of denoising, Figure 3
shows a representative slice taken from a brain tumour
Frontiers in Oncology | www.frontiersin.org 7
patient acquired with both DKI and IVIM/NG-diff
protocols. From left to right, the images depict a slice at b =
3000 s/mm2, for both acquisitions; D*, f, Dapp, and Kapp for the
simultaneous fit. The signal decay of a WM-highFA voxel is
also plotted against b-value, for the noisy (red) and denoised
images (blue).

The singular value decomposition of the diffusion signal
acquired in either protocol was found to be very stable across
patients – see Supplementary Figure 1. Following confirmation
by visual inspection, all components with a singular value below
the value determined by this threshold were assigned to noise/
artefacts and discarded.

In Vivo Imaging
The mean ± standard deviation computation time of the fitting
routines was 4.6 ± 0.8 ms for the sequential fitting and 27.7 ± 9
ms for the simultaneous fitting, per voxel.

Figure 4 shows maps of the five parameters estimated from
the proposed protocol, as obtained by the simultaneous fit (upper
block) and by the sequential fit (middle block), together with
their canonical counterparts (lower block), on a representative
patient and slice. The corresponding FET-PET slice is also shown
in the bottom left corner. Additional patients are shown in
Supplementary Figures 2–7.
FIGURE 3 | Effect of the denoising algorithm on the images and signal. The images of the top row are from the DKI acquisition while those of the bottom row are
from the proposed protocol. All images are shown without the application of a gaussian filter. The plot under the images shows the signal decay of a white matter
voxel before (blue) and after (red) denoising. The influences of the denoising are more apparent as the b-value increases.
September 2021 | Volume 11 | Article 554205
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The tissue class fitting results are summarised in Table 2,
which shows the mean ± standard deviation metric values across
all subjects for both fitting routines. The IVIM parameters are
smaller when obtained from the simultaneous fit, as compared to
those from the sequential fit, whereas the tissue Dapp is larger.
This is significant for f and Dapp in all tissue classes, and for D* in
GM (Wilcoxon signed-rank test, p-value < 0.05).

Table 2 summarises the mean ± standard deviation of the
IVIM/NG-diff metrics per tissue class per fit across all subjects, as
well as their canonical counterparts.

Figure 5 shows the voxel-by-voxel ratio histograms between
the trace metrics and their respective tensor counterparts.

The Spearman r correlation values are summarised in
Table 3. IVIM and DSC metrics showed weak correlations
when the fits were performed using the simultaneous fit
Frontiers in Oncology | www.frontiersin.org 8
approaches (Spearman r ≈ 0.15). This is particularly evident
when using the voxel-by-voxel fit, and even weaker
correlations (Spearman r < 0.15) occur when using the
sequential fit. The highest levels of correlations between
IVIM and DSC are seen in the pathological tissues, with a
Spearman’s r of around 0.2 in oedema when using the
simultaneous fit.

Diffusion metrics showed strong correlations overall
with the DKI-derived parameters, with the lowest being
WM-highFA using both sequential and simultaneous fit
(sequential fit: diffusivity Spearman r=0.48 ± 0.10, kurtosis
Spearman r=0.49 ± 0.11; simultaneous fit: diffusivity Spearman
r=0.50 ± 0.10, kurtosis Spearman r=0.45 ± 0.11), and the highest
being oedema (diffusivity Spearman r=0.89 ± 0.05; kurtosis
Spearman r=0.84 ± 0.14).
FIGURE 4 | Computed maps with the proposed protocol and all fitting approaches for a representative subject. The canonical maps are shown in the last row. All
scales within each metric are the same.
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Figure 6 shows data from two tumour patients (a low-grade
and a high-grade glioma), together with scatter plots, correlating
the perfusion metrics, with tumour size as co-variate.

Simulations
Results from the simulations are summarised in Figures 7–10,
depicting the plots of the mean and standard deviation of the values
obtained for each of the metrics, f, D*, Dapp, and Kapp respectively, at
each SNR level.

A broader range of considerations regarding the effects of sampling
scheme, neighbourhood averaging and ROI-based averaging are
included in Supplementary Material: Additional Simulations.

A more comprehensive display of the simulation results can
be found in Supplementary Table 1. Here the means ± standard
deviations of the distributions are shown, as well as the
reproducibility of the metrics through means of CV and their
relative error.

To summarise Supplementary Table 1, the precision of the
parameter estimation increases with SNR (decrease in CV) for all
metrics. In general, the simultaneous fit produces more precise
results than sequential fitting, except for Kapp. Accuracy also
increases with SNR and the highest accuracies were seen when
estimating Kapp using the sequential approach.

For comparison to the SNR range of the simulations, the
mean ± standard deviation SNR of the acquired non-diffusion-
weighted images was 51 ± 8 for the trace-based protocol and 60 ±
6 for the DKI protocol, ranging from 35 to 69.

For the Wilcoxon signed-rank results, the means of the
distributions of the metrics were statistically different between
the sequential and simultaneous fits across tissues and SNR
levels, except for Kapp.
DISCUSSION

A clinically-aimed protocol for the simultaneous determination
of IVIM and non-gaussian diffusion parameters is presented in
this work. The protocol is based on the acquisition of trace-based
diffusion data across a wide range of b-values in a manner
intended to compensate for SNR loss at increasing b-values.

When using the “Trace” option for diffusion weighting with
the manufacturer’s software, the geometric mean of three images
acquired with orthogonal diffusion weighting directions is
calculated on the scanner and output without allowing access
to the original images. This is a commonly used contrast in
clinical practice, usually with diffusion weighting of 1000 s/mm2,
and our protocol has the advantage of including this widely used
information. However, this is not rigorously speaking the trace of
the diffusion tensor, except for fibres which are incidentally
aligned with one of the orthogonal directions, or for voxels
with isotropic diffusion on a macroscopic level. The latter is the
picture generally used for IVIM (10). Measuring 6 directions
instead of 3 and using a DTI formalism would allow us to derive
a more reliable measure of the trace for voxels containing
oriented fibres (high FA). However, this would double the
measurement time and still be insufficient for a proper
determination of the kurtosis tensor. Indeed, one can make the
T

A
B
LE

2
|
M
ea

n
±
st
an

da
rd

de
vi
at
io
ns

of
al
lp

ar
am

et
er
s
fo
r
ea

ch
fi
tti
ng

ro
ut
in
e
an

d
tis
su

e
cl
as
s
ac

ro
ss

al
ls
ub

je
ct
s.

f
f.
D
*
(x
10

-4
m
m

2
/s
)

D
*
(x
10

-3
m
m

2
/s
)

D
a
p
p
(x
10

-3
m
m

2
/s
)

K
a
p
p

G
M

W
M
-

lo
w
FA

W
M
-

hi
g
hF

A

O
ed

em
a

T
um

o
ur

G
M

W
M
-

lo
w
FA

W
M
-

hi
g
hF

A

O
ed

em
a

T
um

o
ur

G
M

W
M
-

lo
w
FA

W
M
-

hi
g
hF

A

O
ed

em
a

T
um

o
ur

G
M

W
M
-

lo
w
FA

W
M
-

hi
g
hF

A

O
ed

em
a

T
um

o
ur

G
M

W
M
-

lo
w
FA

W
M
-

hi
g
hF

A

O
ed

em
a

T
um

o
ur

S
im

ul
ta
ne

o
us

Fi
t

0.
13 ±

0.
02

0.
06

±
0.
01

0.
05

±
0.
01

0.
03

±
0.
02

0.
06

±
0.
03

21
.4
0

±
6.
08

14
.9
0

±
5.
24

13
.9
1

±
1.
88

9.
65

±
5.
29

13
.8
0

±
3.
25

26
.3
4

±
6.
35

37
.5
1

±
4.
98

41
.1
5

±
4.
96

36
.2
8

±
9.
91

37
.0
4
±

8.
34

0.
90 ±

0.
23

0.
88

±
0.
05

0.
85

±
0.
04

1.
20

±
0.
26

1.
20

±
0.
29

0.
80 ±

0.
03

1.
00

±
0.
05

1.
05

±
0.
05

0.
68

±
0.
14

0.
66

±
0.
12

S
eq

ue
nt
ia
lF

it
0.
14 ±

0.
01

0.
11

±
0.
01

0.
10

±
0.
01

0.
09

±
0.
02

0.
12

±
0.
03

11
.4
3

±
0.
96

9.
11

±
0.
89

8.
85

±
0.
80

6.
82

±
1.
84

9.
70

±
1.
70

8.
37 ±

1.
18

8.
38

±
0.
73

8.
57

±
0.
78

7.
52

±
1.
33

8.
65

±
1.
00

0.
74 ±

0.
19

0.
69

±
0.
03

0.
66

±
0.
03

0.
97

±
0.
19

0.
97

±
0.
21

0.
79 ±

0.
03

0.
99

±
0.
04

1.
06

±
0.
05

0.
70

±
0.
13

0.
69

±
0.
12

N
ei
g
hb

o
ur
ho

o
d

S
im

ul
ta
ne

o
us

Fi
t

0.
14 ±

0.
03

0.
07

±
0.
02

0.
05

±
0.
01

0.
03

±
0.
02

0.
06

±
0.
03

19
.6
3

±
5.
95

12
.4
8

±
3.
19

10
.9
7

±
2.
05

7.
98

±
4.
79

11
.7
0

±
3.
04

20
.7
8

±
6.
26

31
.8
0

±
6.
47

37
.2
4

±
6.
73

36
.9
8

±
11

.4
4

36
.7
3

±
10

.8
4

0.
92 ±

0.
24

0.
91

±
0.
05

0.
87

±
0.
04

1.
26

±
0.
22

1.
24

±
0.
22

0.
82 ±

0.
04

0.
99

±
0.
04

1.
06

±
0.
05

0.
69

±
0.
13

0.
70

±
0.
12

N
ei
g
hb

o
ur
ho

o
d

S
eq

ue
nt
ia
lF

it
0.
15 ±

0.
01

0.
12

±
0.
01

0.
10

±
0.
01

0.
10

±
0.
02

0.
13

±
0.
03

11
.9
8

±
0.
97

8.
73

±
1.
12

7.
98

±
0.
92

6.
73

±
1.
73

9.
68

±
1.
78

8.
08 ±

1.
17

7.
42

±
0.
83

7.
48

±
0.
82

7.
11

±
1.
34

8.
00

±
1.
07

0.
74 ±

0.
19

0.
70

±
0.
03

0.
67

±
0.
03

1.
00

±
0.
21

1.
00

±
0.
21

0.
81 ±

0.
03

0.
98

±
0.
04

1.
05

±
0.
04

0.
70

±
0.
13

0.
70

±
0.
11

C
an

o
ni
ca

l
M
et
ri
cs

18
.4
9

±
2.
37

11
.7
0

±
2.
30

9.
88

±
1.
71

7.
47

±
4.
64

12
.7
0

±
5.
76

17
.0
0

±
8.
34

10
.3
4

±
5.
10

8.
62

±
4.
23

9.
21

±
4.
47

16
.9
4

±
4.
11

1.
13 ±

0.
22

0.
91

±
0.
06

0.
85

±
0.
05

1.
31

±
0.
30

1.
32

±
0.
24

0.
89 ±

0.
06

1.
21

±
0.
08

1.
35

±
0.
06

0.
79

±
0.
16

0.
81

±
0.
18

G
M

W
M
-

lo
w
FA

W
M
-

hi
g
hF

A
O
ed

em
a

T
um

o
ur

G
M

W
M
-

lo
w
FA

W
M
-

hi
g
hF

A
O
ed

em
a

T
um

o
ur

G
M

W
M
-

lo
w
FA

W
M
-

hi
g
hF

A
O
ed

em
a

T
um

o
ur

G
M

W
M
-

lo
w
FA

W
M
-

hi
g
hF

A
O
ed

em
a

T
um

o
ur

C
B
V
(m

L/
10

0m
L)

C
B
F
(m

L/
10

0m
L/
m
in
)

M
D

(x
10

-3
m
m

2
/s
)

M
K

D
S
C

D
K
I

Th
e
pa

ra
m
et
er
s
fro

m
th
e
pr
op

os
ed

pr
ot
oc

ol
ar
e
al
ig
ne

d
w
ith

th
ei
r
re
sp

ec
tiv
e
co

un
te
rp
ar
ts

fro
m

D
S
C

an
d
D
K
I.
September 2021 | Volume 11 | Article 554205

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Loução et al. Fast Protocol for Multiparametric Diffusion
argument that 6 directions are insufficient for a proper
characterization of even the DTI tensor (45). We have instead
opted for sampling an extensive number of diffusion weightings
while fully sacrificing the directional information.

The aim of the comparison kurtosis protocol was to determine
how large the differences are between the ‘trace-based’ fit and a
commonly used diffusion kurtosis protocol, which includes 30
Frontiers in Oncology | www.frontiersin.org 10
directions and two non-zero b-values. The agreement between
Dapp and Kapp derived in our model and MD and MK derived
from the full DKI acquisition and tensor modelling is good (see for
example Figure 5), especially so for tumour and oedema regions.
We conclude that the ‘trace-based’ acquisition, even if imperfect
regarding spherical invariance, appears sufficient to characterize
the salient features of diffusion in brain tumours.
FIGURE 5 | Ratio histograms of Dapp/MD and Kapp/MK. The vertical orange line indicates a ratio of 1.
TABLE 3 | Spearman r correlation values.

f vs. CBV

GM WM-lowFA WM-highFA Oedema Tumour

Simultaneous Fit 0.15 ± 0.06 0.13 ± 0.06 0.07 ± 0.05 0.21 ± 0.21 0.17 ± 0.09
Sequential Fit 0.15 ± 0.06 0.09 ± 0.06 0.08 ± 0.05 0.11 ± 0.31 0.15 ± 0.10
Mean Simultaneous Fit 0.12 ± 0.06 0.17 ± 0.08 0.11 ± 0.08 0.21 ± 0.18 0.18 ± 0.09
Mean Sequential Fit 0.13 ± 0.07 0.14 ± 0.08 0.12 ± 0.06 0.15 ± 0.30 0.18 ± 0.13

f.D* vs. CBF
GM WM-lowFA WM-highFA Oedema Tumour

Simultaneous Fit 0.15 ± 0.05 0.10 ± 0.05 0.06 ± 0.03 0.12 ± 0.25 0.17 ± 0.12
Sequential Fit 0.13 ± 0.04 0.09 ± 0.02 0.09 ± 0.05 0.12 ± 0.13 0.15 ± 0.08
Mean Simultaneous Fit 0.16 ± 0.05 0.15 ± 0.06 0.10 ± 0.05 0.15 ± 0.26 0.22 ± 0.08
Mean Sequential Fit 0.15 ± 0.06 0.14 ± 0.04 0.10 ± 0.06 0.14 ± 0.25 0.20 ± 0.13

MD vs. Dapp

GM WM-lowFA WM-highFA Oedema Tumour
Simultaneous Fit 0.64 ± 0.10 0.50 ± 0.09 0.46 ± 0.06 0.83 ± 0.07 0.80 ± 0.09
Sequential Fit 0.68 ± 0.09 0.54 ± 0.10 0.51 ± 0.08 0.84 ± 0.05 0.79 ± 0.09
Mean Simultaneous Fit 0.68 ± 0.09 0.56 ± 0.13 0.52 ± 0.08 0.86 ± 0.05 0.80 ± 0.09
Mean Sequential Fit 0.70 ± 0.08 0.61 ± 0.11 0.57 ± 0.08 0.86 ± 0.05 0.80 ± 0.09

MK vs. Kapp

GM WM-lowFA WM-highFA Oedema Tumour
Simultaneous Fit 0.44 ± 0.12 0.53 ± 0.08 0.42 ± 0.11 0.68 ± 0.23 0.58 ± 0.15
Sequential Fit 0.70 ± 0.09 0.64 ± 0.10 0.49 ± 0.14 0.83 ± 0.12 0.68 ± 0.20
Mean Simultaneous Fit 0.52 ± 0.12 0.60 ± 0.09 0.49 ± 0.12 0.77 ± 0.19 0.61 ± 0.22
Mean Sequential Fit 0.76 ± 0.07 0.70 ± 0.10 0.55 ± 0.13 0.85 ± 0.16 0.73 ± 0.18
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Since the ‘trace-based design’ has the advantage of including
the clinically used ‘trace acquisition’ at b=1000 s/mm2, including
it in the oncology routine would also be compatible with e.g.
retrospective large-number patient evaluations based on
common clinical protocols.

Other studies have started investigating faster diffusion
routines (46, 47), and have shown their successful application to
brain tumours (48). However, these acquisitions are tailored to
determine the mean diffusivity and kurtosis alone. As there is
growing interest in the multiparametric characterisation of
pathological tissue in a variety of pathologies (49–54), the
proposed protocol is presented in the context of an effort to
acquire multiparametric, clinically relevant information in a short
amount of time. Compared to the protocols in (46, 47), our
proposed protocol has the advantage of enabling the analysis of
IVIM metrics, at the cost of only a small increase in
acquisition time.

One possible way to use these parameters simultaneously to
inspect tissue properties is demonstrated in Supplementary
Figure 8. The combination of the multiple parameters can be
used to assess different pathological signatures, as shown in the
radial plot in Supplementary Figure 8.

Design of Acquisition and Denoising
It is well known that diffusion metrics like Dapp and Kapp are
directionally dependent (46). However, FA in tumour tissue is
greatly reduced (55), suggesting that the directional dependency
decreases. This allows for the replacement of a shell-based
Frontiers in Oncology | www.frontiersin.org 11
acquisition with a faster, trace-based one, at least when the
main goal is to characterise tumour properties.

Given the sensitivity of all the fit parameters to noise, and
the fact that we aimed to describe three diffusion regimes by
fitting their properties simultaneously, noise reduction in the
diffusion data represents an important step in our approach to
mapping tissue properties. One benefit of such an extensive
multi-b-value protocol is that it makes it possible to exploit the
redundancy of the acquired diffusion weightings to reduce noise
in the data acquired with either the proposed or the standard
DKI protocols. We address this redundancy briefly in
the Appendix.

Denoising is achieved here by using PCA on the whole data
set and then discarding components identified by several criteria
as noise. This step has been demonstrated to improve the quality
of the fit and its stability in the proposed method, as shown
in Figure 3.

Simulations
For low SNR levels, the averages of the IVIM metrics calculated
from the simultaneous and the sequential fits differ to some
degree, with the sequential fit being overall further from the
ground truth. The exception to this is in the case of GM, as
evidenced in Figure 7.

As SNR increases, a trend in the results of f emerges. Perfusion
fraction calculated from sequential fit increases, moving away
from the ground truth, while f from the simultaneous fit tends to
converge to the ground truth.
FIGURE 6 | (A) Representative slices of a low-grade glioma (LGG) patient and a high-grade glioma (HGG) patient. FET-PET information is shown on the left and
the corresponding slices of the maps from the proposed protocol following the mean neighbourhood fit are shown beside it. The tumour mask is outined in white.
(B) Scatter plots of DSC-derived perfusion parameters cerebral blood volume (CBV) and cerebral blood flow (CBF), and the corresponding quantities derived from
the present protocol (f and f.D*, respectively). An ROI-based fitting approach has been used. The size of the tumour ROI is included as a covariae when determining
the strength of the correlation.
September 2021 | Volume 11 | Article 554205
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In contrast, in Figure 8, D* is shown to converge towards the
ground truth with an increase in SNR, regardless of fit method.

Reproducibility of the IVIM metrics is generally low. This is
exhibited by the high coefficients of variation and agrees with
observations from the literature (56, 57).

The highest reproducibility is shown by Dapp for both variants
of the fit and is very similar at all SNR levels for the simultaneous
fit (CVDapp@SNR20_SimFit = 24%, CVDapp@SNR60_SimFit = 17%). Bias
was also seen in Dapp when calculated with the sequential fit
(Figure 9), which is confirmed by the in-vivo observations.
Conversely, the simultaneous fit does not show this bias, as
Dapp approaches the ground truth with an increase in SNR.

With reference to Kapp, the two approaches are most divergent
at lower SNR, where the simultaneous fit has a broader
distribution than that of the sequential fit. This is evidenced in
Supplementary Table 1 where the coefficient of variation is
shown (CVKapp@SNR20_SimFit = 62%, CVKapp@SNR20_SeqFit = 47%).
Furthermore, the simultaneous fit shows a higher relative error
than sequential fitting (Rel. ErrKapp@SNR20_SimFit = 22%,
Rel. ErrKapp@SNR20_SeqFit = 11%), which is reduced with
increased SNR. Finallly, both fits show a slight underestimation
at lower SNR levels, which is then minimized at higher SNR, as
shown in Figure 10.

It is worth noting that, for an SNR of 1000, the bias in the
sequential fitting of f, D*, and Dapp is still present (results
not shown).
Frontiers in Oncology | www.frontiersin.org 12
A potential cause for its presence is the sampling scheme,
since the addition of extra low b-value information (b<100 s/
mm2) would be beneficial for the proper determination of the
IVIM parameters. However, in our experimental set-up, the
scanner software does not allow for a finer sampling scheme in
the sensitive interval, restricting the increment in b-values to 50
s/mm2.

To summarise, IVIM parameters, especially D*, are not very
reliable even at high SNR. Dapp is most reproducible but retains
some bias. The parameter which is most accurately estimated is
Kapp but it shows lower reproducibility than Dapp at lower
SNR levels.

In Vivo Acquisitions
The performance of the proposed protocol was evaluated by
comparing the parameters derived here to their canonical
counterparts. These metrics were extracted not only at a voxel
level but also as a neighbourhoodfit (averaging of the data in a small
kernel) and whole tissue class level, in order to assess the validity of
the IVIM/NG-diff model at a sufficiently high SNR in vivo.

The protocol proposed here requires a shorter acquisition
time (4min:19s) than the combined acquisitions for DKI
(6min:01s) and DSC (1min) information. This is, however, not
considered to be the main advantage. Indeed, shorter DKI
protocols have been proposed (52, 53) and could be used.
Rather, the proposed protocol provides a more complete
FIGURE 7 | Simulation results plots of f in all tissues at all SNR levels. The geometric figures represent the mean and the vertical bars the standard deviation at each
SNR level.
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characterisation of grading-relevant tumour properties in a short
measurement time, and could be easily extended to cover higher
b-values and characterise the slow diffusion component of tissue.
Instead, the kurtosis formalism is only applicable up to moderate
b-values of 2500s/mm2.

The computation times of the two fitting approaches were
very different, with the simultaneous fit taking nearly seven times
longer than the sequential fit. Fitting the signal in a sequential
manner has the advantage of speed, which is an important factor
for making the fit results directly available on the scanner. When
individual points are used in fitting, the computations are not
very time expensive. The disadvantage of the approach is that by
using very few points, the noise contribution on these few signals
has a larger influence on the results. Simultaneous fitting, on the
other hand, is more stable to noise contributions, to some extent,
by virtue of the algorithm used, but this is at the cost of increased
computational time.

All of the maps derived from voxel-based fits of the signal
were very noisy with regard to the IVIM parameters
(see Figure 5). The neighbourhood-based fit reduced the
spatial variability of the parameters, but the IVIM-based maps
still show little anatomical consistency.

At the tissue class level, the mono-exponential fit shows
relatively high RMSE and AICc (Supplementray Table 2). By
including the additional exponential term of the IVIM, the
Frontiers in Oncology | www.frontiersin.org 13
RMSE drops substantially and exhibits a lower AICc. Including
both the IVIM and the kurtosis expansion further reduces both
the RMSE and AICc. This shows that the combined IVIM/NG-
diff is the best performing model amongst those considered.

These two results combined suggest that, despite the
application of a denoising algorithm and Gaussian smoothing,
the SNR at the voxel level might still be too low for such a
complicated fit model. When averaged over the whole
neighbourhood and especially at the tissue class level, SNR is
increased sufficiently to reveal the necessity of including the
IVIM term in the signal description.

Regarding the IVIM in vivo values, the healthy tissue averages
obtained from the sequential fitting results are higher than those
found in the literature, while tumour tissue average was within
literature range (12, 58, 59) (fWM = 0.03-0.09, fTum = 0.08-0.15).
However, IVIM values obtained using the simultaneous fit
procedure in healthy tissue are within the range of the literature
but are lower than reported literature values in tumour tissue.

The correlation between IVIM and DSC metrics was poor, as
seen in Table 3. This result does not support the hypothesis that
IVIM can act as a surrogate for DSC. In fact, literature showing
correlations between IVIM and DSC metrics in the brain is non-
conclusive (60). Many studies report good correlations between
IVIM and DSC, but some show poor or even negative
correlations (60). This can be a result of many confounding
FIGURE 8 | Simulation results plots of D* in all tissues at all SNR levels. The geometric figures represent the mean and the vertical bars the standard deviation at
each SNR level.
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factors. One of these factors is that IVIM and DSC can be
sensitive to different phenomena, and therefore provide different
information (60).

Whereas the high diffusivity of the additional IVIM term
strongly suggests a vascular and flow-related origin, how well this
additional term corresponds to perfusion is an open question,
which we tried to address by comparison to DSC data.

Despite the fact that the IVIM-derived maps of blood volume
and flow obtained with voxel-based fit methods show little
similarity to the DSC-based counterparts, the correlation
increases substantially when we compare values obtained from
an ROI-based fit. The plots are shown in Figure 6B, and the
correlation coefficients are 0.46 for CBV vs. f.D and 0.13 for CBF
vs. f.D*, changing to 0.40 for CBV vs. f and 0.24 for CBF vs. f.D*
when the tumour size is taken as a covariate. This shows that the
influence of SNR on the precision/accuracy of the fit is still
noticeable even when averaging over several hundred voxels. We
note that IVIM-derived measures of blood flow, which involve
D*, are less reliable than IVIM-derived measures of blood
volume, reflected by f, due to the instability of the fit. The fact
that the correlation between IVIM-derived blood volume and its
DSC counterpart is modest (R=0.4) even when performing an
ROI-based fit suggests that these parameters may indeed be
different, and using both of them together might help
discriminate between tumour types.
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The two contrasts might reflect different aspects of the
vasculature in different ways. IVIM generally refers to blood
microcirculation, but other sources of intravoxel incoherent
motion are possible (10, 11). For example, incoherent intravoxel
dephasing can also appear in larger vessels, considering that laminar
flow (or even more turbulent flow) leads to a distribution of
velocities within the vessel lumen and to an IVIM signal
attenuation which could be much larger than the perfusion-
driven IVIM effect.

Furthermore, DSC results are also not equally sensitive to all
vessel sizes, but emphasize large vessels [(38, 39) and refs within],
such that the discrepancy between the two methods could also be
due to an emphasis of the microvasculature in brain tumours.
Also, the quantitation of DSC is influenced by extravasation of
contrast agent. In this case the CBV is underestimated if T1-
weighted effects induced by increased permeability of tumor
vessels dominate, or overestimated if T2*-weighted effects
dominate [(38, 39) and refs within].

Nevertheless, the estimated IVIM parameters support
the notion that capillary density is higher in GM than in
WM (61), where higher f values are seen in comparison to
the rest of the brain. Regardless of the fit method, the average
IVIM quantities have similar trends to those of their DSC
counterparts across all tissue classes (highest in GM, lowest
in oedema).
FIGURE 9 | Simulation results plots of Dapp in all tissues at all SNR levels. The geometric figures represent the mean and the vertical bars the standard deviation at
each SNR level.
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In oedema, the excess water in the tissue is probably mainly in
the extracellular space (62), contributing to increasing Dapp. The
lower f measured here (Table 1) might reflect this redistribution
of water across the different compartments. In tumour tissue,
vascularisation and perfusion are highly heterogeneous (17).
IVIM parameters are therefore expected to differ considerably
depending on tumour type, stage, and region, which could allow
such parameters to be used in tumour grading. In fact, IVIM
parameters have already been shown to be relevant in the
evaluation of brain tumours (63–65) and breast lesions (66).
This notion is somewhat supported here by the relatively higher
standard deviation in both f and f.D* in the tumour tissue class. A
grading analysis would be very enlightening in this respect but
was precluded here by the small number of patients available for
this study and the heterogeneity of the cohort.

Dapp and Kapp were found to have systematically lower values
than their counterparts from the kurtosis tensor (see Figure 5),
while still showing strong correlations with the DKI-
derived parameters.

This is likely due to the fact that the IVIM fraction present in
S(0) is not accounted for in either the diffusion tensor imaging
(DTI) or the DKI models, whereas we have explicitly corrected
for it in the IVIM/NG-diff model (e.g. Eq. 13). As a result, a
stronger signal decay is described by the DTI/DKI models,
leading to higher MD and/or MK values. Furthermore,
differences in MD and FA obtained from conventional
diffusion tensor imaging (DTI) and DKI have been reported
(67). When the metrics were derived from the Gaussian DTI vs
Frontiers in Oncology | www.frontiersin.org 15
the non-Gaussian DKI tensors, differences of around 8% and
23%, and 1% and 17% were found in MD and FA, respectively
(67). In this study, MD is derived using information from the
signal decay up to a b-value of 2000 s/mm2, by means of the DKI
tensor. This range of b-values is also used by the simultaneous fit
of the proposed protocol. Conversely, Dapp based on the
sequential fit only uses information up to b=1000 s/mm2,
much like a DTI fit would. The differences between the
kurtosis and diffusion fits are also present in this study. In
Figure 5, the histograms of the Dapp/MD ratio show an
increased bias for all tissues when the fit is performed with the
sequential method (similar to DTI) relative to that seen when the
fit is performed with the simultaneous method (similar to DKI).

Another important factor is that the TE used in each protocol
(TEIVIM/NG-diff = 92 ms vs TEDKI = 115 ms) was also slightly
different even though the echo times used were the shortest
allowed by the scanner. The diffusion signal decay is dependent
not only on b-value but also on TE, and longer TEs have been
shown to lead to overestimation of MD (68). The effect of TE is
also an important consideration in the IVIM acquisitions. A
study done on the prostate (69) has shown that both f and D*
significantly increase with an increase in TE. This is due to the
fact that the bi-exponential model of IVIM does not account for
the different T2 values from blood and tissue. This can have
important implications for in vivo brain applications.

A dense sampling scheme with around 20 b-values in the
IVIM-relevant interval was used for simulations in order to
mimic an appropriate experimental setup. Results of the
FIGURE 10 | Simulation results plots of Kapp in all tissues at all SNR levels. The geometric figures represent the mean and the vertical bars represent the standard
deviation at each SNR level.
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simulations support the intuitive picture that a dense sampling
scheme at a clinically achievable SNR is equivalent to sampling
less points but at a higher SNR, obtained for example by
averaging. The latter can be done either by repeating the
acquisition, thus increasing the measurement time, or by
averaging the signal over voxels with similar parameters. A
number of 8 averages produces very similar results as the
simulated dense sampling scheme in terms of fit accuracy and
precision (Supplementary Figures 5, 8 of the Supplementary
Material: Additional Simulations). Thus, the neighbourhood-
based fit, which uses the signal averaged over 9 voxels, is expected
to approximately compensate for the sparsity of the b-value
sampling. This, however, holds only for regions which are
homogeneous over the 3x3 voxel neighbourhood, such as WM.
Even after increasing SNR by neighbourhood averaging, starting
from our experimental initial SNR value of around 50, the
simulations show that the precision and accuracy of the voxel-
based fit of IVIM parameters is modest. The coefficient of
variation for f is around 25% after neighbourhood averaging at
an initial SNR of 50, that for D* is around 50%, while the
systematic deviations are at around 15%. The situation becomes,
however, increasingly better when SNR is increased by averaging
over several hundred or even thousand voxels, which is the case
for the ROI-based approach. Indeed, the tumours included in
this study had active tissue volumes ranging from 108 to 10,611
voxels, as determined from FET-PET. For SNR values obtained
by averaging over a homogeneous region of 1000 voxels with the
perfusion properties of GM, the coefficient of variation for f is at
10%, with negligible systematic deviation, while D* still retains a
coefficient of variation of 30% and bias of 8-10%. The fit becomes
fully reliable in the IVIM regime for averages over 10,000 voxels
or equivalently an SNR of 1500-2000. We reiterate that these very
large SNR values are required for fit reliability of the IVIM
parameters due to the small number of b-values sampled in the
relevant interval in our protocol, and also due to the fact that the
IVIM fraction is small in brain tissue, at the level of 10% or less.
For an organ with a substantially higher perfusion fraction, for
example 30%, the fit precision/accuracy would improve by
roughly a factor 3 with the same sampling scheme and SNR, as
shown by the simulations.

Limitations
The bias observed in the IVIM quantities obtained by
simulations points towards a shortcoming in the fitting and/or
sampling procedures. The determination of Dapp using the slope
of the logarithm of the signal in the Gaussian diffusivity range is
impacted by which b-values are included (70). In this study, we
used a slope between b1 = 500 s/mm2 and b2 = 1000 s/mm2,
which was considered to offer the largest dynamic range for
signal attenuation due to diffusion in tissue and the lowest
influence from IVIM effects.

The number of b-values acquired in the IVIM regime is smaller
than those often used in the literature (12, 58, 59). Since the
protocol is meant to be used in a clinical context with minimal
changes to pre-existing sequences, the b-values chosen were limited
by the manufacturer’s defaults: minimum b-value of 0 s/mm2,
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minimum increment of 50 s/mm2. However, this leads to too few
data points with which to perform a proper fit of the IVIM signal.
This limitation is especially true when trying to determine D*.

Partial-volume effects were not considered in our assessment
of tissue class diffusion parameters. A voxel size of 2x2x2 mm3, as
used here, can lead to some voxels containing more than one
tissue class and can bias the estimated diffusion parameters for
each class (71). Inclusion of mixed tissue classes in the
simulations can help identify the degree to which the proposed
protocol and processing routines are affected by this effect.

Since the data of the proposed protocol are saved in trace form,
state-of-the-art routines like eddy could not be run. Instead, eddy
current correction had to be performed with eddy_correct, which
has been demonstrated to be outperformed by eddy (72). If the
directional data from the proposed protocol had been saved
individually, eddy could be used.

Finally, despite the considerations that lead to a trace-based
design, NG-diff metrics derived from the proposed protocol
remain non-rotationally invariant. Due to the small number of
diffusion-encoding directions, a proper sampling of the micro-
architecture is not possible, which could lead to a further bias in
the results (45).
CONCLUSIONS AND OUTLOOK

Here we present a protocol for joint IVIM/NG-diff acquisition.
This pilot study aimed to assess the feasibility of adding several
diffusion parameters for the characterisation of tumours within a
short measurement time. We investigated IVIM, apparent
diffusivity, and non-Gaussian diffusion characterised by
apparent kurtosis. The in vivo validation of these parameters
was performed by contrasting them to similar quantities derived
from established protocols.

Non-gaussian diffusion metrics obtained from the proposed
protocol were highly correlated with those obtained using
standard DKI-derived metrics. Contrary to our initial premise,
IVIM metrics were poorly correlated with DSC metrics,
suggesting that they partly reflect different aspects of tissue. It
was also shown that, to some extent, the parameters obtained
from our protocol are reflective of tissue physiology.

Whereas each of the diffusion regimes (IVIM, Gaussian
diffusion, and kurtosis) were assessed with respect to their
grading qualities (18–22) and were found to be useful, to a
greater or lesser extent, the multiparametric approach has not yet
been fully exploited. We expect that a better characterisation of
tumours will become possible by combining information from
multiple diffusion regimes. Furthermore, b-values above 2000 s/
mm2, which are outside the range of applicability of kurtosis
model and were not fully exploited in this report, could be used
to gain deeper insight into tumour microstructure.

In summary, we proposed a protocol which is stripped down
to the minimum in terms of directionality sampling, but covers
the relevant b-value range well enough to allow for a simultaneous
IVIM-diffusion-kurtosis fit, is fast enough to be included in
clinical evaluations, contains established clinical information
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(trace at b=1000s/mm2) and provides characterisation of tumour/
oedema tissue (Dapp and Kapp) which is similar to that obtained
with a commonly used kurtosis acquisition (MD, MK). This
implies that the tumour grading power of both parameters is
kept to a large extent when using our protocol, and in addition
also the IVIM parameters, shown to have grading power of their
own (63–66), can be determined with reasonable precision and
accuracy when using an ROI-based fit. Even for the latter case, we
have shown here that the correspondence between IVIM and
DSC-based perfusion characterisation is not very high (R=0.4 for
blood volume and 0.23 for blood flow), suggesting that use of both
parameters will give a more complete description of tumour
tissue. A way of representing this multiparametric information
to visualise a ‘tumour signature’ is suggested in Supplmentary
Figure 8, but validating its significance for tumour grading would
require a much larger data set, including PET and/or histological
tumour characterisation. Of course, more quantitative parameters
could be added to the description, such as R2* and water content,
as proposed by our group (27).

The discussion of the proposed protocol was built around its
usefulness for a deeper characterisation of brain tumours, which
are notoriously heterogeneous and difficult to grade using MRI
alone. It is anticipated that such a protocol will enhance the
multiparametric assessment of tumour lesions. However,
diffusion properties are certainly relevant to other pathologies
and also to healthy tissue. A multi-b-value protocol such as ours,
adapted to cover the whole brain at high resolution when the
measurement time constraints are not as stringent as in clinical
applications, will certainly prove a useful tool for understanding
brain microstructure in vivo.
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