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Abstract

of 78 strains of various origins.

antibiotic resistance genes.

Enterococcus faecalis.

Background: Enterococcus faecalis is widely studied as a common gut commensal and a nosocomial pathogen. In
fact, Enterococcus faecalis is ubiquitous in nature, and it has been isolated from various niches, including the
gastrointestinal tract, faeces, blood, urine, water, and fermented foods (such as dairy products). In order to elucidate
the role of habitat in shaping the genome of Enterococcus faecalis, we performed a comparative genomic analysis

Results: Although no correlation was found between the strain isolation habitat and the phylogeny of Enterococcus
faecalis from our whole genome-based phylogenetic analysis, our results revealed some environment-associated
features in the analysed Enterococcus faecalis genomes. Significant differences were found in the genome size and
the number of predicted open reading frames (ORFs) between strains originated from different environments. In
general, strains from water sources had the smallest genome size and the least number of predicted ORFs. We also
identified 293 environment-specific genes, some of which might link to the adaptive strategies for survival in
particular environments. In addition, the number of antibiotic resistance genes was significantly different between
strains isolated from dairy products, water, and blood. Strains isolated from blood had the largest number of

Conclusion: These findings improve our understanding of the role of habitat in shaping the genomes of

Keywords: Enterococcus faecalis, Genome, Environment, Antibiotic resistance gene, Phylogeny

Background

Enterococcus faecalis (E. faecalis) is a Gram-positive coc-
coid bacterium occurring singly, in pairs, in short chains,
or in groups [1]; and it is the most common species
within the genus Enterococcus. Many E. faecalis strains
are associated with infections, including urinary tract
infection, bacteraemia, endocarditis, neonatal infection,
and infection of the central nervous system [2, 3]. Some
E. faecalis strains have developed resistance to several
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antibiotics including vancomycin, which is the last line
of defence against a wide range of multi-resistant Gram-
positive pathogens [4]. The first vancomycin-resistant
clinical strain of E. faecalis was reported in 1989 in the
United States [5]. At present, E. faecalis is emerging as
an important cause of hospital acquired infection and
multidrug resistance [6]. For these reasons, E. faecalis is
not generally regarded as safe (GRAS) [7].

Enterococcus faecalis is ubiquitous in nature and has
been isolated from many different niches. The gastro-
intestinal (GI) tract of humans and animals is commonly
considered as the primary habitat of E. faecalis, where it
occurs as a commensal [6, 8, 9]. In addition, the blood
and urine specimens of humans and animals are also
major sources of E. faecalis [6]. As a species of lactic
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acid bacteria, E. faecalis is widely used in the production
of fermented foods, particularly fermented dairy prod-
ucts. In recent years, numerous E. faecalis strains have
been recovered from traditional dairy products [10-13].
Furthermore, water and soil are also common habitats
of E. faecalis [14—16]. Considering the primary habitat
of E. faecalis as the GI tract but meanwhile its wide
distribution across numerous other niches makes it
interesting to understand the relationship between
enteric and extra-enteric E. faecalis strains. A key ques-
tion is whether the extra-enteric E. faecalis strains are a
product of faecal pollution or if they exist as independ-
ent lineages. Another intriguing aspect is how E. faecalis
survives in and adapts to the highly diverse environ-
ments. Nowadays microbial genome sequencing pro-
vides an opportunity to answer these questions.

The complete genome of E. faecalis V583, one of the
first reported vancomycin-resistant strains, was pub-
lished in 2003 [17]. Subsequently, the genome sequences
of 28 enterococcal strains (including 18 E. faecalis
strains) were comparatively analysed to identify distinct-
ive genetic traits and biochemical functions between
lineages of clinical and environmental importance [18].
In 2014, the genomes of 38 E. faecalis strains were ana-
lysed to distinguish clinical from nonclinical strains [19].
In 2016, Raven et al. sequenced the whole genomes of
three epidemic lineages isolated in the UK, analysed the
genome-level data of altogether 168 E. faecalis strains,
and described the evolution of vancomycin resistance
within this strain collection [20]. As more and more
genomes of E. faecalis from different habitats are avail-
able, we are now in a better position to understand the
molecular basis of their environmental adaptation using
comparative genomic analysis.

In this study, a total of 78 genomes of E. faecalis (in-
cluding 15 genomes sequenced in this work and 63
genomes retrieved from the Genbank database) were
subjected to comparative genomic analysis. These strains
were isolated from faeces, blood, urine, dairy products,
and water. We believe that results from this comparative
genomic analysis can provide the insight necessary to
understand the genetic relationships between these E.
faecalis strains and the adaptive mechanisms that have
evolved to allow them to occupy different niches.

Methods

Bacterial strains

A total of 78 genomes of E. faecalis were subjected to
comparative genomic analysis. Among the 78 strains, 15
strains were collected from China, Russia, and Mongolia
by our laboratory. These strains were isolated from
naturally fermented dairy products and their genomes
were sequenced in this study (Additional file 1). The
other 63 genomes of E. faecalis were retrieved from the
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Genbank database (Additional file 1). To ensure mean-
ingful comparison between genomes and to analyse how
the isolation habitat affected the genome characteristics,
more than 400 genome sequence records of E. faecalis
in the Genbank database were scanned. Only 63
genomes (including five complete genomes) were se-
lected for this study based on a clear documentation of
the strain isolation source and a high sequencing quality.
The 63 strains were isolated from blood (20 strains),
faeces (16 strains), urine (10 strains), dairy products (3
strains), water (11 strains), oral cavity (1 strain), and
multiple sites (2 strains) (Additional file 1).

DNA extraction

Strains were cultured under anaerobic conditions in
Man Rogosa and Sharpe (MRS) broth at 37 °C. DNA
was extracted from each strain using a bacterial DNA
extraction kit (OMEGA D3350-02) according to the
manufacturer’s instructions. Genomic DNA was quanti-
fied using a TBS-380 fluorometer (Turner BioSystems
Inc., Sunnyvale, CA). Only high-quality DNA samples
(OD260/280 = 1.8~ 2.0, >6 pg) were used to construct
fragment libraries (200 to 300 bp).

Sequencing, assembly, coding sequence (CDS) prediction,
and annotation

The whole-genome sequencing was done using the Illu-
mina MiSeq platform (Illumina Inc., U.S.A) by generat-
ing 2x 150 bp paired-end libraries using the Nextera
DNA Sample Preparation Kit (Illumina Inc., U.S.A)
following the manufacturer’s instructions. On average,
625 Mb of high-quality data were generated for each
strain, corresponding to 176- to 247-fold sequencing
depth (Additional file 1).

The paired-end reads were first assembled de novo
using SOAPdenovo v1.06 [21]. Local inner gaps were filled
and single base errors were corrected using the software
GapCloser (http://sourceforge.net/projects/soapdenovo2/
files/GapCloser/). Coding sequences were predicted for
each sequenced genome using Glimmer v3.02 [22]. Func-
tional annotation of predicted open reading frames (ORFs)
was achieved using RAST 2.0 [23] and COG database
[24]. The individual genome assemblies of the 15 strains
generated in this work were deposited in the National
Center for Biotechnology Information under the acces-
sion numbers of MSQG00000000 to MSQUO00000000
(Additional file 1).

Construction of core- and pan-genomes

The core- and pan-genomes of E. faecalis were con-
structed based on the families of homologous genes.
The families of homologous genes for E. faecalis were
computed using the SiLiX software [25]. Briefly, a pair of
ORFs would be classified into the same gene family
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when their amino acid sequence identity value was
above 80% and when the amino acid sequence alignment
length spanned more than 80% of the longer ORF. All
predicted ORFs of the 78 genomes were firstly grouped
into their respective gene families before pan-genome
construction. The pan-genome was constructed by
counting the total number of non-redundant gene
families within the complete dataset. The core-genome
was constructed by counting the total number of gene
families commonly shared by all genomes. The sequence
of the longest ORF from each gene family was selected
as the representative gene for functional annotation and
phylogenetic reconstruction.

Phylogenetic analysis

A phylogenetic tree was constructed using the core
genes of the 78 strains of E. faecalis. We first aligned the
nucleotide sequences of the core genes using MUSCLE
v3.8.31 [26], followed by removing the unreliable align-
ment regions and intragenic homologous recombination
using Gblocks (http://molevol.cmima.csic.es/castresana/
Gblocks.html) and Gubbins (http://www.sanger.ac.uk/
science/tools/gubbins), respectively. A maximum likeli-
hood tree was constructed based on the concatenated
alignments using FastTree 2.1.8 [27] with 10,000 boot-
strap iterations.

Identification of environment-specific genes

The subset of variable genes in the pan-genome was
analysed to determine whether their distribution was
significantly associated with the strain isolation niche
(dairy, blood, faeces, urine, water, and oral cavity). If the
frequency of a gene present in strains from one niche
was much higher than the overall occurrence across all
78 strains, this gene was considered environment-spe-
cific. Scoary 1.6.16 (run with 1000 permutation
replicates) was used to identify the spectrum of
environment-specific genes, and the results were
corrected for multiple testing. A p-value of less than
0.05 after Benjamini-Hochberg correction was consid-
ered significant [28].

Identification of antibiotic resistance genes

A BLAST search was performed with all predicted ORFs
from the 78 strains against the Comprehensive Antibiotic
Resistance Database (CARD; http://arpcard.mcmaster.ca)
to identify potential antibiotic resistance genes (E-value of
<le-15 and sequence identity > 85%) [29].

Identification of virulence factors

A BLAST search was performed with all predicted ORFs
from the 78 strains against the Virulence Factor Database
(VEDB) to identify genes encoding known virulence fac-
tors (E-value <le-15 and sequence identity > 95%) [30].
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Prophage identification

Intact and incomplete prophage regions were identified
through an integrated search with the annotation tool,
PHASTER [31]. This involved genome-scale ORFs pre-
diction and translation (via GLIMMER), protein identifi-
cation (via BLAST matching and annotation by
homology), phage sequence identification (via BLAST
matching to a phage-specific sequence database), tRNA
identification, and attachment site recognition. Only
intact regions were analysed in-depth.

Statistical analysis

Data are presented as means + SEM. One-way ANOVA
followed by Tukey’s post-hoc test was used for statistical
significance determination using SPSS Statistics 19
(IBM, Armonk, New York, USA). Significance was set at
p-value < 0.05.

Results

General genomic characteristics of the species
Enterococcus faecalis

The analysed E. faecalis genomes had a low G + C con-
tent ranging from 37.0 to 38.0% (Additional file 1). The
average genome size was 2.94 +0.15 Mb, with 2884 +
211 predicted ORFs (Additional file 1). Furthermore,
there were significant differences in the genome size and
the number of predicted ORFs between strains isolated
from different sources (Fig. 1). On average, strains
isolated from water sources had the smallest genome
size and the lowest number of predicted ORFs, which
were significantly different from those originated from
blood (P < 0.01). In addition, strains from dairy products
and blood differed significantly in their number of
predicted ORFs (p < 0.01). There were no significant dif-
ferences in the genome size nor the number of predicted
ORFs between strains isolated from blood, faeces, and
urine samples.

The pan- and core-genome of the species Enterococcus
faecalis
The pan-genome of the 78 E. faecalis strains was com-
posed of 10,573 gene families; and the pan-genome size
grew continuously with the increase in newly deciphered
genomes (Fig. 2a). In contrast, the size of the
core-genome gradually stabilized and the increase in
genome number had little influence on the core-genome
size when the number of genomes reached 60-70 (Fig. 2b).
The core gene set comprised 1361 genes, ie. 47.2% of
the number of predicted ORFs (2884 per genome),
suggesting that over half of the predicted ORFs in
each genome were dispensable.

Functional analysis of the representative genes in the
pan- and core-genome was conducted using the COG
database (Table 1). The core genes were mainly
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Fig. 1 Genome size (a) and number of predicted open reading frames (ORFs) (b) of Enterococcus faecalis strains isolated from different niches. An
asterisk (¥) indicates a p-value < 0.05; double asterisks (**) indicate a p-value <0.01 (one-way ANOVA test)

distributed in four categories, representing amino acid
transport and metabolism; transcription; translation,
ribosomal structure and biogenesis; and carbohydrate
transport and metabolism. These genes together
accounted for 33.4% of the core-genome. As a large
proportion of genes were dispensable, pan-genome

expansion happened in each functional category in vary-
ing degree compared with the core-genome (Fig. 3). The
largest extent of expansion occurred in the group of
genes involved in defence mechanisms (COG category
[V]). Only 27 out of the 181 defence mechanisms-related
genes within the pan-genome were core genes. The
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Table 1 Functional categories of core and pan genes in 78 Enterococcus faecalis genomes

COG Functional category No. of core No. of pan Proportion of core genes
genes genes among pan genes (%)

Translation, ribosomal structure and biogenesis m 221 50.2
RNA processing and modification 0 0 0.0
Transcription 114 448 254
Replication, recombination and repair 70 378 185
Chromatin structure and dynamics 0 0 0.0
Cell cycle control, cell division, chromosome partitioning 14 50 280
Nuclear structure 0 0 0.0
Defense mechanisms 27 181 14.9
Signal transduction mechanisms 52 156 333
Cell wall/membrane/envelope biogenesis 54 208 26.0
Cell motility 5 18 27.8
Cytoskeleton 0 1 0.0
Extracellular structures 0 1 0.0
Intracellular trafficking, secretion, and vesicular transport 15 59 254
Posttranslational modification, protein turnover, chaperones 39 84 464
Energy production and conversion 74 142 52.1
Carbohydrate transport and metabolism 107 410 26.1
Amino acid transport and metabolism 123 217 56.7
Nucleotide transport and metabolism 61 99 61.6
Coenzyme transport and metabolism 44 88 50.0
Lipid transport and metabolism 32 74 432
Inorganic ion transport and metabolism 86 164 524
Secondary metabolites biosynthesis, transport and catabolism 19 50 380
General function prediction only 172 439 392
Function unknown 133 560 238

smallest extent of expansion occurred in the COG cat-
egories of nucleotide transport and metabolism [F] and
amino acid transport and metabolism [E]. More than half
of the pan genes in these two functional categories were
also core genes. These results suggest that E. faecalis
possesses multiple defence mechanisms, while genes
involved in nucleotide and amino acid transport and me-
tabolism are generally more conserved.

Phylogeny of the species Enterococcus faecalis

To investigate the phylogenetic relationship between the
78 strains, the concatenated nucleotide sequence of the
core genes of each strain was used to construct a phylo-
genetic tree. The 78 strains were divided into four
branches on the phylogenetic tree (Fig. 4). The type
strain (ATCC 19433) fell under branch A, which con-
tained 19 strains, including seven dairy strains. Branch B
comprised 22 strains. Branch C was the smallest branch
with only 16 strains. Branch D composed of 21 strains of
which none was isolated from urine samples. Strains
originated from different niches were evenly dispersed

across the four branches, suggesting no correlation be-
tween strain isolation niche and strain phylogeny.

Environment-specific genes

Pan-GWAS analysis was performed with Scoary to
identify genes that were present in strains associated
with a particular environment [28]. A total of 293
environment-specific genes were identified, including
143, 66, and 84 genes that were specifically linked to
strains isolated from blood, dairy, and water sources, re-
spectively (Fig. 5). Most of the environment-specific
genes encoded hypothetical proteins with unknown
function. The environment-specific genes of known
function were analysed using the COG database; and
most of them were involved in carbohydrate transport
and metabolism (Additional file 2).

Among the blood-specific genes, five genes were
involved in galactose metabolism: dgoD encodes a galac-
tonate dehydratase; PTS-Aga-EIID encodes the N-acet-
ylgalactosamine-specific 11D component of
phosphotransferase system (PTS); PTS-Gat-EIIA, B, and
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C encode the galactitol-specific IIA, B, and C compo-
nents of PTS system, respectively. Furthermore, panD
encodes an aspartate 1-decarboxylase that involves in
beta-alanine metabolism; eda encodes the 2-dehydro-3-
deoxyphosphogluconate aldolase / (4S)-4-hydroxy-2-ox-
oglutarate that involves in carbon metabolism; znuA en-
codes a zinc transport system substrate-binding protein.
Among the dairy-specific genes, the genes phnC,
phnD, and phnE encode for the phosphonate transport
system ATP-binding protein, phosphonate transport sys-
tem substrate-binding protein, and phosphonate trans-
port system permease protein, respectively. Three genes
constitute the ABC transporter of phosphonate.
PTS-Cel-EIIC and PTS-Lac-EIIC encode the cellobiose-
specific IIC component and lactose-specific IIC compo-
nent of the PTS system, respectively. PldB encodes a
lysophospholipase that involves in glycerophospholipid
metabolism. DId encodes a D-lactate dehydrogenase that
involves in pyruvate metabolism. ClpL encodes an
ATP-dependent Clp protease ATP-binding subunit.
Among the 84 water-specific genes, 28 were present in
all 11 strains isolated from water sources. Among these,
cbiO encodes an ATP-binding protein, while cbiM and
cbiQ both encode permease proteins. Three genes were
involved in the cobalt and nickel transport system: znuC
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is a zinc transport system ATP-binding protein involved
in zinc transport; the genes PTS-Man-EIIB and
PTS-Man-EIIC encode mannose-specific I[IB and IIC
components of PTS system, respectively. DdhP encodes
an alcohol dehydrogenase involved in tyrosine metabol-
ism and fatty acid degradation. PcaC encodes a
4-carboxymuconolactone decarboxylase involved in
benzoate degradation. RP-L33 encodes the large subunit
ribosomal protein L33.

Antibiotic resistance genes

Potential antibiotic resistance genes were detected by
blasting the 78 E. faecalis genomes against the CARD
database (Additional file 3). There were on average 7.5
antibiotic resistance genes in each genome. The number
of antibiotic resistance genes varied greatly between
strains. Four blood originated strains (DAPTO 516,
DAPTO 512, S613, and R712) and one faecal strain
(TX0104) had the highest number of antibiotic resist-
ance genes; each of them possessed 18 antibiotic resist-
ance genes. Thirty-four strains contained the fewest
antibiotic resistance genes, with only five antibiotic
resistance genes per genome.

Based on the average number of antibiotic resistance
genes, the 78 investigated strains could be divided into
three classes. The first class included strains isolated
from blood with the largest number of antibiotic resist-
ance genes (10.4 antibiotic resistance genes per strain).
The second class included strains isolated from faeces
(7.4 antibiotic resistance genes per strain) and urine (8.1
antibiotic resistance genes per strain). The last class
included strains from dairy (5.3 antibiotic resistance
genes per strain) and water sources (5.2 antibiotic resist-
ance genes per strain) with the fewest antibiotic resist-
ance genes. Furthermore, the number of antibiotic
resistance genes present in the blood originated strains
was significantly different from those isolated from dairy
and water sources (p < 0.01) (Fig. 6).

Although the distribution of antibiotic resistance genes
varied greatly between strains, five antibiotic resistance
genes were commonly present in all 78 strains. Most of
these antibiotic resistance genes were involved in
efflux-mediated resistance to antibiotics. LsaA encodes
an ABC efflux pump. It confers resistance to clindamy-
cin, quinupristin-dalfopristin, and dalfopristin. EmeA
encodes a multidrug efflux pump [32]. EfrA and efrB en-
code two subunits of the EfrAB efflux pump, which are
related to the drug resistance in both E. faecalis and E.
faecium. In addition to the efflux-mediated resistance
genes, dfrE encodes a dihydrofolate reductase that con-
fers resistance to trimethoprim.

Moreover, we found two types of vancomycin-resistance
gene clusters among the 78 strains: vanA-type and
vanB-type. The vanA-type cluster is 8.1 kb, containing six
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Fig. 4 Phylogenetic tree constructed based on the core genes of 78 Enterococcus faecalis strains

vancomycin-resistant genes: vanZA, vanYA, vanXA,
vanHA, vanSA, and vanRA [33]. The vanA-type cluster
was only found in four strains isolated from blood
(DAPTO 512, DAPTO 516, R712, and S613). The
vanB-type is 6.4 kb, containing six vancomycin-resistant
genes: vanRB, vanSB, vanYB, vanWB, vanHB, and vanXB
[33]. The vanB-type cluster was exclusively identified in
two strains of blood origin (V583 and Merz96) and one
faecal strain (TX0104).

Virulence factors

Genes coding for known virulence factors were identi-
fied by blasting the 78 E. faecalis genomes against the
VFDB database. Sixty putative virulence factors (23.8 per
genome) were detected within the 78 E. faecalis
genomes (Additional file 4). The number of virulence

factors varied greatly between strains. The blood origi-
nated strain, V583, had the highest number of virulence
factors (52 within the genome), contrasting to the strains
E1Sol, TX1322 (both isolated from faeces samples), and
T3 (isolated from a urine specimen) that carried only a
low number of nine virulence factors per strain. Further-
more, no significant difference existed in the number
and functions of virulence factors between strains of
different isolation sources.

In summary, the virulence factors of E. faecalis were
mainly involved in adherence, antiphagocytosis, biofilm
formation, quorum sensing system, production of exoen-
zymes and toxins. The most common virulence factors
were responsible for adherence (24 out of the 60 putative
virulence factors), including ebpA/B/C (encode three Ebp
pili subunits that facilitate bacterial adherence to host
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Fig. 5 Heatmap of environment-specific genes. The blue dots
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extracellular matrix proteins), ace (encodes a collagen
adhesin), and asal (encodes aggregation substance). An-
other common putative virulence factor present in E. fae-
calis was the csp operon. The csp operon consists of 11
ORFs (i.e. cpsA to cpsK), encoding an antiphagocytosis
factor that facilitates bacterial evasion of the host immune
system. Moreover, some members of the cytolysin (cyl)
operon were detected in the E. faecalis genomes. Nor-
mally, the cyl operon comprises eight genes, i.e. cylA/B/I/
L/M/R1/R2/S. However, only four genes, cylA/B/I/M,
were detected in five of the studied strains, including two
urine isolated strains (T2 and T8), two dairy strains (SS-7
and F1), and one blood originated strain (Merz96).

Fig. 6 The number of antibiotic resistance genes in strains isolated
from different niches. Double asterisks (**) indicate a p-value < 0.01
(one-way ANOVA test)

Prophage sequences

A total of 116 intact prophages were identified
(Additional file 5). Not all investigated E. faecalis ge-
nomes contained intact prophages (detected only in 65
out of 78 genomes). No apparent correlation was found
between the isolation source and occurrence of intact
prophage sequences. The 13 strains that contained no
intact prophage were originated from all types of envi-
ronments, including four dairy strains (HS5152, HS5302,
WZ34-2, XJ76305), three water originated strains (GA2,
KS19, MTmid8), two faecal strains (TX0104, TX4244),
two urine isolated strains (HH22, T11), one blood iso-
lated strain (TX0031), and one oral strain (OGI1RF).

The strain TX0645 (isolated from blood), ATCC6055
(isolated from dairy), and X98 (isolated from faeces)
contained the highest number of intact prophages (four
per genome). Apart from some common enterococcal
prophages (e.g. phiEfl1, phiFL4A, SANTORI, and vB),
prophages associated with other bacterial genera
(including Lactobacillus, Lactococcus, Listeria, Bacillus,
Clostridium, Staphylococcus, Streptococcus, and Weis-
sella) were also detected. Such results together suggest
that prophages are extensively propagated intra- and
inter-species; and their spread is independent from the
isolation source.

Discussion

In this study, we performed a comparative genomic ana-
lysis of 78 E. faecalis strains (15 genomes sequenced by
this work plus 63 genome sequences retrieved from the
Genbank database). These strains were originated from a
wide range of sources, including blood, faeces, urine,
dairy products, water, and oral cavity. Our work has
taken the advantage of the wide ecological niches of
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these strains to elucidate the role of habitat in shaping
the genome characteristics of the E. faecalis species.

The pan-genome of the 78 E. faecalis strains com-
prised 10,573 gene families, of which 1361 genes were
conserved across all studied strains. This corroborates
the results derived from the previous analysis of 168
strains [20]. Comparing with the core-genome, the
biggest pan-genome expansion occurred in the subset of
defence mechanisms-related genes. Only 14.9% (27 out
of 181) of the defence mechanisms-related genes were
core genes. The 27 core genes mainly encode the
ATP-binding cassette (ABC) transport system permease
and ABC subfamily B, which confer multi-drug resist-
ance to the bacteria [34]. The variable gene portion
mainly encodes restriction endonucleases of type I re-
striction modification system, which function to defend
against invading viruses, such as bacteriophage [35, 36].
The type I restriction modification system consists of
the R, M, and S subunits. Our study identified mainly
the S subunit that is responsible for determining the
specificity of the DNA-binding site recognition during
DNA cleavage and modification of the enterococcal
genomes [37, 38]. The high variability of this spectrum
of genes suggests the existence of multiple defence
mechanisms to protect the cells from viral invasion. Fur-
thermore, the defence mechanisms of E. faecalis do not
seem to be associated with the strain isolation habitat, as
no environment-specific genes were identified within
this functional category.

We then performed a phylogenetic reconstruction
using the core-genome of all 78 E. faecalis strains. The
results suggested no correlation between the strain isola-
tion habitat and phylogeny, which corroborates the
inference drawn by a previous study [39]. However, our
in-depth analysis of the functional genomes did reveal
environment-specific adaptation in E. faecium strains
originated from dairy products, water, and blood.

Milk is a lactose-rich environment. Some of the identi-
fied dairy-specific genes seem to help the dairy entero-
cocci utilize the lactose present in the milk environment.
For example, the dairy-specific gene dld encodes
D-lactate dehydrogenase, which has previously been
found in plasmids from Lactococcus lactis and Lactobacil-
lus delbrueckii subsp. bulgaricus. D-lactate dehydrogenase
may involve in D-lactate utilization under aerobic condi-
tions [40]. During milk fermentation, D-lactate utilization
might result in pH reduction or the sugar could be con-
verted to acetate accompanied with ATP production; both
activities would enhance bacterial survival in dairy prod-
ucts. Siezen et al. suggested that the dld gene might have
been acquired from Gram-negative bacteria by hori-
zontal transfer, as the best homologues (about 50%
sequence identity and the same size) are found exclu-
sively in Gram-negative bacteria such as Escherichia
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coli and Shigella spp. but not in any Gram-positive
bacteria [40].

Another set of dairy-specific genes was lacE, lacF, and
lacG. In Gram-positive bacteria, lactose is internalized
by the phosphoenolpyruvate-dependent PTS, which con-
sists of the lactose-specific IIBC and IIA components
(encoded by lacE and lacE, respectively), vyielding
lactose-6-phosphate. Lactose-6-phosphate is then hydro-
lyzed to glucose and galactose-6-phosphate by a cyto-
plasmic phospho-p-galactosidase (encoded by lacG) [41].

Among the water-specific genes, cbiM, cbiO, and cbiQ
encode part of the cobalt and nickel transport system.
Furthermore, metal uptake operons were widely distrib-
uted in all 11 strains from water sources. This result is
in line with the study of [9]. The transition metals,
nickel and cobalt, are essential cofactors for many pro-
karyotic enzymes involved in a variety of metabolic
processes [42]. The mean concentration of nickel in
freshwater environments is about 10 pg/L, which is
much lower than other environments [14]. Thus, a
high-affinity nickel uptake system may be beneficial to
the survival of the water-dwelling E. faecalis strains.

Interestingly, some environment-specific genes do not
seem to have any adaptive relationship with the isolation
habitat. For example, the dairy-specific genes phnC,
phnD, and phnE constitute the integrated ABC trans-
porter of phosphonates, which are quite common among
many organisms, ranging from bacteria, fungi, molluscs,
insects, plants, and animals. These three genes were
identified in 15 of the 18 dairy-associated E. faecalis
strains. However, there is no indication as to why the
integrated ABC transporter of phosphonates should be
specifically enriched in dairy strains. Nevertheless, the
precise role of natural phosphonates is still poorly
understood. A similar situation occurred with the
blood-specific genes PTS-Gat-EIIA, PTS-Gat-EIIB, and
PTS-Gat-EIIC, which constitute the PTS system in-
volved in galactitol metabolism. To our knowledge,
plasma galactitol is only an important parameter for the
assessment of steady-state galactose metabolism in galacto-
saemia [43, 44]. A large number of environment-specific
genes are hypothetical genes with unknown function. These
genes may encode additional environment-associated func-
tions and require further research.

Another interesting phenomenon observed in this
work was the differences in the antibiotic resistance gene
profile between strains isolated from various niches.
Strains from blood sources had significantly more anti-
biotic resistance genes than those from dairy and water
sources. This is in line with the results of Raven et al.
that reported an enrichment of antibiotic resistance
genes in epidemic lineages [20]. The pressure of natural
selection may play a key role in the uneven distribution
of antibiotic resistance genes in this case. For example,
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the tetM gene codes a ribosomal protection protein that
confers tetracycline resistance. This gene is known to
associate with or even encoded by transposable DNA
elements, and its horizontal transfer between bacterial
species has been documented [45]. Our study showed
that tetM was present mostly in strains isolated from
blood (15 out of 20) and occurred in much lower
frequency in strains originated from dairy (4 out of 18)
and water (2 out of 11) sources. Tetracyclines have a
broad spectrum of antibiotic action and are commonly
used in treating bacterial infections; thus, strains from
blood sources are more likely to be exposed to the
bacteriostatic activity of tetracyclines and that strains
lacking tetracycline resistance genes would be outcom-
peted rapidly. This explains the high proportion of
tetM-positive blood originated strains. In contrast,
strains from dairy and water sources would not need
tetracycline resistance genes for survival because of the
much lower environmental selection pressure of tetra-
cycline; thus, these genes were not maintained in the
bacterial genomes.

Five antibiotic resistance genes were found among the
78 strains, although the number of antibiotic resistance
genes found in each strain varied greatly. Most of these
antibiotic resistance genes were involved in efflux-mediated
resistance to antibiotics. Efflux was first described as a
mechanism of resistance to tetracycline. In recent years,
numerous plasmid- and chromosome-encoded efflux
mechanisms have been described in various microorgan-
isms [46]. The fact that the efflux-mediated resistance is
coded by core genes implicates that it is an important
intrinsic resistance mechanism of E. faecalis.

Previous studies have characterised six types of vanco-
mycin resistance in enterococci [33]. Our study found
two types of vancomycin-resistant gene clusters among
the 78 strains, i.e. vanA and vanB type clusters. VanA is
the most frequently encountered type of glycopeptide
resistance in enterococci; strains that have acquired
vanA are resistant to high levels of vancomycin [33].
Raven et al. found that nearly all vancomycin-resistant E.
faecalis carried vanA cluster [20]. Our study identified
the vanA type gene cluster only in four blood originated
strains. It is interesting to note that these four strains
were most closely related genetically (Fig. 4). This
may indicate that the common ancestor of these four
strains had acquired the vanA type resistant gene
cluster before being internalized in this lineage. The
organization and functionality of the vanB type clus-
ter is similar to that of vanA, but the resistant levels
are variable [33]. Among the isolates we studied, the
three vanB-positive strains were isolated from blood
and faeces. Our results together show that the blood
isolated strains had more vancomycin-resistant genes
than those from other sources.
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There are some limitations of this work. The strain
collection used was relatively small for genome-wide
study, which might lead to bias of some results, such as
the identified environment-specific genes. Moreover, in
addition to isolation habitat, other factors, e.g. geo-
graphic origin and year of collection, might also involve
in shaping the bacterial genomes. However, due to
incomplete strain documentation in some of the re-
trieved records, our work could not cover these aspects.

Conclusions

In summary, although there was no correlation between
the strain isolation source and phylogeny, our results did
demonstrate that habitat was involved in shaping the E.
faecalis genomes. There were significant differences in
the genome size and number of predicted ORFs between
strains isolated from different habitats. Furthermore,
some environment-specific genes were found in strains
isolated from dairy, blood, and water sources; and some
of these genes might improve the adaptive capacity of
the strains to survive in their dwelling environment. In
addition, strains from blood had the largest number of
antibiotic resistance genes. All these findings suggest
that the natural habitat where the strain was recovered
is effective in shaping the E. faecalis genomes.
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