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Mucosal surfaces in the airways and the gastrointestinal tract are critical for the interactions of the host with its environment.
Due to their abundance at mucosal tissue sites and their powerful immunomodulatory capacities, the role of innate lymphoid cells
(ILCs) and natural killer T (NKT) cells in the maintenance of mucosal tolerance has recently moved into the focus of attention.
While NKT cells as well as ILCs utilize distinct transcription factors for their development and lineage diversification, both cell
populations can be further divided into three polarized subpopulations reflecting the distinction into Th1, Th2, and Th17 cells in
the adaptive immune system.While bystander activation through cytokines mediates the induction of ILC andNKT cell responses,
NKTcells become activated also through the engagement of their canonical T cell receptors (TCRs) by (glyco)lipid antigens (cognate
recognition) presented by the atypical MHC I like molecule CD1d on antigen presenting cells (APCs). As both innate lymphocyte
populations influence inflammatory responses due to the explosive release of copious amounts of different cytokines, they might
represent interesting targets for clinical intervention. Thus, we will provide an outlook on pathways that might be interesting to
evaluate in this context.

1. Mucosal Surfaces

Mucosal surfaces represent large areas in which some key
interactions of the host with its environment occur [1]. The
airway epithelium, for example, is critical for the O

2
-CO
2

gas exchange, while the intestinal epithelium is required
for the absorption of essential nutrients and vitamins. In
contrast, however, intestinal as well as airway epithelial cells
provide also a physiological barrier function against harmful
substances and microbial pathogens [2, 3].

In order to distinguish between harmless and pathogenic
triggers and antigens [4, 5], the mucosal immune system has
evolved specific strategies distinct from its systemic counter-
part tomaintain tolerance on the one hand and also tomount
protective responses on the other [6].Mucosal epithelial cells,
for example, play a key role in host defense by providing
both a physical barrier and innate defense mechanisms such
as the release of defensins. Dendritic cells (DCs) scavenge

the mucosal surfaces for microbial antigens, promote T cell
independent IgA responses by B cells, and also shape the
adaptive T cell response within the mucosa and associated
lymphoid tissues [7]. As the cytokine milieu is important
for the differentiation of tolerance or inflammation, the
abundant presence of specified innate immune cells such as
innate lymphoid cells (ILCs) and natural killer T (NKT) cells
[8–12] that release copious amounts of different cytokines
and chemokines upon activation is critical for the generation
of regulatory tolerogenic or inflammatory Th1-, Th2-, and
Th17-dominated immune responses. Thus, while both cell
populations are critical for the maintenance of mucosal
tolerance, ILCs as well as NKT cells have been implicated
in the induction of inflammatory and autoimmune diseases
[13, 14].These two cell populations share conserved polarized
effector programs (Figure 1), although the molecular path-
ways involved in this sublineage differentiation must be also
divergent as NKT cells, but not ILCs, for example, express
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Figure 1: Conserved lineage diversification in ILCs and NKT cells. NKT cells as well as ILCs can be divided into three separate sublineages
that resemble Th1, Th2, and Th17 subsets in conventional CD4-positive T cells. Group 1 ILCs are characterized by the expression of either
T-bet (ILC1) or T-bet and Eomes (NK cells). Group 2 ILCs are defined by the expression of ROR𝛼 and GATA3 as well as their ability to release
Th2 cytokines.Three sublineages are summarized under the umbrella of group 3 ILCs.While NK cell receptor-negative ILC3s only depend on
ROR𝛾t, lymphoid tissue-inducer (LTi) cells require the aryl hydrocarbon receptor (Ahr) in addition to ROR𝛾t. NK cell receptor-expressing
ILC3s depend on three transcription factors, AhR, ROR𝛾t and T-bet.

a TCR. Here, we will discuss the mechanisms of activation
as well as the capacity of these two cell subsets to modulate
inflammatory immune response due to the release of copious
amounts of different cytokines.

2. Development and Differentiation of Innate
Lymphoid Cells (ILCs)

Innate lymphoid cells (ILCs) form a group of develop-
mentally related cells that are characterized through their
lymphoid morphology and the absence of RAG-dependent
antigen receptors as well as of myeloid and dendritic cell phe-
notypic markers [15]. Based on functional criteria, cytokine
polarization, and transcription factor expression, the six
distinct members of the ILC family identified so far can be
categorized into groups 1, 2, and 3 ILCs (ILC1, ILC2, and
ILC3) [15] (Figure 1). Although the transcriptional repressor
Id2 as well as cytokine signaling through the 𝛾

3
chain of

the IL-2 receptor and the IL-7 receptor are required for
the development and/or the maintenance of all of these
ILC subsets [16, 17], a common precursor cell despite being
widely assumed has not been identified so far [14]. With the
exception of natural killer (NK) cells that belong to the ILC1
group and ILC2 that both develop in the bone marrow [18–
20], the site of generation for the other ILC subsets has not
been identified so far.

Although ILCs share developmental similarities, the ILC
sublineages express specific transcription factors that drive
the generation of each subset individually [21–29]. Those
include the signature transcription factors T-bet, GATA-3,
and ROR𝛾t that are also detected in polarized NKT cell
sublineages (Figure 1) and differentiated conventional CD4-
positive T helper cell subsets [30–34]. While group 1 ILCs are
characterized by the production of IFN-𝛾 and the expression
of T-bet (ILC1) or T-bet and Eomes (NK cells), group 2
ILCs are defined by the expression of ROR𝛼 and GATA3
as well as their ability to release Th2 cytokines. In contrast,
three sublineages are summarized under the umbrella of
group 3 ILCs. While all group 3 ILCs require ROR𝛾t for
their development and function and produce IL-17 and IL-
22, they are on the one hand distinguished by the expression
of NK cell receptors. Lymphoid tissue-inducer (LTi) cells
that are essential for the formation of lymph nodes during
embryogenesis require the aryl hydrocarbon receptor (Ahr)
in addition. In contrast, while NK cell receptor-negative
ILC3s only depend on ROR𝛾t, NK cell receptor-expressing
ILC3s require in addition to theAhR alsoT-bet [15].However,
at least some of the processes underlying this sublineage
diversification of ILCs must be different from conventional
T cells and NKT cells despite the similar polarization of
cytokine responses, as cognate antigen recognition does not
occur in ILCs. The exact molecular mechanisms underlying
the generation of the respective ILC subsets and the divergent
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as well as convergent pathways with respect to conventional
T cells and NKT cells need to be defined in the future.

3. Selection of NKT Cells

NKT cells recognize different (glyco)lipid antigens [35] pre-
sented by the atypicalMHC I likemolecule CD1d on antigen-
presenting cells (APCs) [36–38]. While the presentation
of endogenous (glyco)lipids is critical for the selection of
NKT cells in the thymus [39], NKT cells can survive in the
periphery without the presence of CD1d [40]. AlthoughNKT
andT cells share similar signaling pathways, the transcription
factors driving the development of one or the other lineage
are different [41, 42]. Recently, the promyelocytic leukemia
zinc finger PLZF has been defined as the lineage defining
transcription factor in NKT cells [43–45]. While the thymic
development of NKT cells has been divided into different
stages that are characterized by the expression of distinct
surface markers and transcription factors, this sequential
lineage developmental paradigm for NKT cells was recently
challenged by a model describing lineage diversification of
NKT cells and simultaneous differentiation into Th1-, Th2-,
andTh17-polarized subsets [46]. These polarized sublineages
are characterized by the expression of the transcription
factors T-bet, GATA-3, and ROR𝛾t [45], similarly as their
conventional CD4-positive T helper cell counterparts and
ILCs (Figure 1). Unlike conventional T cells, however, NKT
cells do not require IRF-4 for the production of IL-17 and
IL-22 [47]. Despite these distinct discrepancies in the polar-
ization between NKT cells and conventional Th17 cells, the
conserved expression pattern of ROR𝛾t, T-bet, and GATA-
3 in ILCs, NKT cells, and conventional T cells suggest some
similarities in the differentiation and cytokine-polarization of
all three lineages. Nonetheless, the (molecular) mechanisms
underlying this trifurcation of NKT cells are unknown and
warrant further investigation.

4. Activation of ILCs and NKT Cells
in the Periphery

Similarly like NKT cells, ILCs release copious amounts
of cytokines upon bystander activation by distinct soluble
factors. Those include different Th1, Th2, andTh17 cytokines
and also regulatory cytokines such as IL-10, IL-2, or TGF𝛽.
Commensal as well as pathogenicmicrobes shape thereby the
ILC response dependent on the cytokine profile they elicit
on intestinal and myeloid cells [48, 49]. While NKT cells
similarly like ILCs respond to IL-12, IL-18, IL-1, IL-23, and
IL-33 [14, 50], only NKT cells, for example, respond to type
1 interferon [51]. Furthermore, the combination of IL-6 and
TGF𝛽 decreased the CD3/CD28-mediated production of IL-
22, but not of IL-17 [52]. DC-derived IL-1 and IL-23 were
crucial for the IL-17-production of NKT cells in peripheral
lymph nodes [53]. In contrast to NKT cells that can produce
Th1 and Th2 simultaneously [54], ILC populations appear
to be less plastic and exhibit either Th1-, Th2-, or Th17-
restricted cytokine profiles [14, 15]. Furthermore, NKT cells
can be also activated through the recognition of (glyco)lipid

antigens (cognate activation) by their TCRs. Although NKT
cells respond in the periphery to endogenous mammalian
and exogenous microbial antigens, CD1d-presented signals
are not required for the survival of peripheral NKT cells
[55]. Thus, similarly like innate-like 𝛾/𝛿 T cells, which only
need a strong TCR signal for proper development in the
thymus [55], NKT cells might not require TCR signals for
tissue surveillance in the periphery. However, there exist
several microbes in which (glyco)lipid antigens have been
detected [56–61] that can activate NKT cells directly through
their TCR. Those TCR-activated NKT cells might shape the
cellular network different than NKT cells activated through
bystander activation by cytokines. The rapid arrest of NKT
cells crawling through the liver sinusoids upon (glyco)lipid
antigen encounter [62] might reflect one example of altered
NKT cells behavior that is not observed when NKT cells
react to soluble factors like IL-18 [63]. In addition, NKT
cells become anergic for several weeks upon engagement of
their TCRs [64]. In contrast, there exist no reports about ILC
exhaustion and ILC might continuously release cytokines as
long as their activating cytokine receptors such as IL-23R are
expressed.

5. Role of ILCs and NKT Cells in
Colitis and Asthma

Due to their potent immunomodulatory functions and abun-
dance in mucosal tissues, ILCs and NKT cells have been
associated with the disruption of mucosal homeostasis in the
intestines and airways. Subsets of ILCs, for example, have
been implicated in the pathogenesis of colitis [65] and airway
inflammation [66–69] due to disturbances in the homeostasis
of ILC subsets. While ILC3 cells protected from intestinal
pathology, ILC1 subsets promoted mucosal damage. In con-
trast, predominantly ILC2 subsets were suspected to enhance
epithelial damage in the airways due to the release of Th2
cytokines and the augmentation of adaptive Th2 responses.
ILC-derived IL-9, a pleiotropic cytokine expressed at elevated
levels in the lungs of asthmatic patients [70, 71], is thereby
critical for the regulation of the Th2-cytokine release. In
addition to the apparent pathogenic role of ILC2 cells which
release predominantly Th2 cytokines, IL-17 produced by
ILC3 subsets promotes airway hypersensitivity, particularly
in the context of obesity [72]. Similarly, NKT cells contribute
to the induction of pathology in mucosal tissues of the
airways and the gastrointestinal tract. Thus, asTh2-polarized
NKT cells are predominantly found in the lungs, they
accelerate andworsen asthmatic disease [73, 74]. Comparable
to the pathogenic role of ILC2s, NKT cells drive allergic
inflammatory reactions through the production of type 2
cytokines and the recruitment anddegranulation ofmast cells
and eosinophils [75, 76]. Similar pathogenic mechanisms
might apply for the recruitment of eosinophils by NKT cells
at other mucosal tissue sites, such as the esophagus [77].
While NKT cells in asthmatic mouse models induced by
OVA are activated preferentially due to bystander activation,
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(glyco)lipid antigens detected in the fungus Aspergillus fumi-
gatus or in cypress pollen drive cognate NKT cell activation
and subsequently allergic airway inflammation [78, 79].
The nature of the (glyco)lipid engaging the NKT cell TCR
might be thereby critical for the outcome of disease, as
the application of alpha-galactosylceramide (𝛼-GalCer), the
prototypical NKT cell ligand, has been also associated with
suppression of asthmatic immune reactions [80, 81]. How-
ever, particularly ILC2s produce also other cytokines, such
as IL-25 and IL-33, that are critical for the maintenance of
mucosal tolerance [82, 83] as well as the TNF family cytokine
TLA-1 that promotes pathology [84]. Although the cognate
recognition of the prototypical NKT cell ligand 𝛼-GalCer
promoted pathogenic NKT cell responses dependent on the
genetic background of the mice and the diseases investigated
[85, 86], there exists also evidence for strong inflammatory
effects on NKT cells through bystander activation, elicited,
for example, through the application of poly-IC [87, 88].
On the other hand, the application of 𝛼-GalCer can also
inhibit or ameliorate autoimmunediseases [89]. Although the
processes underlying these inhibitory effects have not been
completely resolved, cell-contact dependent interactions as
well as the release of anti-inflammatory mediators have
been suggested as protective mechanisms, which inhibit the
expansion of autoreactive lymphocyte populations. However,
while being the source of IL-22 that acts directly on epithelial
cells [90], ILCs can also exhibit protective effects in mucosal
tissues [91, 92]. A constitutive expression of IL-17 and IL-22
that is critical for the integrity of the intestinal mucosa and
maintenance of epithelial homeostasis has been attributed
to the ROR𝛾t-positive ILC3 subset [93, 94]. In contrast,
Th17-cytokines, IL-13, and IFN-𝛾 that are released by ILCs
and NKT cells promote instead the pathogenesis of IBD
[14, 95, 96]. In this context, there exists strong evidence that
particularly IL-17-producing ILC3s as well as IL-23-reactive
ILCs drive tissue pathology in IBD [97–100]. Thereby the
local cytokine [101] as well as the microbial milieu [102] plays
a critical role. In accordance with these studies, the depletion
of an IFN-𝛾- and IL-17-producing ILC3 subset inhibited
the development of intestinal pathology in a Helicobacter
hepaticus-induced colitis model [103]. Furthermore, patients
suffering from inflammatory bowel disease (IBD) revealed
enhanced numbers of ILCs expressing IL-17 and IL-22 [104].
Th2- and Th17- polarized NKT cells have been implicated
in the pathogenesis of colitis as well [105, 106]. In contrast
to ILCs, however, the presence of the intestinal microbiota
protected from NKT cell-mediated pathogenic responses in
colitis [107, 108].

6. Interactions of NKT Cells and ILCs

Although sparse up to now, there exists experimental evi-
dence for direct interactions of ILCs and NKT cells. While
being target cells for ILC-produced cytokines, NKT cells
enhance airway hyperreactivity and trigger lung pathology
[109]. IL-25 plays thereby a critical pathogenic role as it
promotes the production of IL-13 by nuocytes and NKT
cells [110]. Besides allergic lung diseases, one publication

reported also a regulation of ILC responses through NKT
cells during viral infection [111]. NKT cells as well as alveolar
macrophages represented in this model a cellular source for
IL-33, which promoted the production of IL-5 by ILC2 cells.
While these studies highlight the interactions of these two
powerful innate immune cell populations, further studies
need to define whether certain signal patterns can polarize
the ILC and NKT cell response in one or the other direction
or whether there exists a hierarchy in the interactions of ILC
and NKT cell responses. With respect to IBD, certainly also
the interactions of distinct components of the intestinal flora
with ILCs and NKT cells warrant further investigation.

7. Summary and Outlook

ILCs and NKT cells play a critical role in the maintenance
of mucosal homeostasis. Not only the various pattern recog-
nition and cytokine receptors engaged but also the different
sublineages involved under steady state and pathogenic
conditions might shape the subsequent immune response
of the complex downstream cellular network and influence
the generation of inflammatory versus tolerogenic reactions.
Thus, due to their potent immunomodulatory properties and
their broad activation during inflammation, autoimmune
disease, or infection both cell populations represent not only
attractive targets for clinical intervention in the mucosa,
but also at other tissue sites such as the liver or spleen.
As both cell populations are characterized through polar-
ized effector programs and lineage diversification (Figure 1),
which are also known in the adaptive arm of the immune
system, distinct common pathways certainly exist. However,
although these diversification processes appear to be con-
served, the receptors and molecular mechanisms driving this
diversification cannot all be shared, for example, due to the
involvement of TCR versus cytokine signaling. Although
bystander activation induces cytokine responses in both cell
populations, interference with cytokine receptors that are
abundantly expressed also on other cell populations might
elicit too many unspecific side effects. Thus, in order to
polarize immune responses, ILCs as well as NKT cell subset
specific surface molecules need to be identified and can be
specifically targeted.
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