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Introduction
Cells often migrate collectively as part of a group, sheet, or 
strand maintained by cell–cell junctions (Friedl and Gilmour, 
2009; Ilina and Friedl, 2009; Rørth, 2009; Weijer, 2009). Col-
lective migration is involved in Dictyostelium discoideum 
slug formation (Firtel and Meili, 2000), border cell migra-
tion during Drosophila melanogaster oogenesis (Prasad and 
Montell, 2007), zebrafish posterior lateral line primordium 
development (Revenu and Gilmour, 2009), gastrulation (Keller, 
2005; Weijer, 2009), morphogenesis of organs such as mam-
mary glands (Ewald et al., 2008, 2012) and kidney (Vasilyev 
et al., 2009), and reepithelialization during wound healing 
(Martin, 1997). Collective migration has also been observed in 
cancer explants in vitro (Friedl et al., 1995) and invasive tumors 
in vivo (Friedl et al., 2004; Hidalgo-Carcedo et al., 2011).

Within tissues, cells encounter microenvironments that 
may range in compliance from tens of pascals in the softest 
tissues, such as brain, to gigapascals in the stiffest tissues, 
such as bone (Discher et al., 2005; Butcher et al., 2009). Such 
variation in matrix mechanical properties has long been known 
to play a role in regulating single-cell behaviors, including 

migration (Pelham and Wang, 1997; Flanagan et al., 2002; 
Engler et al., 2004, 2006; Discher et al., 2005; Guo et al., 
2006; Ingber, 2006). Sparsely seeded cells migrate from a 
soft to a rigid surface, a mechanoresponsiveness referred to 
as durotaxis (Lo et al., 2000). Microenvironmental stiffness has 
also been implicated in breast cancer cell invasion in vitro 
and metastasis in vivo (Wozniak et al., 2003; Paszek et al., 
2005; Kostic et al., 2009; Levental et al., 2009), both of which 
may involve collective cell migration.

The effects of substrate stiffness on cell sheets may not be 
as significant as those on single cells. Studies using polyacryl-
amide (PAA) gel–based substrates have shown that the differ-
ences in cell spreading area observed in single fibroblasts and 
endothelial cells cultured on soft versus stiff substrates disap-
peared once the cells become a confluent monolayer (Yeung  
et al., 2005). Similarly, the expansion of endothelial cell colonies 
is indifferent to changes in substrate stiffness (Trepat et al., 
2009). The relative indifference of these properties to substrate  
rigidity has been attributed to the maintenance of cell–cell adhe-
sions, which increases the effective stiffness cells sense beyond 
that of the underlying compliant substrate (Yeung et al., 2005;  

The mechanical microenvironment is known to influ-
ence single-cell migration; however, the extent to 
which mechanical cues affect collective migration  

of adherent cells is not well understood. We measured 
the effects of varying substrate compliance on individual 
cell migratory properties in an epithelial wound-healing 
assay. Increasing substrate stiffness increased collective cell 
migration speed, persistence, and directionality as well 
as the coordination of cell movements. Dynamic analy-
sis revealed that wounding initiated a wave of motion co-
ordination from the wound edge into the sheet. This was 

accompanied by a front-to-back gradient of myosin-II 
activation and establishment of cell polarity. The propa-
gation was faster and farther reaching on stiff substrates, 
indicating that substrate stiffness affects the transmis-
sion of directional cues. Manipulation of myosin-II ac-
tivity and cadherin–catenin complexes revealed that 
this transmission is mediated by coupling of contractile 
forces between neighboring cells. Thus, our findings sug-
gest that the mechanical environment integrates in a 
feedback with cell contractility and cell–cell adhesion to 
regulate collective migration.
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Figure 1. Collective migration of MCF10A epithelial cell sheets on PAA gel substrates of various compliances. (A) Progression of wound healing on soft 
(3 kPa) and stiff (65 kPa) substrates. Red lines trace the wound edge; blue line on 12-h images reflects the wound edge at 0 h after wounding. (B) The 
distance advanced by cell sheets over 14 h of wound healing on various substrate stiffnesses. (C) Tracks of cell movements overlaid with images of 
H2B-mCherry–labeled nuclei in cell sheets at 12 h after wounding on soft (3 kPa) and stiff (65 kPa) substrates. (D and E) Mean speed (D) and mean 
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edge accelerated within the first few hours, reaching a steady-
state speed 8–10 h after wounding. The overall distance cov-
ered by the migrating sheet in 14 h increased with increasing 
substrate stiffness (Fig. 1 B and Video 1). This correlation was 
also observed with collagen-I coating (Fig. S1 C).

The contribution of cell proliferation to wound healing 
was minimal on both soft and stiff substrates, similar to previ-
ous observations on glass substrates (Poujade et al., 2007). In-
hibition of cell division with mitomycin C (Wrobel et al., 2004) 
did not significantly decrease sheet edge advancement (Fig. S1, 
D and E). Rather, the advancement of the sheet was achieved by 
spreading and translocation of existing cells. This is further in-
dicated by the decrease in cell density as the sheets advanced 
into the wound (Fig. S1 F) and the increase in mean cell area at 
the wound edge (Fig. S1 G). The increase in cell area was 
greater on stiffer substrates and was likely not accompanied by 
a change in cell volume because the mean cell height was lower 
on stiffer substrates (Fig. S1 H).

Substrate stiffness affects the migratory 
behaviors of single cells within a cell sheet
Next, we examined the migratory properties of individual 
cells within the sheet using a custom nuclei detection and 
tracking software (Fig. 1 C and Video 2; Jaqaman et al., 2008). 
The migration speed of individual cells within the cell sheet 
increased with increasing substrate stiffness (Fig. 1 D), con-
sistent with faster wound closure on stiffer substrates. Inter-
estingly, the epithelial sheet showed a broader range of rigidity 
sensing and response compared with sparsely seeded cells, 
which displayed high sensitivity of migration speed to sub-
strate stiffness between 2 and 3 kPa but little sensitivity in the 
range of 8–65 kPa (Fig. S2 A).

We also found that the migration speed of individual 
cells decreased as a function of the cells’ distance from the 
wound edge (Figs. 1 D and S2 B). The presence of this gradi-
ent is independent of substrate stiffness and has been ob-
served in a previous study using glass substrates (Farooqui 
and Fenteany, 2005).

To assess the directionality of individual cell move-
ments, we projected the velocities of cells undergoing collec-
tive migration onto the direction of wound closure (Figs. 1  
E and S2 C). On the softer substrates (2 and 3 kPa), the mean 
projected cell migration velocity was lower compared with 
that on stiffer substrates (35 and 65 kPa) and dropped rapidly 
toward zero for cells further from the wound edge in the cell 
monolayer. In contrast, on the stiffer substrates, cells >500 µm 
from the wound edge contributed positive velocity in the di-
rection of wound healing. These results indicated that cells 
migrate with greater directionality toward the wound and sug-
gested that guidance cues extended further into the sheet on 
stiffer substrates.

Trepat et al., 2009). However, other studies concluded that sub-
strate stiffness does affect collective migration. Increasing sub-
strate stiffness was found to promote the scattering and migration  
of fibroblasts and epithelial cells from cell clusters in vitro  
(de Rooij et al., 2005; Guo et al., 2006; Saez et al., 2007) as well 
as the migration of neonatal rat heart tissue cells from tissue  
explants ex vivo (Guo et al., 2006). For confluent epithelial 
sheets, modulating the viscoelasticity of the substrate was 
also found to influence coordination in cell movement veloci-
ties (Murrell et al., 2011).

Our study sought to systematically investigate whether 
and how substrate stiffness affects epithelial sheet migration. 
We developed a wound-healing assay suitable for the study of 
collective migration on PAA gel substrates with a range of 
compliances and performed long-term fluorescent time-lapse 
imaging to monitor the movement of MCF10A epithelial cell 
sheets into the wound region. Using nuclei detection and track-
ing software, we characterized cell movements and cell–cell 
coordination in the sheet and analyzed effects of substrate stiff-
ness, cell–cell adhesion, and myosin contractility. Our results 
indicate that cells at the wound edge sense substrate stiffness, 
and this information is relayed to cells further back in the sheet 
through mechanical cell–cell interactions, which depend on 
cadherin-mediated cell–cell adhesions and actomyosin contrac-
tility. We also show that the efficiency of this mechanical com-
munication gradually decays over larger distances from the 
wound edge in a substrate stiffness-dependent fashion. Overall, 
our analysis of collective cell migration under various mechanical 
and molecular conditions offers new insights into how the me-
chanical microenvironment and cell–cell adhesions regulate 
sheet migration.

Results
We investigated how substrate stiffness affects collective mi-
gration of immortalized mammary epithelial cell (MCF10A) 
sheets using a wound-healing assay on compliant PAA gel 
substrates. To prevent damage to the substrates by wound scratch-
ing, we used a constraint removal method that involves place-
ment of a physical barrier over a portion of the matrix substrate 
(Block et al., 2004; van Horssen et al., 2006; Poujade et al., 
2007). Removal of the barrier opens up a “wound,” into which 
the cells migrate (Fig. S1, A and B; and Video 1). By varying 
the cross-linking ratios of the PAA gel, we modulated the 
stiffness of the substrate in the range from 2 to 65 kPa.

Substrate stiffness affects the speed of 
epithelial cell sheet migration
We measured the sheet edge advancement over a time period of 
14 h after barrier removal using automated tracing of the wound 
edge (Fig. 1 A). Irrespective of the substrate stiffness, the sheet 

wound-directed velocity (E) of individual cells within the collectively migrating cell sheet at 12 h after wounding, plotted as a function of cell distance from 
the wound edge. (F) Mean cell migration persistence for cells positioned at various distances from the wound edge after 5 h of migration starting at 8 h 
after wounding. N = number of experiments; n = total number of cells measured from N experiments. Error bars show 95% confidence interval of the mean 
(95% SEM); all nonoverlapping error bars are statistically significant with P < 0.05. Bars, 100 µm.
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high persistence. Together with the speed and directionality 
measurements, these data indicated that substrate stiffness mod-
ulates the migration of individual cells within the sheet, with in-
creased stiffness correlating with increased cell migration speed, 
directional migration toward the wound, and persistence.

Increase in substrate stiffness increases 
coordinated motion during  
collective migration
The dependency of migration parameters on substrate stiff-
ness suggested that the coordination of cell movements during 

We also examined the difference in migration persistence 
between cells on soft and stiff substrates. We measured the ratio 
of the net path length over the total path length for a period of 
5 h starting at 8 h after wounding, the time point when the collec-
tive migration rate reached a constant value (Figs. 1 F and S2 D).  
On both soft and stiff substrates, cells closer to the wound edge 
migrated more persistently than cells further from the wound 
edge. However, cells across all distances from the wound edge 
migrated more persistently on stiffer than on softer substrates. 
In addition, on the stiff substrates, cells 0–160, 160–320, and 
320–480 µm from the sheet edge all migrated with similarly 

Figure 2. Coordination of cell movements on soft and stiff substrates. (A) Depiction of normalized cell pair separation distance measurement. Measure-
ments were made starting 8 h after wounding (t0). See Materials and methods for details. (B) Mean normalized cell pair separation distance over a time 
course (t) of 5 h for all neighboring cell pairs within 160 µm from the wound edge. (inset) Mean cell pair separation distance at the end of the 5-h observa-
tion window for different substrate stiffness. (C) Mean normalized cell pair separation distance as a function of cell position from the wound edge for differ-
ent substrate stiffness. (D) Depiction of velocity correlation measurement. The migrating cell sheet was divided into bands of 160 µm starting from the wound 
edge. (inset) For each band, the velocities (arrows) of all cells were correlated with those of other cells falling in a ring of radius R and width R and then 
averaged. See Materials and methods for details. (E) Velocity correlation 12 h after wounding for cells 160 µm from the wound edge for different substrate 
stiffness. (F) Velocity correlation as a function of cell–cell distance R, for cells in different distance bands from the wound edge and at different time points 
after wounding. N = number of experiments. Each plot displays means of 150–3,000 cell measurements pooled from N experiments. All nonoverlapping 
error bars (95% SEM) are statistically significant with P < 0.05.
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(Fig. 4 A). On stiff substrates, a majority of wound edge cells 
were polarized with the Golgi anterior to the nucleus early on in 
the wound-healing process (Fig. 4 B), consistent with other 

collective migration could be responsive to the mechanical micro-
environment. To test this, we determined cell–cell coordination 
using two measures. First, we measured the change in relative 
distance between two neighboring cells over a 5-h time period 
(Fig. 2 A). To render the measurement invariant to differences 
in cell migration speed, we normalized the cell pair separation 
distance by the mean traveled distance of the two cells. Thus, an 
increase in the normalized cell pair separation distance would 
indicate greater cell dispersion or cell mixing. For all stiffness 
levels, the normalized cell pair separation distance measured 
between 8 and 13 h after wounding gradually increased before 
reaching a steady state. The steady-state cell pair separation dis-
tance was significantly higher on soft substrates (2 and 3 kPa) 
than on stiff substrates (35 and 65 kPa; Fig. 2 B), both for cells 
near the wound edge and cells located hundreds of micrometers 
behind the wound edge (Fig. 2 C).

Second, we measured the distance-dependent correlation 
in migration velocities between cells at specific time points 
(Fig. 2 D). Correlation values were calculated for cell–cell dis-
tances in the range of 0–500 µm and averaged in bands of 160 µm 
from the wound edge. This provided a measurement of the long-
range motion coordination of cells as a function of cell position 
within the sheet. On both soft and stiff substrates, the velocity 
correlation decreased with increasing cell–cell distance. Impor-
tantly, velocity correlation between cells for all cell–cell dis-
tances is higher on stiffer substrates (Fig. 2 E), consistent with 
the normalized cell pair separation distance. Furthermore, on 
both soft and stiff substrates, the correlation increased as wound 
healing progressed over time, with cells near the wound edge 
being more correlated in their migration velocities than cells 
farther from the wound edge (Fig. 2 F, 4 h and 8 h). Establish-
ment of high velocity correlation propagated into the cell sheet 
as time progressed. By 12 h after wounding, cells >480 µm from 
the sheet edge were correlated in their migration velocities sim-
ilar to cells near the wound edge on stiff, but not on soft, sub-
strates (Fig. 2 F). This is reminiscent of our observation that 
cells at a greater distance from the wound edge were able to mi-
grate more directionally and persistently on stiff compared with 
soft substrates.

We noted that the migration of individual cells was signif-
icantly less coordinated when an epithelial sheet was unwounded 
or when cells were seeded sparsely (Fig. 3). Moreover, the ex-
tent of velocity correlation in unwounded sheets or sparsely 
seeded cells displayed little dependency, if any, on substrate 
stiffness (Fig. 3, B and C). Hence, only when cells respond to a 
directional cue, do they coordinate their movements in a sub-
strate stiffness-dependent fashion.

Substrate stiffness affects Golgi 
orientation and the direction  
of lamellipodial protrusions
Previous studies have shown that cell polarization is important 
for the directionality and persistence of cells migrating either as 
single cells (Ridley et al., 2003) or as leader cells during collec-
tive migration (Reffay et al., 2011). We therefore examined the 
direction of cell polarization by measuring the position of GFP-
labeled Golgi with respect to the nuclei and the wound edge 

Figure 3. Analysis of coordination of cell movements in unwounded 
monolayers and between sparse cells. (A and B) Mean normalized cell 
pair separation distance (A) and mean velocity correlation (B) for conflu-
ent, unwounded MCF10A monolayers on soft (3 kPa) and stiff (65 kPa) 
substrates compared with those for cells within 160 µm of wound edge 
undergoing collective migration at 12 h after wounding. (C) Mean velocity 
correlation for sparsely seeded MCF10A cells on various substrate stiff-
ness. N = number of experiments. All nonoverlapping error bars (95% 
SEM) are statistically significant with P < 0.05.
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Figure 4. Analysis of cell polarization orientations on stiff and soft substrates. (A) MCF10As transfected with Golgi-GFP undergoing wound healing on soft 
(3 kPa) versus stiff (65 kPa) substrates. Bar, 50 µm. (B) The orientations of Golgi relative to the direction of wound healing, as measured from centroids of 
cell nuclei, were plotted in rose plots at various time points after wounding for cells at the wound edge. The direction of each bar in the rose plots indicates 
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soft and stiff substrates (Fig. 5 B). Furthermore, cellular myosin 
activity correlated with focal adhesion size, which was higher 
in collectively migrating cells on stiff substrates, particularly at 
the wound edge (Figs. 5 C and S3 A). These results are consis-
tent with previous studies of single cells having higher myosin 
activity (Engler et al., 2006; Clark et al., 2007a; Kuo et al., 2011) 
and larger focal adhesions (Pelham and Wang, 1997; Engler  
et al., 2004; Prager-Khoutorsky et al., 2011) on stiffer sub-
strates. These data suggested that the decrease in coordinated 
movement between cells on soft substrates may be caused by 
reduced myosin-II activity and that myosin-II activity may be 
important for relaying directional guidance cues from the wound 
edge into the sheet.

To examine this possibility, we reduced myosin-II activ-
ity in cell sheets on soft and stiff substrates either using blebbi-
statin treatment or by knockdown of nonmuscle myosin-II 
isoform A (MIIA) or myosin-II isoform B (MIIB; Fig. S3,  
B and C). Treatment with blebbistatin decreased cell migration  
speed on stiff substrates to values similar to those on soft 
substrates (Fig. 5 D). Interestingly, the treatment had almost 
no effect on cell speed on soft substrates, consistent with the 
overall lower level of myosin-II activity. Knockdown of the 
individual myosin-II isoforms also significantly decreased cell 
migration speed on stiff substrates, although to a lesser extent 
than blebbistatin treatment, most likely because of residual  
myosin-II activity by the myosin-II isoform not targeted (Fig. S3, 
D and E). Moreover, decreased myosin-II activity also in-
creased cell pair separation distance and decreased velocity 
correlation during collective migration (Figs. 5, E and F; and S3, 
F–I; and Video 4). Together, our data show that myosin-II– 
mediated contractility contributes significantly to differences in 
cell migration speed, persistence, and cell–cell coordination on 
matrices of different compliances.

Regulation of cell–cell coordination by 
substrate stiffness depends on  
cadherin-mediated cell–cell adhesions
We next investigated how perturbations in cell–cell adhesion 
proteins affect cellular responses to variations in substrate 
stiffness. Cell–cell adhesion molecules have been shown to be 
important for collective migration in vitro (Macpherson et al., 
2007; Simpson et al., 2008; Vitorino and Meyer, 2008) and  
in vivo (Niewiadomska et al., 1999) and are thought to be criti-
cal for coordinating cell movements (Arboleda-Estudillo et al., 
2010; Murrell et al., 2011; Tambe et al., 2011). We chose to 
focus our investigation on cadherin-mediated cell–cell adhe-
sions as those are particularly relevant for maintenance of 
epithelial cell sheets (Simpson et al., 2008). Although disrup-
tion of adherens junctions by siRNA-mediated knockdown of  
P-cadherin (siCDH3) increased the migration speed of cells near 
the wound edge, it had no significant effect on the advancement 

studies (Desai et al., 2009; Dupin et al., 2009). In addition, cells 
several rows behind the wound edge were similarly polarized 
(Fig. 4 C). This correlated with the high coordination of cell 
movements on stiff substrates, which also extended from the 
wound edge into the cell sheet. On soft substrates, the polariza-
tion direction was less coordinated. Although the majority of 
wound edge cells were polarized at 12 h after wounding with 
the Golgi anterior to the nucleus, the Golgi orientation varied 
greatly just one cell layer behind the wound edge (Fig. 4 C). 
Because Golgi orientation is influenced by microenvironmental 
conditions (Pouthas et al., 2008; Desai et al., 2009; Doyle et al., 
2009; Dupin et al., 2009), our results suggest that cell polariza-
tion on soft substrates is more influenced by local cell–cell, 
cell–matrix, and other morphological cues, whereas cells on 
stiff substrates are coupled globally.

Lamellipodial protrusions are also known to guide cell 
migration (Small et al., 2002; Ridley et al., 2003). During col-
lective migration, cells at the wound edge and within the cell 
sheet all actively migrate, the latter with the aid of cryptic 
lamellipodial protrusions extended beneath adjacent cells 
(Farooqui and Fenteany, 2005). We therefore also evaluated the 
direction of lamellipodial or cryptic lamellipodial protrusions 
by confocal time-lapse microscopy of cells expressing GFP-
paxillin. On stiff substrates, the protrusions extended mostly  
toward the direction of the wound closure, even for cells >500 µm 
from the wound edge. On soft substrates, the directions of the 
protrusions were more randomly distributed the farther the cells 
were located away from the wound edge (Fig. 4 D and Video 3). 
These results were consistent with our normalized cell pair 
separation distance and velocity correlation measurements. 
Together with the Golgi orientation measurements, they pro-
vided a cellular level explanation for the observation that 
cells migrate more coordinately on stiffer substrates.

Myosin-II contractility mediates the 
effects of substrate stiffness on collective 
migration properties
Analyses of single-cell migration revealed that cellular levels of 
myosin-II activity vary with substrate stiffness and that myosin-II–
mediated contractility regulates cell spreading and migration 
(Schwarz et al., 2003; Peyton and Putnam, 2005; Gupton and 
Waterman-Storer, 2006). Therefore, we hypothesized that the 
sensitivity of collective migration properties toward substrate 
stiffness may be related to differential modulation of myosin-II 
activity. Indeed, cells on stiff substrates had higher myosin ac-
tivity in MCF10A monolayers, as indicated by the higher level 
of serine19–phosphorylated myosin-II regulatory light chain 
(pMLC) detected by immunostaining (Fig. 5 A). pMLC stain-
ing was localized along actin fibers that aligned along the long 
axes of cells, and its level was higher in cells at the wound edge 
than in cells embedded >400 µm within the cell sheet on both 

the angular Golgi orientations, whereas the magnitude of each bar shows the fraction of cells with the indicated Golgi orientations. (C) Rose plots of Golgi 
orientations at 12 h after wounding for cells at various rows behind the wound edge cells. (D) The primary direction of lamellipodial protrusions in cells on 
soft (3 kPa) and stiff (65 kPa) substrates was quantified as in the direction of wound healing, opposite the direction of the wound, and toward other direc-
tions. Measurements were obtained for >30 cells at various distances from the wound edge from N experiments. Error bars show SEM.
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Hence, cadherin-mediated cell–cell adhesions were indeed 
crucial for cell–cell coordination during collective migration, 
irrespective of substrate stiffness.

Interestingly, all methods used to reduce cadherin-
 mediated cell–cell adhesions not only lowered cell–cell co-
ordination but also rendered the coordination in movements 
between these cells less responsive to differences in substrate 
stiffness. For example, the difference in the normalized cell 
pair separation distance between stiff and soft substrates be-
came insignificant when adherens junctions were perturbed 
(Figs. 6 E and S4, H and N). Similarly, the difference in ve-
locity correlation between cells on soft and stiff substrates 

of the wound edge compared with control cells on either stiff 
or soft substrates (Fig. 6, A and B). This is because the in-
crease in migration speed was offset by reduced directional 
migration (Fig. 6 C), lowered migration persistence (Fig. 6 D), 
and disrupted coordinated motion (Fig. 6, E and F). Similar 
results were obtained when adherens junctions were dis-
rupted by overexpression of a dominant-negative E-cadherin 
(DN-Ecad) variant (Onder et al., 2008) as well as siRNA- 
mediated knockdown of the cadherin-associated protein  
-catenin (siCTNNA1; Fig. S4 and Video 5). Reduction of 
cell–cell adhesions also disrupted the coordination in Golgi 
orientation on both soft and stiff substrates (Fig. 6, G and H). 

Figure 5. The effects of myosin-II contractility on collective migration on soft and stiff substrates. (A) Maximum intensity projection of z-stack images of col-
lectively migrating cells on soft and stiff substrates immunostained with pMLC (green), phalloidin as actin marker (red), and DAPI as the nuclei marker (blue). 
Bar, 50 µm. (B) Spatial variation of pMLC fluorescent intensity normalized by cell numbers. Error bars show SEM. (C) Focal adhesion lengths on stiff and 
soft substrates. Blue bars within box plots indicate means and SEM; data points outside the whiskers are outliers. (D) Effects of 25 µM blebbistatin treatment 
on the mean speed of individual cells at 12 h after wounding on soft and stiff substrates. (E and F) Effects of 25 µM blebbistatin on mean normalized cell 
pair separation distance (E; after 5 h of observation starting 8 h after wounding, see Fig. 2) and velocity correlation at 12 h after wounding (F) on soft and 
stiff substrates for cells 160 µm from the wound edge. N = number of experiments; n = total number of cells measured from N experiments. *, P < 0.05; 
**, P < 0.005; ***, P < 0.0005. Nonoverlapping error bars in D–F (95% SEM) are statistically significant with P < 0.05.
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knocked down (Fig. S5, A and B). Perturbing cell–cell adhe-
sions also disrupted the supracellular actomyosin fibers that 
aligned across multiple cells (Fig. 7 A). siCDH3 or siCTNNA1 
also altered the pMLC level in cells. Although collectively 
migrating control cells showed higher pMLC levels at the 
wound edge compared with within the cell sheet (Fig. 5,  
A and B), disrupting cell–cell adhesions resulted in a dimin-
ished pMLC gradient for cells within 200 µm of the wound 
edge on stiff substrates, where the knockdown cells were 
mostly scattered (Fig. 7, A and B). Beyond 400 µm from the 
wound edge, where the knockdown cells were still in a 
monolayer, the pMLC immunofluorescence intensity was 
greatly decreased relative to the wound edge cells, and the 
decrease was more dramatic compared with that for control 

was reduced when adherens junctions were targeted, espe-
cially for cells further apart (Figs. 6 F and S4, I and O). This 
showed that the influence of substrate stiffness on collective 
migration required the maintenance of cell–cell adhesions by 
adherens junctions.

To further investigate the role of cell–cell adhesions in 
rigidity sensing, we examined focal adhesions, actin struc-
tures, and pMLC levels in cells on soft and stiff substrates 
with or without disrupting cell–cell adhesions. Cells with 
siCDH3 or siCTNNA1 still had significantly larger focal ad-
hesions on stiff substrates compared with on soft substrates. 
Nevertheless, the difference in focal adhesion sizes between 
wound edge cells and cells >400 µm from the wound edge on 
stiff substrates was reduced when adherens junctions were 

Figure 6. The effects of P-cadherin knockdown (siCDH3) on migration properties during wound healing. (A) Effects of siCDH3 treatment on mean distance 
advanced by the cell sheet. (B–F) Migration properties of siCDH3-treated cells undergoing wound healing on soft (3 kPa) and stiff (65 kPa) substrates, 
compared with control cells, plotted at same time points after wounding and distances from wound edge as in Figs. 1 and 5. (G and H) Golgi orientation 
at 12 h after wounding on soft (3 kPa) or stiff (65 kPa) substrates. N = number of experiments; n = total number of cells measured from N experiments.  
All nonoverlapping error bars (95% SEM) are statistically significant with P < 0.05.

http://www.jcb.org/cgi/content/full/jcb.201207148/DC1
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Discussion
Collective migration is mechanosensitive
The data collected in this study demonstrated significant differ-
ences in the speed, persistence, directionality, and coordination 
of individual cells during collective migration on soft versus 
stiff substrates. Strikingly, the coordination of cell movements 
extended deeper into the cell sheet from the wound edge on 
stiffer substrates. Similar to single migrating cells, mechano-
sensing and response of collectively migrating cells involve 
changes in myosin-II contractility levels (Figs. 5 and S3; Engler 
et al., 2006; Clark et al., 2007a; Kuo et al., 2011). However, the 
response to substrate stiffness was different between collective 
and single-cell migration (Figs. S1 and 3), suggesting distinct 
mechanisms for mechanosensing. We find that the presence of 
a directional cue, the maintenance of cell–cell adhesions, and 
the activity of myosin-II contractility are essential factors in 
collective rigidity sensing and response.

Wound edge cells promote the coordination 
and mechanoresponse of the  
migrating sheet
The presence of a common directional cue, in our case an open 
wound region, is required for a differential collective response 
of the cell sheet to varying substrate stiffness. Sparsely seeded 
cells migrating in the absence of a chemotactic or durotactic 

cells (Fig. 7 C). Hence, cells with reduced cell–cell adhesion 
seem unable to activate myosin-II–mediated contractility at 
large distances from the wound edge.

Low contractility attenuates the effects 
of disrupting cell–cell adhesions on 
coordinated migration
We noted that the reduction of cell–cell adhesions disrupted 
coordinated migration to a lesser extent on soft substrates, sug-
gesting that low contractility attenuates the loss of coordination 
induced by the weakening of cell–cell adhesions (Fig. 6, E and F). 
In support of this possibility, cells in which both MIIA and  
-catenin were down-regulated displayed better coordination 
and increased velocity correlation compared with cells in which 
-catenin alone was down-regulated (Figs. 8, A and B; and 
S5 C). To further address the relationship between myosin con-
tractility and cell–cell adhesion, we compared the effects of in-
creasing concentrations of blebbistatin on control and P-cadherin 
down-regulated cells. Treatment of control cells with increasing 
concentrations of blebbistatin decreased cell–cell coordination. 
However, in cells treated with siCDH3 (which displayed weak 
cell–cell coordination), low concentrations (5 and 10 µM) of 
blebbistatin partially rescued the weak coordination (Figs. 8  
C and S5, D and E; and Video 6). This suggests that cell contractil-
ity may promote or disrupt coordinated movement depending 
on the strength of cell–cell adhesions.

Figure 7. The effects of siCDH3 and siCTNNA1 on actin organization and pMLC level in cells during wound healing. (A) Maximum projections of confocal 
immunofluorescence images of pMLC (green) costained with phalloidin (red) and DAPI (blue) in control and knockdown cells at the wound edge and within 
the migrating cell monolayer. Insets are numbered and magnified at the right with corresponding maximum projection E-cadherin immunofluorescence  
images. Bars, 50 µm. (B) Quantification of pMLC fluorescence intensity per cell, normalized to that of the control wound edge cells on stiff substrates. 
(C) pMLC fluorescence intensity per cell on stiff (65 kPa) substrates, normalized to that of wound edge cells for each condition. Error bars show SEM. 
N = number of independent experiments. *, P < 0.05; **, P < 0.005; ***, P < 0.0005.

http://www.jcb.org/cgi/content/full/jcb.201207148/DC1
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cell pair separation distance (Fig. 2, B and C), higher velocity 
coordination (Fig. 2, E and F), and greater percentages of 
wound-oriented cell polarization (Fig. 4, A–C) and lamellipo-
dial protrusion (Fig. 4 D) on both soft and stiff substrates. The 
strongest evidence for a front-to-back guidance is the time evo-
lution of velocity correlation after wounding (Fig. 2 F). Cells 
closer to the wound edge became coordinated first followed by 
a wave of coordination propagating into the sheet, irrespective 
of substrate stiffness (Fig. 2 F and Video 2).

The directional guidance provided by wound edge cells 
enhanced the response of the migrating cell sheet to substrate 
compliance. Velocity correlations for cells in sparsely seeded 
cultures or unwounded monolayers were not only low but also 
invariant to changes in substrate stiffness (Fig. 3). Furthermore, 
the wound edge cells displayed the greatest difference in migration 

gradient, or cells in a confluent but unwounded monolayer, dis-
played little to no correlation in migration velocities on either 
soft or stiff substrates (Fig. 3). This is consistent with a recent 
study showing that on elastic substrates, epithelial cells in an 
intact, confluent sheet exhibited only short-ranged cell–cell ve-
locity correlation (Murrell et al., 2011). It may also explain why 
we detected significant differences in the behavior of cells on 
different substrate stiffness, whereas a previous study measur-
ing unwounded, confluent cells did not (Yeung et al., 2005).

Both our study and previous studies showed that the di-
rectional cue is transmitted to cells embedded within the cell 
sheet by cells at or near the wound edge (Farooqui and Fenteany, 
2005; Vitorino and Meyer, 2008; Trepat et al., 2009; Vitorino  
et al., 2011). For example, cells closer to the wound edge had 
greater wound-directed velocity (Fig. 1 E), lower normalized 

Figure 8. Effects of lowering myosin contractility in cells with reduced cell–cell adhesions. (A and B) Normalized cell pair separation distance (A) and 
velocity correlation (B) for control cells, cells treated with siCTNNA1, MIIA knocked down cells, and MIIA knocked down cells treated with siCTNNA1 on 
stiff (65 kPa) substrates. (C) Velocity correlation for control and siCDH3-treated cells on glass after blebbistatin treatment. Inset shows velocity correlation 
at R = 225 µm for siCDH3 cells. N = number of experiments. All nonoverlapping error bars (95% SEM) are statistically significant with P < 0.05. For the 
inset in C, statistical significance was specifically calculated for 0, 5, and 10 µM blebbistatin treatments to highlight the partial rescue in velocity correlation 
with low dose blebbistatin treatment. **, P < 0.005; ***, P < 0.0001.
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as during D. discoideum slug formation (Knecht and Shelden, 
1995) and Drosophila border cell migration (Edwards and  
Kiehart, 1996).

On the other hand, we found that for cells with weakened 
cell–cell adhesions, a reduction in myosin-II activity by MIIA 
knockdown or by low doses of blebbistatin treatment could par-
tially rescue the loss of cell–cell coordination (Figs. 8 and S5,  
D and E). Consistent with this, down-regulation of cell–cell  
adhesions disrupted coordinated movement less severely on soft 
substrates (Fig. 6), where myosin-II activity is already attenu-
ated. These results suggest that high contractility impairs coor-
dination of cells with weakened intercellular adhesion. Most 
interestingly, the partial rescue of coordinated movement in 
cells with knockdown of cell–cell adhesions was not detected at 
higher concentrations of blebbistatin treatment, indicating that 
sheet movement is more coordinated when cell contractility and 
the strength of cell–cell adhesions are balanced appropriately. 
The delicacy of this balance for coordinated migration is further 
indicated by the finding that increasing contractility at cell–cell 
adhesions could lead to a loss of cell–cell cohesion and disrupt 
collective migration (Hidalgo-Carcedo et al., 2011).

Model of mechanical regulation  
of collective migration
Collectively, our results support the model shown in Fig. 9 
for the collective response of an epithelial sheet to substrate 
stiffness. Cells at the wound edge receive a directional cue, 
which causes them to polarize. Polarization involves the exten-
sion of protrusions, orientation of the Golgi anterior to the nu-
cleus, and alignment of actin fibers, all in the direction of wound 
healing. Polarization is influenced by cellular actomyosin con-
tractility and cell–cell adhesions, which physically link the cells 
within the cell sheet. Through these linkages, polarized contrac-
tile forces are transmitted to the submarginal cells. The submar-
ginal cells respond to the directional forces by also polarizing 
and activating its myosin contractility. This process propagates 
into the cell sheet during collective migration, allowing for the 
rearward transmission of the directional cue. Substrate stiff-
ness regulates this process by modulating cellular contractility 
through cell–matrix mechanotransduction, especially at the 
wound edge. Based on this model, down-regulation of myosin-II 
activation by softer substrate, blebbistatin treatment, or MIIA 
knockdown all reduces the contractile forces transmitted be-
tween cells and therefore the transmission of the directional 
cue. Similarly, down-regulation of cell–cell adhesions disrupts 
the force-mediated transmission of directional cues.

Although we cannot rule out contributions from solu-
ble factors and signaling molecules (Fenteany et al., 2000;  
Matsubayashi et al., 2004; Yin et al., 2007; Block and Klarlund, 
2008), a mechanical transmission of the directional cue is not 
only supported by our data but implicit in the results of other 
studies. Cells have been shown to exert shear stresses on each 
other during collective migration (Trepat et al., 2009; Tambe 
et al., 2011), and cadherin-mediated cell–cell adhesions do 
transmit forces (Liu et al., 2010; Maruthamuthu et al., 2011). 
Furthermore, these forces are able to direct cell protrusions 
(Weber et al., 2012).

speed (Fig. 1 D), persistence (Fig. 1 F), spreading area  
(Fig. S1 G), focal adhesion size (Fig. 5 C), and myosin contrac-
tility (Fig. 5 B) on soft and stiff substrates compared with cells 
embedded within the migrating cell sheet. Thus, wound edge 
cells are more responsive to substrate stiffness than cells em-
bedded within the cell sheet.

Collective rigidity sensing and response 
is dependent on cadherin-mediated 
transmission of the guidance cue during 
wound healing
Disruption of cell–cell adhesions by overexpressing DN-Ecad 
or by knocking down P-cadherin or -catenin all consistently 
reduced the difference in migration properties, especially in 
cell–cell coordination, between cells on soft and stiff substrates 
(Figs. 6 and S4). Disrupting cell–cell adhesions also reduced 
the activation of myosin-mediated contractility even when the 
cells were on stiff substrates (Fig. 7). Cells embedded within 
the monolayer also displayed larger focal adhesions, similar to 
those of cells at the wound edge, when cell–cell adhesions were 
knocked down (Fig. S5, A and B). Hence, cell–cell adhesion in-
fluences cell–matrix mechanotransduction, which may be re-
lated to its role in relaying directional guidance cues from the 
wound edge into the sheet.

Previous experiments (Vitorino and Meyer, 2008; Tambe 
et al., 2011) and computational models (Lee and Wolgemuth, 
2011; Vitorino et al., 2011) have demonstrated the importance of 
cell–cell junctions in transmitting guidance cues and promoting 
coordination during collective migration. Consistent with this, 
we found that disrupting cell–cell adhesions significantly re-
duced cell migration directionality, persistence, and coordina-
tion during wound healing (Figs. 6 and S4). In addition, we 
showed that the adherens junctions in cells during collective migra-
tion were connected with the actomyosin network (Figs. 5 and 7). 
This suggested that contractile forces were transmitted between 
cells through cell–cell adhesions. Down-regulating cell–cell  
adhesions perturbed the supracellular actin fiber organization and 
the gradient in pMLC activation that propagated from the wound 
edge cells on stiff substrates (Fig. 7). Together, these data suggest 
that cell–cell adhesions transmit mechanical cues sensed by the 
wound edge cells during collective migration.

Substrate stiffness regulation of 
coordinated movement depends on the 
balance between myosin-II contractility  
and cell–cell adhesion strength
Finally, our results demonstrated the importance of balance be-
tween cell–cell adhesions and myosin contractility for mechano-
sensation in collective migration. In the presence of cell–cell 
adhesions, myosin-II contractility contributed positively to co-
ordinated movement. Lowering contractility by blebbistatin treat-
ment or myosin knockdown reduced coordinated movement 
(Figs. 5 and S3), consistent with previous studies of increased 
cellular protrusive activities and decreased wound-directed mi-
gration with reduced myosin contractility (Farooqui and Fenteany, 
2005; Kolega, 2006). Our data also supported the importance of 
myosin-II activity in regulating collective migration in vivo, such 
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Figure 9. Side view model of mechanoresponsive collective migration of MCF10A cells. To achieve coordination in cell movements, cells at the wound 
edge respond to directional cue by front-rear polarization (P) in the direction of wound healing. The establishment and maintenance of cell polarity require 
actomyosin contractility (M), and they are influenced by cell–cell adhesions (C). Actomyosin contractility is governed by focal adhesions (FA) and cell–cell 
adhesion signaling. At the same time, actomyosin contractility promotes the formation and maturation of both focal adhesions and cell–cell adhesions 
(double-headed arrows). Actomyosin contractility can also be a negative regulator of cell–cell adhesions (flat-end arrow). The feedback coupling between 
actomyosin contractility and focal adhesions is stronger on stiff substrates and at the wound edge compared with >500 µm into the sheet, whereas within 
the sheet, the coupling between actomyosin contractility and cell–cell adhesions is stronger than between actomyosin contractility and focal adhesions. 
Forces generated by actomyosin contractility are transmitted to neighboring cells across cell–cell adhesions (blue dots connected by a line), where they 
activate actomyosin contractility and promote front-rear polarization in the follower cells. Propagation of front-rear polarization beyond the wound edge 
into the monolayer leads to cell–cell coordination. Various perturbations studied in this work affect focal adhesions, actomyosin contractility, and cell–cell 
adhesions, which in turn affect force transmission and front-rear polarization, leading to different levels of motion coordination. The sizes of the letters reflect 
relative magnitudes, and letters with asterisks indicate a parameter that is inferred and not directly measured in this study. All arrows are inferred, and the 
widths of the arrows reflect the relative strengths of interactions compared across the scenarios.
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cross-linker sulfosuccinimidyl hexonoate (Thermo Fisher Scientific) was 
used to couple ECM proteins to the PAA gel substrates. Unless otherwise 
indicated, 10 µg/ml fibronectin (Sigma-Aldrich) was used as the ECM pro-
tein to functionalize the PAA gel substrates for cell seeding.

Generation of PAA gel substrates of various stiffnesses was per-
formed by modulating the ratios of acrylamide to bis-acrylamide in solu-
tion. The ratios of acrylamide/bis-acrylamide used included 5:0.03%, 
4:0.15%, 5:0.3%, 10:0.2%, and 10:0.3%, yielding stiffness of 2.05 ± 
0.95, 3.05 ± 0.68, 8.33 ± 3.38, 33.90 ± 16.50, and 69.90 ± 21.76 kPa 
(2, 3, 8, 35, and 65 kPa), respectively. The elastic moduli were mea-
sured with the magnetic bearing rheometer (AR-G2; TA Instruments) and 
were generally consistent with literature values (Williams et al., 2008; Tse 
and Engler, 2010).

To conduct wound-healing assays on the PAA gel substrates, 
blocks of 5 mm wide × 13 mm long × 10 mm high were constructed  
using polydimethylsiloxane (PDMS) and blocked with 1% BSA in PBS for 1 h 
to protect against cell and matrix adhesions. A single PDMS block was 
placed atop the PAA gel substrate in each well. These PDMS blocks acted 
as a barrier to prevent cell adhesion to the PAA gel surfaces beneath the 
blocks. 3 × 105 MCF10A cells were then seeded in each well overnight. 
Immediately before imaging, the PDMS blocks were removed, allowing 
cell migration into the newly revealed cell-free, or “wound,” region.

To verify that the PDMS block removal did not perturb the fibro-
nectin coating, PAA gels were coated with 10 µg/ml rhodamine-labeled 
fibronectin (Cytoskeleton) in a set of control experiments. After block  
removal, multiple wide-field epifluorescence images were captured at 
both the wound regions and the nonwounded regions on all five sub-
strate stiffnesses, and the fluorescence intensity of the rhodamine-fibronectin 
was measured using ImageJ (National Institutes of Health). Two indepen-
dent experiments were performed.

Fluorescent time-lapse imaging of cell migration
Fluorescent time-lapse images of cell migration on PAA gel substrates 
were collected on an inverted motorized microscope (Ti-E; Nikon) equipped 
with a 20× Plan Apochromat 0.75 NA objective lens, a linear-encoded 
motorized stage (Nikon), a halogen trans-illuminator with a 0.52 NA 
long working distance condenser (Nikon), fast (<100-ms switching time) 
excitation and emission filter wheel with filters (excitation 480/40 nm  
and emission 525/50 nm for GFP; excitation 575/50 nm and emission 
640/50 nm for mCherry; Chroma Technology Corp.), fast transmitted 
and epifluorescence light path shutters (SmartShutter; Sutter Instrument), 
a cooled charge-coupled device camera (ORCA-AG; Hamamatsu Pho-
tonics), a custom-built microscope incubation chamber maintained at 
37°C and 5% CO2, and an integrated Perfect Focus System (Nikon) for 
continuous maintenance of focus. Images were acquired every 10 min 
at multiple stage positions with 2 × 2 binning and using the large image 
setting in NIS-Elements AR software v3 (Nikon), such that the final images 
at each position were stitched from 4 × 3 or 3 × 3 fields of view. Phase 
and epifluorescence images capturing H2B-mCherry signals were acquired 
at every time point.

Image analyses and statistics
Unless otherwise noted, analyses of cell migration, including automatic 
wound edge tracing, nuclei detection and tracking, and calculations of 
spatial classification and cell migration parameters, were performed 
with custom-written MATLAB programs (MathWorks). For plots of speed, 
wound-directed velocity, persistence, normalized cell pair separation 
distance, and velocity correlation, means were calculated by binning 
the measurements from the fraction of cells located within indicated dis-
tance bands from the wound edge (see Spatial classification section for 
details). Measurements were pooled from N experiments. All error bars 
in plots of wound-edge advancement, speed, wound-directed velocity, 
persistence, normalized cell pair separation distance, and velocity cor-
relation indicate errors of the mean at 95% confidence level. Nonover-
lapping error bars in these plots therefore indicate statistical significance 
with P < 0.05.

Standard box plots were created using JMP 9 (SAS Institute, Inc.), 
with the bottom and top of the box extending from the first quartile to the 
third quartile (interquartile range), the red horizontal line within each box 
indicating the sample median, and the whiskers extending to the outermost 
data points that fall within 1.5× interquartile range below the first and 
above the third quartiles. If the data values did not reach the computed 
range, the whiskers were determined by the maximum and minimum data 
point values. Data points outside the whiskers indicate outliers. Blue lines 
inside the box plots indicate means ± SEM.

Our model offers insights into the cross talk between cell–
matrix adhesions, actomyosin contractility, and cell–cell adhe-
sions during sheet migration. We speculate that the coupling 
between cell–matrix adhesions and the actomyosin network is 
stronger closer to the sheet edge, whereas within the cell sheet, 
cell contractility is more influenced by cell–cell adhesions. This 
explains why substrate stiffness affects wound edge cells more 
than cells within the epithelial sheet. This also provides an ex-
planation for the inability of cells with weakened cell–cell ad-
hesions to up-regulate myosin contractility deep within the 
sheet, despite having larger focal adhesions than control cells 
(Fig. S5, A and B). Our model further includes a negative regu-
lation of cell–cell adhesions by high actomyosin contractility. 
When cell–cell adhesions are weakened, the negative regulation 
leads to complete disruption of the connection and thus loss of 
motion coordination. Reduction, but not complete abrogation, 
of myosin contractility dampens the negative regulation and 
partially rescues the coordination between cells with weakened 
cell–cell adhesions.

The insight that substrate stiffness can influence proper-
ties of collective migration opens the door to new hypotheses in 
studies of morphogenesis, wound healing, and cancer cell inva-
sion. For example, changes in substrate stiffness resulting from 
differential deposition or organization of ECM proteins during 
organotypic branching morphogenesis (Sakai et al., 2003; 
Larsen et al., 2006; Williams et al., 2008; Mori et al., 2009; 
Muschler and Streuli, 2010) may serve to locally promote co-
ordination in the collective migration process. Changing stiffness 
associated with matrix deposition during wound healing may 
also promote coordinated collective migration for reepithelial-
ization (Martin, 1997; Li et al., 2007), and modulation of matrix 
stiffness could be exploited in the design of engineered scaf-
folds to accelerate wound healing (Clark et al., 2007b; Ghosh 
and Ingber, 2007; Macri and Clark, 2009). Finally, increased 
substrate stiffness leading to greater collective migration speed 
and coordinated movement could be an important factor in the 
enhanced tumor invasion associated with matrix stiffening 
(Wozniak et al., 2003; Paszek et al., 2005; Alcaraz et al., 2008; 
Levental et al., 2009).

Methods and materials
Cell culture
MCF10A cells expressing H2B-mCherry as a nuclear marker were gener-
ated by infection with the pBabe-H2B-mCherry retroviral vector and se-
lected with 300 µg/ml hygromycin. MCF10A cells were maintained in 
DME/F12 media supplemented with 5% horse serum, 20 ng/ml EGF, 0.5 
mg/ml hydrocortisone, 100 ng/ml cholera toxin, 10 µg/ml insulin, and 
penicillin/streptomycin (Debnath et al., 2003).

Constraint-removal wound-healing assay on PAA gel substrates
PAA gel substrates were prepared on 12-well glass-bottomed dishes (MatTek 
Corporation) similar to methods previously described (Pelham and Wang, 
1998). The glass surfaces were first modified by subsequent incubations 
with 0.1 N NaOH, 3-aminopropyltrimethoxysilane (Sigma-Aldrich), 
and 0.5% glutaraldehyde (Sigma-Aldrich). After washing and air drying, 
a drop of acrylamide/bis-acrylamide solution containing ammonium 
persulfate (Bio-Rad Laboratories, Inc.) and tetramethylethylenediamine 
(Sigma-Aldrich) was pipetted onto the modified glass surfaces. A cover-
slip was immediately placed over the droplets to ensure the formation 
of a flat gel surface after the solution polymerized. The bifunctional 
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and applied the local maximum filter (without taking the double logarithm). 
The Rosin method was again applied to the intensity histogram to cut off 
the maxima in the background. We now identified those maxima that were 
missed by the initial detection. These maxima had to fulfill an isolation cri-
teria, which was that the distance to any already existing maximum from 
the initial detection had to be larger than 2× r = 10 pixels. Only those iso-
lated maxima were added to the nuclei list, yielding the final result.

Nuclei tracking
The nuclei detection method yielded a point set of nuclei positions for each 
frame. Nuclei tracks were obtained by linking corresponding nuclei posi-
tions in consecutive frames using the single-particle tracking software de-
scribed in Jaqaman et al. (2008). The underlying algorithm determines 
the optimal configuration of links between two point sets by minimizing 
the overall linking cost. The linking costs were calculated as the Euclidian 
distances between trajectory heads projected by Kalman filtering from 
the previous frame into the current frame and the actually detected nuclei 
of a frame (Jaqaman et al., 2008). To account for cell divisions and to re-
pair broken tracks, the tracking algorithm also considers splitting events 
(but no merging) and performs a gap closing procedure. Only track seg-
ments with a length of at least three frames were considered for linking, 
and only gaps of maximum two frames were closed. All subsequent analy-
ses were focused on cells with final tracks longer than 12 frames.

Spatial classification
Results from sheet edge and nuclei detection were combined to group the cells 
according to their distance to the wound edge. To this end, we calculated the 
Euclidean distance transform of the sheet mask. This transform assigns to each 
pixel in the black and white image its distance to the nearest zero pixel (a pixel 
in the wound). This distance map was then used to group cells into bands of 
equal relative distance to the wound edge. Measurements of speed, wound-di-
rected velocity, persistence, velocity correlation, and normalized cell pair sep-
aration distance were plotted as functions of this relative distance to (or from) 
the wound edge. The chosen band widths were 250 pixels (160 µm) for the 
persistence, normalized cell pair separation distance, and velocity correlation 
measurements and 100 pixels (64 µm) for the other measurements. In some 
figures (Figs. 1 F and 2, C and F), measurements from multiple bands were 
plotted and denoted by “distance from wound edge.”

Velocity, speed, and wound-directed velocity
Cell velocities were deduced from individual cell tracks. To reduce noise 
resulting from nuclei detection or stitching jitter, the velocity of cell i at time 
point tj was defined as
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x ti j( )  is the position of cell i at frame j. Because frames were taken 

every 10 min, the moving mean defined in this paragraph had a time span of  
1 h. From the velocity measurement, two migration properties plotted in the fig-
ures were calculated: speed and wound-directed velocity. The speed of cell i at 
time point j was calculated as the magnitude of its velocity 

v ti j( ) .  Because the 
setup was designed such that wound healing always occurred along the x axis, 
the wound-directed velocity was given by the velocity’s x component vx,i(tj).

Persistence
The persistence of cell movement was defined as the ratio of the start to end 
point distance over the traversed path length:
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The mean in the first equation is taken over all cells i that, at time point t0, were 
within a distance (d) in the interval [d,d + d] from the wound edge, with 
d = 100 pixels (or 64 µm). For ballistic motion, P = 1. Smaller values 
indicate nonpersistent, random motion.

Automatic wound edge tracing and wound edge advancement  
distance measurement
The leading edges of the cell sheets during wound healing were enhanced 
from phase images by applying a steerable filter of first order (which corre-
sponds to a canny edge detector) with standard deviation of two pixels. 
The implementation followed (Jacob and Unser, 2004). After filtering, a 
closing was applied to the image with a disc of five pixels in radius (r) as 
a structuring element. The images were then converted into a black and 
white mask by unimodal thresholding the intensity histogram of the image 
(Rosin, 2001). The largest nonzero connected component in the black and 
white mask corresponds to the cell sheet. Single cells that broke away from 
the sheet edge also generate a nonzero connected component. These iso-
lated cells were, however, not considered as part of the migrating sheet. 
Potential holes within the sheet mask were closed, thus separating the  
image into two domains, one corresponding to the cell sheet and one to 
the open wound. To remove rough features along the sheet edge, the black 
and white mask was smoothed by image opening with a disk of 2× r as a 
structuring element. In the last step, the sheet edge was extracted as pix-
elated curve (Fig. 1, red lines; and Videos 1, 4, 5, and 6) from the black 
and white mask. The analysis stopped when the sheet occupied >90% of 
the field of view (10% was needed for reliable background estimation) or 
when the sheet started to touch the opposing side for the first time (the 
wound was partially closed). The mean distance advanced by the cell 
sheet was calculated from the wound edge traces at each time frame (one 
frame every 10 min), by the area difference between the sheet in the initial 
and current frame, and divided by the lateral y dimension of the field of 
view (wound closure is always in the x direction).

Nuclei detection
Nuclei of cells in the migrating cell sheets were detected using the H2B-
mCherry fluorescent signals. Because the cells were densely packed, nuclei 
very often touched each other. A simple segmentation of the nuclei image 
would thus have yielded islands of nuclei that then would have to be further 
dissected into single nuclei by applying a watershed algorithm. Here, we 
used a complementary, very robust approach that did not require image 
segmentation. The intensity profile of an isolated nucleus was of cylindrical 
shape: an almost flat and circular intensity maximum that quickly decayed 
(edges with steep gradient) to background levels. The diameter of the inten-
sity plateau was typically 10 pixels. Because the expression level of the 
histone marker varied from cell to cell, the intensity plateaus could have 
very different heights. Thus, the 1-d intensity profile of two neighboring nu-
clei looked like two consecutive step functions of different step heights. The 
gradient of such an intensity profile gave a strong response at the interface 
between the two nuclei, and this property was used here to dissect touch-
ing nuclei from each other. The gradient of the nuclei fluorescent image 
was calculated using a Sobel filter. This gradient image was then normal-
ized to the intensity range of the raw nuclei image and subtracted from the 
latter. All pixel values that fell below background value because of the sub-
traction were set to background level. Comparison of the raw and gradient 
subtracted image showed that this procedure created an intensity rim be-
tween neighboring nuclei. To equalize the very different intensity maxima, 
we next applied a double logarithm of the processed image and then fil-
tered with a broad Gaussian with a standard deviation of r = 5 pixels and 
subsequently applied a local maximum filter of circular support with r = 5 
pixels to detect all local maxima in the image. We next applied a unimodal 
thresholding (Rosin, 2001) to the intensity histogram of the local maxima 
to cut off the local maxima in the background.

Confluent monolayers could not be analyzed with the Rosin algo-
rithm because they did not contain the sufficient amount of background 
needed for this method to work properly. For these data, the threshold was 
determined by fitting a smooth spline to the intensity histogram of the local 
maxima. The threshold level was then set at the location of the first local 
minimum of the spline function. The rationale behind this approach was 
that the first local minimum in the histogram followed the first local maxi-
mum generated by maxima in the background. Thus, the first minimum in 
the spline function separated background from real signals. The obtained 
set of maxima corresponded to the nuclei positions.

The only weakness of this approach was the detection of nuclei 
shortly after cell divisions. The two daughter nuclei usually had higher fluor-
escent intensity and were smaller than the typical nuclei and thus gener-
ated high intensity gradients in the image. When subtracting this gradient, 
new daughter nuclei were often lost. Because these daughter nuclei were 
bright, they could easily be detected and added to the first set of nuclei by 
a second refinement step: We went back to the raw nuclei image and di-
rectly filtered it with a broad Gaussian of standard deviation r = 5 pixels 
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Unless otherwise noted, images acquired at 12 h after wounding 
were used to evaluate Golgi orientations during collective migration. Using 
the NIS-Elements software (Nikon), a vector was drawn from the center of 
the cell nucleus to the center of the Golgi-GFP signal for all cells expressing 
Golgi-GFP located at indicated distances or cell rows from the wound 
edge. These vectors represent the orientation of each cell’s Golgi with re-
spect to its associated nucleus. The angles between the drawn vectors and 
a vector pointing in the direction of wound healing were then recorded, re-
flecting Golgi orientations relative to the general direction of cell move-
ments. The recorded angles were plotted in rose plots, or angle histogram 
plots, using MATLAB, in which the direction of each bar reflects the re-
corded angles, and the magnitude of each bar indicates the percentage of 
cells exhibiting those angles. Cells with Golgi orientations between 0 and 
90° and between 270 and 0° were considered as having the Golgi ante-
rior to the nucleus in the direction of wound healing. Cells with Golgi ori-
entations between 90 and 270° were considered as having the Golgi 
posterior to the nucleus in the direction of wound healing. Between 34 and 
429 cells from at least three independent experiments were analyzed for 
each plot. Statistical analyses were performed using Student’s t tests, by 
evaluating whether the distributions of Golgi orientations were significantly 
different between the cell group of interest and cells located beyond 500 µm 
from the leading edge (which exhibited random Golgi orientation).

Imaging and analysis of lamellipodia or cryptic lamellipodia directionality
For measurements of lamellipodia or cryptic lamellipodia directionality, 
MCF10A cells stably expressing GFP-paxillin were mixed in a 1:10 ratio 
with unlabeled cells and seeded in wound-healing assays on PAA gel sub-
strates. Wound healing was allowed to progress overnight, after which the 
collectively migrating cells were imaged using a spinning-disk confocal  
microscope. The imaging system consisted of a inverted motorized micros-
cope (Ti-E) equipped with integrated Perfect Focus System, 40× Plan Apo-
chromat 0.95 NA objective lens, a spinning-disk confocal head (CSU-X1; 
Yokogawa Corporation of America) with internal motorized high speed 
emission filter wheel and a Borealis modification (Spectral Applied Re-
search) for increased light throughput and illumination homogeneity, a 
custom laser merge module (LMM-7; Spectral Applied Research) with 
acouto-optic tunable filters and 100–200-mW solid state lasers, a control-
ler (ProScan II; Prior Scientific), a cooled charge-coupled device camera 
(ORCA-AG; Hamamatsu Photonics), and a custom-built 37°C microscope 
incubator enclosure with 5% CO2 delivery. GFP fluorescence was excited 
with the 491-nm laser and collected with a quad 405/488/561/647-nm 
dichroic mirror (Semrock) and a 525/50-nm emission filter (Chroma Tech-
nology Corp.). Images were acquired with the MetaMorph image acquisi-
tion software (Molecular Devices) every 1.5 min for at least an hour, with 
the focal plane focused on the GFP-paxillin–labeled focal adhesions, allow-
ing us to clearly identify the z section of the cells where the cells were in 
contact with the PAA gel surface and where the lamellipodia or cryptic la-
mellipodia protruded. Images were collected at multiple stage positions in 
each time loop, including at the leading edge of the migrating cell sheet, 
two fields of view (250 µm) behind the leading edge, and four fields of 
view (500 µm) behind the leading edge. The primary directions of lamel-
lipodial or cryptic lamellipodial protrusion of the fluorescently labeled cells 
in each field of view were recorded from the time-lapse images. Between 
34 and 78 cells were analyzed from at least three independent experi-
ments for each distance from the wound edge.

Measurements of cellular pMLC levels
Immunostaining for pMLC was performed with the rabbit or mouse 
pMLC 2 (Ser19) antibody (Cell Signaling Technology) at 1:300 dilu-
tions. Cells on PAA gel substrates were allowed to undergo wound 
healing overnight (15–20 h) before fixation with 4% PFA (Electron  
Microscopy Sciences) and permeabilization with 0.1% Triton X-100 
(Thermo Fisher Scientific). Samples were incubated with the primary an-
tibody for 1 h and probed with Alexa Fluor 488, 568, or 647 second-
ary antibodies, as well as DAPI to label nuclei and phalloidin to label 
actin, for 1 h. Samples were imaged with the laser-scanning confocal 
microscope (AIR; Nikon) with a 60× Plan Apochromat 1.4 NA objec-
tive lens and NIS-Elements acquisition software. DAPI and Alexa Fluor 
488, 568, and 647 signals were excited with 404-, 488-, 561-, and 647-
nm lasers, respectively, and collected through a quad 405/488/561/647-
nm dichroic mirror and the 450/50-, 525/50-, 595/50-, and 700/75-nm 
emission filters, respectively. Z series optical sections at a step size of 0.35 µm 
were obtained at wound edge and multiple fields of view behind the lead-
ing edge. Laser intensity and exposure times were maintained at the same 
levels during all imaging sessions for each experiment. The mean protein 

Normalized cell pair separation distance measurement
Normalized cell pair separation distance quantified the divergence of initially 
neighbored cell tracks over time. Similar approaches had been used in non-
linear dynamics to study the sensitivity of trajectories on initial conditions 
(Strogatz, 1994). The equation we used is as follows:
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The numerator measured the change of cell-to-cell distance 
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 between the time points t0 and t, as depicted in  
Fig. 2 A. To generate a measure that was insensitive to differences in cell 
speeds between conditions, we divided this numerator with the mean of the 
path lengths traversed by the two cells between t0 and t,
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(Fig. 2 A). Numerically, Eq. 1 was evaluated by first finding all cells that were 
within a distance in the interval of [d,d + d] from the wound edge, with d =  
100 pixels (or 64 µm). Then, we averaged over all cell pairs i,j that were 
initially separated by a distance of less than Rmax = 50 pixels, or 32 µm, which 
was approximately the mean cell diameter. Thus, only pairs of nearest neigh-
bor cells were considered in this analysis. A high normalized cell pair separa-
tion distance measurement indicates that the local neighborhood around the 
cells was quickly disrupted during cell movements, i.e., low coordination in 
cell movements. Also, note that this measurement is dimensionless and that it 
is closely related to the angle  between two diverging cell trajectories. For
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and approximate linear cell motion, it holds that M/2 ≈ sin /2. Unless oth-
erwise noted (such as Fig. 2 C), all plots of normalized cell pair separation 
distance in the paper reflect measurements made starting 8 h after wounding 
(t0) over a time course of 5 h for all neighboring cell pairs within 160 µm from 
the wound edge.

Velocity correlation
The velocity correlation between two cells was calculated by the following 
function:
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The function Ct,d(R) measured the radial decay of the velocity correlation func-
tion at time point t for a cell at distance d from the wound edge. Here, R de-
noted the radial distance between the two cells i,j at positions 

 x t x ti j( ) ( ),  
that moved with velocities 







x t x ti j( ) ( ),  as depicted in Fig. 2 D. Numerically, 
this function was evaluated by first finding, at time point t, all cells i within a 
distance in the interval of [d,d + d] from the wound edge with d = 250 pix-
els (or 160 µm). For each cell within that group, we measured the pairwise 
distance to all other cells in the entire sheet and sorted them into radial bins 
[R,R + R], with R = 100 pixels (or 64 µm). Then, we averaged over all 
pairings i,j in a radial bin according to the aforementioned equation. Unless 
otherwise noted (such as in Fig. 2 F), all plots of velocity correlation in the  
paper reflect measurements made for all cells 160 µm from the wound edge 
at 12 h after wounding.

Imaging and analysis of cell polarization
For measurement of cell Golgi orientations, MCF10A-H2B-mCherry cells 
were incubated with Golgi-GFP (CellLight; Invitrogen) following the manu-
facturer’s instructions. Cells were then seeded for the constraint-removal 
wound-healing assays on PAA gel substrates. Fluorescent live-cell time-lapse 
imaging was performed as described in the section Fluorescent time-lapse 
imaging of cell migration, with additional acquisition of GFP signals at 
every third time point.
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of 1 ng/ml as in a previous study with MCF10A (Wrobel et al., 2004). In-
hibitors were added immediately after removal of the PDMS block and be-
fore imaging.

Online supplemental material
Fig. S1 shows the schematic of the constraint-removal wound-healing assay 
as well as evidence demonstrating that the difference in wound healing of 
MCF10As on soft and stiff substrates is not dependent on the specific ECM 
protein used on cell proliferation but rather is the result of differences in cell 
spreading and translocation. Fig. S2 shows more detailed data supporting 
that cells undergoing collective migration respond to changes in substrate 
stiffness. Fig. S3 shows that substrate stiffness alters focal adhesion sizes 
and that the effects of substrate stiffness on collective migration properties 
is dependent on MIIA but less so on MIIB, likely because of the different 
functions or expression levels of the two isoforms in MCF10A cells. Fig. S5  
shows that disrupting cell–cell adhesions alters focal adhesion sizes in 
cells undergoing wound healing and includes further evidence that the 
reduction in cell–cell coordination with weakened cell–cell adhesions 
can be partially rescued by low concentrations of blebbistatin. Video 1 
shows 14-h progression of MCF10A collective migration on soft (3 kPa) 
and stiff (65 kPa) substrates. Video 2 shows tracking of H2B-mCherry–la-
beled nuclei in the migrating MCF10A cell sheets from Video 1 on soft (3 
kPa) and stiff (65 kPa) substrates. Video 3 shows the lamellipodial and 
cryptic lamellipodial protrusion directions of cells undergoing collective 
migration. Video 4 shows that blebbistatin treatment reduces coordina-
tion during MCF10A wound healing. Video 5 shows the effects of dis-
rupting cell–cell adhesions on collective migration properties, including 
the reduction in coordinated cell movements. Video 6 shows the partial 
rescue of coordinated migration by low, but not high, concentrations of 
blebbistatin. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201207148/DC1.
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