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Abstract

Multi-beam scanning electron microscopy (mSEM) enables high-throughput, nano-resolu-

tion imaging of macroscopic tissue samples, providing an unprecedented means for struc-

ture-function characterization of biological tissues and their cellular inhabitants, seamlessly

across multiple length scales. Here we describe computational methods to reconstruct and

navigate a multitude of high-resolution mSEM images of the human hip. We calculated

cross-correlation shift vectors between overlapping images and used a mass-spring-

damper model for optimal global registration. We utilized the Google Maps API to create an

interactive map and provide open access to our reconstructed mSEM datasets to both the

public and scientific communities via our website www.mechbio.org. The nano- to macro-

scale map reveals the tissue’s biological and material constituents. Living inhabitants of the

hip bone (e.g. osteocytes) are visible in their local extracellular matrix milieu (comprising col-

lagen and mineral) and embedded in bone’s structural tissue architecture, i.e. the osteonal

structures in which layers of mineralized tissue are organized in lamellae around a central

blood vessel. Multi-beam SEM and our presented methodology enable an unprecedented,

comprehensive understanding of health and disease from the molecular to organ length

scale.

Author Summary

Until recently, the assessment of organ and tissue health relied on site-sampling (biopsy)

of micro-scale regions and was fraught with sampling errors. Overcoming these limita-

tions requires a means for seamless imaging of organs, from their cellular inhabitants to

whole organs, akin to charting a map of the organ and its resident cells. Map navigation

necessitates the capacity to zoom in and out of regions of interest, with high precision, as

well as to analyze relationships between cells, tissue degeneration and organ (patho-)phys-

iology. Here we describe the process, in technical detail, based on a world-first case

study of a human hip sample and its resident cell population. We acquired 55,000 nm-res-

olution images of the hip using multi-beam scanning electron microscopy (mSEM). To
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reconstruct the entire dataset, we developed stitching algorithms to maximize map preci-

sion at smallest length scales, and rendered them using the Google Maps API. This

enabled the exploration of the hip and its inhabitants in a seamless manner, from a global

to a high-resolution local view of a single cell. The resulting navigable maps are available

for research teams and the public alike to explore and to elucidate the cellular basis of tis-

sue degeneration and organ failure (mechbio.org).

Introduction

Cells and cellular connectivity undoubtedly play a substantial role in tissue and organ scale

behavior, yet mechanisms by which higher order system characteristics emerge from local cel-

lular and molecular phenomena remain a conundrum. Recent advances in coupled, multiscale

imaging and modeling of biological systems promise to transform the fields of physiology and

medicine [1,2]. Within that context, bridging across length scales presents a fundamental chal-

lenge [3–5]. Until recently, this challenge was addressed by studying large, complex systems

using imaging modalities with increasing resolution, linking the macroscopic and nanoscopic

worlds. This approach resulted in single, specific fields of interest with increasing resolution

but also with the intrinsic risk of sampling error, which could lead to devastating consequences

for a variety of medical applications (e.g. biopsy). The previous lack of a suitable imaging

approach that enables a seamless rendering of organ to subcellular structures provided the

impetus to apply multi-beam scanning electron microscopy (mSEM), a rapid throughput,

high-resolution technology originally developed for quality control of silicon wafers [6].

Electron microscopy (EM) can resolve morphological details at the nanometer scale and is

commonly used to characterize the structural and functional properties of biomaterials, bio-

logical tissues, and their cellular inhabitants [7,8]. The acquisition speed of EM, however,

limits the capturing of high-resolution images within reasonable time frames and therefore

typically is limited to areas within the micrometer range [9]. In contrast, multi-beam scanning

electron microscopy (mSEM) circumvents typical throughput limitations inherent to conven-

tional single-beam scanning electron microscopes (sSEM) [6]. Its novel design enables the

analysis of nanoscale morphologies across macroscopic specimens by implementing parallel

electron beams and a multi-channel detector [10,11]. Multi-beam SEM is capable of reducing

acquisition time by more than one order of magnitude and, therefore, of imaging larger sur-

face areas with remarkable resolution [11], paving the path for seamless multiscale imaging of

organ systems down to the cellular and even molecular scale [12]. As a consequence, this tech-

nology has drawn interest within the scientific community, particularly in areas related to

brain connectomics [13,14] and cross-scale musculoskeletal mechanobiology [2,10]. Already, a

few recent studies in connectomics have utilized mSEM to render volumetric image data from

murine specimens and reconstruct neuronal circuits with single-synapse resolution [13,14].

Another recent study from our lab demonstrated the feasibility of using high resolution, navi-

gable multiscale maps of human tissue, created for the first time with mSEM, to assess organ-

to cell-scale health using epidemiological approaches [12]. Here we describe technical chal-

lenges and solutions for the creation of such maps for biomedical applications, using human

sample datasets obtained with a mSEM prototype.

Current multi-beam SEM acquisitions run at speeds up to 1.2 MPixel/s, and typical acquisi-

tions often result in terabyte-size datasets comprised of thousands of individual image tiles

that, once combined, form one large complete image (Fig 1). Initial coordinates of individual

image tiles are recorded by the microscope stage. However, the precision of the stage can be
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worse than that of the nanometer resolution electron microscope. Additionally, the interac-

tions between electron beams and specimen samples, as well as residual illumination aberra-

tions exacerbated when imaging organ samples containing large, dense tissue areas, e.g. bone,

affect the relative positions of beams during mSEM imaging. These effects lead to tile misalign-

ment, which can then be addressed by a process commonly referred to as image stitching.

Stitching algorithms align and reconstruct sets of overlapping image tiles into seamless photo-

mosaics and are widely used in a variety of fields including microscopy, contemporary digital

mapping and panoramic photography. However, upon implementation of stitching and com-

pilation of the overarching image, another challenge remains that is the management, analysis,

and dissemination of large data repositories necessary to harness the power intrinsic to mSEM

in multiscale characterization of materials.

Following the extraction of preliminary images of human hip tissue using an mSEM proto-

type, we developed a novel computational framework for the reconstruction of mSEM data-

sets. Stitching was accomplished by combining image pixel-based alignment with global

registration accomplished using motion dynamics of mechanical systems. Using the Google

Maps API, we created an interactive map of our dataset. Our computational framework

Fig 1. Raw image data organization. Femoral neck tissue samples were acquired from human patients undergoing hip replacement. An area of

approximately 2.4 x 2.4 mm was imaged with a 61-parallel-beam Zeiss MultiSEM 505 prototype. The entire dataset was composed of 897 multi-beam fields-

of-view, each comprised of 61 tiles with a resolution of 10 nm.

doi:10.1371/journal.pcbi.1005217.g001
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potentiates the power of mSEM to enable seamless, multiscale study of organ systems com-

prised of tissues and their cellular inhabitants. Here we describe this computational frame-

work, its inherent challenges, as well as potential directions for the future.

Methods

2.0. Ethics Statement

Human hip bone samples were collected by Dr Ulf Knothe, of the Orthopaedic and Rheumato-

logic Institute of Cleveland Clinic, in accordance with Institutional Review Board protocol

#12–335. This protocol involved collection of tissues normally discarded in the course of sur-

gery. Due to this and the anonymization of all tissue samples prior to processing for specimen

preparation and imaging, as well as later reporting of data, no consent was necessary.

2.1. Specimen Acquisition

Femoral neck tissue samples were acquired from human patients (age and gender not dis-

closed) undergoing hip replacement and prepared according to techniques adapted from

atomic force microscopy studies [15]. To facilitate chemical fixation, these samples were sec-

tioned along the coronal and transverse planes, respectively. All specimen acquisitions were

completed by the Department of Cleveland Clinic Surgical and Pathology units, per IRB proto-

col guidelines [16].

2.2. Specimen Preparation

Undecalcified tissues were fixed in 2.5% glutaraldehyde, 4% formaldehyde, and 0.2M cacody-

late buffer at 4˚C. These tissues were then processed for bulk embedding in poly(methyl meth-

acrylate) (PMMA) to promote gradual polymerization within a vacuum environment. Upon

polymerization of the embedding medium, the specimens were polished, or precision CNC-

milled, to achieve mirror-like planarity. Thereafter, samples were prepared for carbon coating

and imaging. Selective etching took place, between imaging steps, using 0.02M HCl for 90s

and/or 10% NaOCl for 11 min, per our previous atomic force microscopy protocols [15,17].

This enabled imaging of the respective organic or inorganic phase of the extracellular matrix

from correlating tissues of the hip joint complex.

2.3. Multi-SEM Imaging

One human sample was imaged with a 61-parallel-beam Zeiss MultiSEM 505 prototype, which

operates with parallel electron beams arranged hexagonally to minimize electron-optical aber-

rations [10], using a landing energy in the range of 1–3 keV, 100 ns of dwell time per beam,

and a resolution of 10 nm. A surface area spanning 5.7 mm2 was imaged, resulting in 897

hexagonally shaped multi-beam fields of view (mFOV), comprised of nearly 55 thousand

high-resolution image tiles and a total of 75 thousand megapixels (Table 1). Each mFOV was

composed of 61 rectangular, single-beam image tiles arranged in a flat, hexagonal pattern (Fig

1), with a frame size of 1288 x 1120 pixels for each tile. Tile overlap ranged from 2.4–55%. The

stage used for this study operated with a precision of 2 μm. Image files were stored as bitmap

files, accumulating circa 77 GB of storage space. Pixel coordinates for individual single-beam

images were available from the microscope metadata, providing a first approximation for rela-

tive positioning.
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2.4. Image Alignment and Stitching

A Fourier-based direct alignment algorithm with a simple 2D planar motion model was con-

sidered to estimate the translational offsets between overlapping images [18]. Libraries from

the registration toolkit TrakEM2 (Fiji) [19,20] were employed to calculate phase correlations

[21] for each pair of overlapping image tiles, extracting a metric of pixel-to-pixel similarities,

the correlation coefficients, and translation vectors that maximize pairwise alignment quality.

The correlation coefficient and 2D translation vectors for the alignment of tiles i and j are here

denoted, respectively, as Rij and pij.

Due to the lower quality imaging of specific regions, some alignment parameters (Rij and

pij) were corrected to reduce the undesirable contribution of image artifacts to overall align-

ment. Pairings were considered unsatisfactory if they met at least one of the following criteria:

(1) had a correlation coefficient lower than R = 0.5, (2) had an initial residual length larger

than || r || = 300 pixels, (3) the resulting translation vector was larger than initial overlap

dimensions, or (4) the resulting translation vectors would result in lack of overlap. The align-

ment parameters of these unsatisfactory pairings were corrected to R = 0.5 and p equal to an

estimated translation vector. The estimated vector was calculated from the translation vectors

with high-quality alignment, considering the type of overlap (see S1A and S1B Fig). High-qual-

ity alignments were defined as all pairs (m, n) that fulfill Rmn > 0.9 (S1C Fig). The estimated

value of p of a specific alignment rejected by the aforementioned criteria was calculated as the

geometric center of the set of vectors pmn.

To globally register the entire dataset, pairwise residual errors were minimized using mass-

spring-damper (MSD) system dynamics similar to previously proposed elastic registration

models [22,23]. We chose this approach as opposed to other more common approaches, such

as least square (LS) minimization, as a way of reducing computer memory requirements while

maintaining feasible computation times, which become an issue for large acquisitions such as

the one presented here.

In a MATLAB simulation, each image tile was assigned a point mass concentrated at the

image centroid, with the particles of each overlapping pair of images connected by a spring

(Fig 2A). The springs were configured to exert zero restoring force, i.e. to reach their equilib-

rium length, if the corresponding pair of overlapping images was positioned in a way that max-

imizes pairwise alignment quality (Fig 2B). Image tiles (mass particles) have position, velocity

and accumulated force at any given time instant.

The dynamics of the system, derived from Newton’s Second Law, with Hooke’s law and a

damping force term, were modeled with the following second-order ODE:

m x:: þc x: þFk ¼ 0; ð1Þ

where x is the tile position vector, the over-dot denotes the time derivative, m is the mass of

Table 1. Dataset information.

Approximate scanned area (mm2) 5.69

Number of mFOVs 897

Total number of tiles 54,717

Number of pixels (megapixels) 75,276

Combined image dimensions (pixels) 318,848 x 352,895

Number of image pair overlaps 180,136

MB/mFOV 88.2

Total GB 77.35

doi:10.1371/journal.pcbi.1005217.t001

Creating High-Resolution Multiscale Maps of Human Tissue Using Multi-beam SEM

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005217 November 21, 2016 5 / 17



each particle, c is the damping coefficient of particle motion, and Fk corresponds to the net

spring forces vector. This term corresponds to the sum of the forces applied by all springs j
connected to a tile i

FkðiÞ ¼
X

j

kij rij ð2Þ

Fig 2. Global image registration was accomplished by modelling mass-spring-damper system dynamics. (A) Each image was assigned a point

mass while each overlapping pair of images was connected via a spring. (B) An equilibrium spring length was defined at the translation that optimizes tile

alignment, as calculated by phase-correlation. (C) Overlapping tiles and respective residual before alignment. (D) Aligned pair of overlapping tiles.

doi:10.1371/journal.pcbi.1005217.g002
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where

kij ¼ kðRijÞ
n

ð3Þ

is the spring stiffness and rij is the residual vector between tiles i and j. The string stiffness

expression was defined as a power law of R to favor the contribution of regions with high qual-

ity images. Its expression is defined by the maximum spring constant k, weighted by the pair-

wise correlation coefficient Rij, and an arbitrary power n. Pairwise residual vectors (i.e. the

relative positioning error between overlapping images) can be calculated using the position

vectors of tiles (xi and xj) and the relative image position vectors that best register the images

as follows:

rij ¼ ðxi � xjÞ � pij ð4Þ

The interconnected system of particles was configured with the mechanical parameters

listed in Table 2, arranged with initial estimated coordinates recorded by the microscope stage,

and allowed to come to equilibrium, reaching a lower energy configuration and maximizing

alignment (S1, S2 and S3 Videos). The center tile of an arbitrary mFOV was assumed as an

anchor point, and therefore its displacements in both directions for all time instants were con-

sidered zero. Differential equations were solved with MATLAB intrinsic function ode45,

which implements an explicit Runge-Kutta method with a variable time step to perform time

integration of the initial value problem. Optimal image tile montage was considered to be

reached when the change in root-mean-square (RMS) of all residuals between consecutive iter-

ations was less than 10−6 pixels. The integration step length was automatically chosen by the

solver. All numerical simulations were calculated on an Apple Mac Pro with 3.5GHz (6 core)

Intel Xeon E5 processor in single-thread mode and 64GB of memory, running OS X 10.11.1.

Parametric studies (not included in this manuscript) found simulations with n = 5 to yield the

lowest residual RMS and a damping ratio z ¼ c=ð2
ffiffiffiffiffiffi
mk
p

Þ � 0:14 (m = 1 kg, c = 0.25 Ns/m) to

converge to solution in shorter computational times.

We compared our global optimization approach with both unweighted [21] and weighted

least squares solutions using a collection of 60 mFOVs (3,660 tiles), excluding areas with wide-

spread image artifacts. Least square solutions were calculated using the lsqnonlin function

of Matlab, while the weighted optimization minimized transfer errors multiplied by Rn (n = 5,

same weight function used in the stiffness of our springs).

2.5. Maps

Once fully registered, the stitched dataset was imported into TrakEM2. Variations in bright-

ness amongst image tiles were minimized using non-linear blending [21].

Geographic information system (GIS) frameworks, such as Google Maps, frequently use

pre-rendered, multi-resolution sets of images, referred to as a tiled pyramid structure. We

adapted a TrakEM2-based CATMAID [23] exporter script [Beanshell script developed by Ste-

phan Saalfield, https://github.com/axtimwalde/fiji-scripts/blob/master/TrakEM2/catmaid-

export2.bsh] to render the tiled pyramid (S2 Fig) structure consisting of 11 zoom levels

Table 2. Parameters used for the mass-spring-damper system model.

m 1 kg

k 1 N/m

c 0.25 Ns/m

n 5

doi:10.1371/journal.pcbi.1005217.t002
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ranging from 0–10. The final, reconstructed mosaic of all single-beam images was partitioned

in PNG-compressed 256 x 256 pixel tiles that collectively constitute the maximum zoom

level (highest resolution). Tiles of higher zoom levels were recursively rendered by grouping

’squares’ of four tiles (512 x 512 pixels) and downsampling each ’square’ to a single, low-resolu-

tion 256 x 256 tile, doubling pixel size for each unitary decrement in zoom level.

Using the Javascript application programming interface (API) of Google Maps, we created a

custom map of a human femoral neck region, which was made freely accessible to the public on

www.mechbio.org/ploscompbiol. The pre-rendered pyramid tile directories were uploaded to a

web server with unique directory paths: ’(maxzoom—zoom)/y/y\_x\_(maxzoom—zoom)
.png’, where maxzoom represents the maximum zoom level, and x and y are the positions

within the tile coordinate system, as specified in the Google Maps API custom map documenta-

tion [https://developers.google.com/maps/documentation/javascript/maptypes]. The MapType

interface was utilized to create custom maps and specify the translation from screen to tile coordi-

nate frames.

Results

Phase-Correlation

The histogram distribution of correlation coefficient values, calculated for more than 180k

pairs of image overlaps, was negatively skewed, with overlapping image pairs concentrated at

high correlation values (close to 28% of all pairwise correlations were below R = 0.8), and a

median R value of 0.89 (Fig 3A). Overlapping image pairs with low R values were spatially con-

centrated in specific regions (Fig 3B) that correspond to the presence of local imaging artifacts

observed in the reconstructed dataset after stitching (Fig 3C). Dark regions with disconnected

signal patches were evident in the center of the scanned area and along the crack progressing

diagonally upwards. These imaging artifacts are manifested as nonexistent, low, or blurred sig-

nals (S3 Fig) and were attributed to concavities of specimen topography that shielded the sec-

ondary electrons, generated in those regions, from the detector. Blurred areas, specifically,

correspond to the regions with low R, arranged as vertical columns in Fig 3B.

Global Registration using MSD vs Least Squares

All three approaches (unweighted and weighted least squares minimization and our relaxation

model), calculated for a region of 60 mFOVs (Fig 4A), showed similar ability to minimize

registration errors, reducing the RMS of residuals by nearly 84% (Fig 4B). Least squares

approaches (unweighted and weighted) converged within slightly shorter CPU times (~48

minutes) than our MSD approach (~54 minutes). However, LS approaches required over 10

times more RAM than our MSD approach (7270 MB and 710 MB respectively).

Residuals

In the complete dataset, consisting of 897 mFOVs (54,717 tiles), the length of residual vectors,

|| r ||, was inversely related to local R values. A clear relationship exists between the spatial dis-

tribution patterns of || r ||, calculated before alignment parameter correction described in Sec-

tion 2.4 (Fig 5A), and local correlation coefficients, R, shown in Fig 3A. Areas of large residual

vector lengths were associated with regions that have poor pairwise alignment. Low R calcula-

tions can therefore lead to singularities on the large translation estimates, which are not repre-

sentative of actual alignment corrections. The vast majority (97.3%) of residual vector lengths

greater than 300 pixels correspond to pairings with correlation coefficient R< 0.7 (Fig 5B).

This motivates the correction employed in translation parameters and the expression used for
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spring stiffness in Eq 3, which guarantees lower forces applied in tile pairs with low coefficients

(and in most cases very large, nonrepresentative residuals) when compared to regions with

high alignment quality.

Our mechanical system-based optimization algorithm was able to reduce the RMS of resid-

uals by 76.6% and local || r || values, on average, by 72.6%. Fig 5C and 5D, respectively, show

the spatial arrangement of || r || prior to and following stitching. Although there was an overall

Fig 3. Phase-correlation coefficient, R, calculated for all image tile alignments. (A) Histogram showing distribution of R values. In the boxplot, the

median is shown as a black line, and the box contains 25th and 75th percentiles of the coefficient data. (B) Spatial distribution of phase-correlation

coefficients, with low R values contained within well-defined areas. (C) Reconstructed dataset following stitching. The dark areas in the overview image are

attributed to deep surface depressions, likely originating from the combination of residual stresses in bone and the sample preparation process, which in turn

compromise secondary electron detection. These correlate with low R values in B.

doi:10.1371/journal.pcbi.1005217.g003
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reduction in residual lengths, Fig 5D shows an increase in residual magnitudes across these

artifact regions, in response to a lower stiffness of modeled springs assigned in these low R
regions. Residual lengths, calculated after correcting alignment parameters prior to (C) and

following stitching (D), shifted on average from 42 to 8 pixels and overall RMS decreased from

47 to 11 pixels (Fig 5E). Image pairs within the same mFOV had the lowest residual error,

while the larger residuals were concentrated in regions of low R, as our algorithm favors align-

ment in regions with a high R. Global registration used around 1GB of RAM memory.

Map

The reconstructed maps reveal a detailed axial view of the composite nature of human cortical

bone (Fig 6). Osteonal structural features are clearly visible with various bundles of blood ves-

sels surrounded by lamellar bone, forming Haversian systems, distributed throughout the

cross-section. Acid-etching these samples helps reveal the biological population of the tissue.

Bone cells protrude from the mineralized matrix, revealing the morphological characteristics

of osteocytes embedded within the mineral bone.

Discussion

Recent advances in multi-beam SEM enable continuous nanoscale resolution imaging of mac-

roscopic tissue samples and an overall increase in throughput greater than one order of magni-

tude compared to single beam electron microscopy. Here, we present computational methods

to reconstruct a multitude of high-resolution images and develop interactive maps of mSEM

datasets, allowing seamless navigation between length scales. The resulting maps reveal, with

unprecedented detail across a range of length scales, the biological and material constituents

and architecture of human bone. Below, we critically discuss the challenges of the presented

Fig 4. Comparing global registration using a mass-spring-damper dynamics approach with least squares methods. (A) Region of 60 mFOVs

excluding areas with widespread image artifacts, highlighted in red, where stitching was computed. (B) Root-mean-squares of the residuals for initial

configuration and 3 different global optimized registration approaches: unweighted least squares method (LSM), weighted LSM and MSD. Overall

similar alignment error reductions were obtained. Registration with our mechanical model reduces RSM of residuals slightly more than the other

approaches.

doi:10.1371/journal.pcbi.1005217.g004
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Fig 5. Stitching quality. (A) Map of local residual vector magnitudes, || r ||, calculated prior to alignment parameter

correction. Large residual lengths correlate with regions having low R values and imaging artifact presence. (B)

Histogram of the distribution of residual vector magnitude on a log scale for whole dataset (0 <R < 1) and for pairings

with R < 0.7. Lower quality pairings have residual magnitudes concentrated within the interval || r || > 300 pixels. (C) Local

|| r || values after correction of alignment parameters (R and || r ||) and before global registration. (D) Local || r || values

following stitching. (E) Histogram of residual magnitudes, || r ||, before and after global registration.

doi:10.1371/journal.pcbi.1005217.g005
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methodology, with the goal of facilitating its routine use for structure-function characteriza-

tion of biological tissues and their cellular inhabitants across length scales.

Quantitative assessment is critical for the evaluation of novel imaging techniques. Consid-

ering the association between local imaging artifacts and corresponding low pairwise image

alignment score, we can assign the correlation coefficient R as an indicator of image quality.

Successful (non-zero) calculations having an R = 0.89 median, suggesting that a simple 2D

translational motion model with Fourier-based alignment is an adequate approach to register

mSEM images. Overall, low interimage correlations were constrained to the regions of the

sample with topographic depressions and cracks.

Surface anomalies reflected the challenge of preparing macroscopic hard tissue samples

using methods designed for atomic force and electron microscopy, where residual stresses in

Fig 6. Screen captures from the reconstructed dataset, following stitching (www.mechbio.org/ploscompbiol). (A) Osteons, the functional units of

cortical bone, are clearly visible with central blood vessels surrounded by layers of lamellar bone. (B) A close-up of an osteon. (C) An osteocyte adjacent to a

blood vessel. (D) An osteocyte with processes adjacent to a crack.

doi:10.1371/journal.pcbi.1005217.g006
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macroscopic samples are released during sample preparation. Such topographical anomalies

promote surface charging of electron beams and therefore compromise secondary electron

detection, resulting in a low local signal-to-noise ratio. Low signal regions manifested as locally

darkened and/or blurred areas in the raw images (S3 Fig). Blood vessels, due to their smooth-

ness and resulting lack of contrast in acquired images, also hindered pairwise alignment and

registered with a low R. Efforts are currently underway to further develop sample preparation

methods that avoid formation of such anomalies.

Due to the extreme heterogeneity of properties amongst soft, organic inhabitant cells and

their hard, inorganic composite environments [8], bone is one of the most challenging tissues

to image across various length scales. Previous studies highlight the specific challenges of sam-

ple preparation with regard to etching of such bone composite specimens [15,17]. This was the

first time bone was tested in such technical context. With increased precision and experience

in sample preparation methodologies, however, such surface anomalies can be avoided [10].

Therefore, the presented results should be interpreted with consideration of our sample char-

acteristics, recognizing that the presence of low-quality alignments is markedly induced by

local sample conditions. Hence, in context of all tissues that make up the human body, bone

provides a robust testbed for the technology.

Our results suggest that mass-spring-damper dynamics provide a rational and practical

approach to perform global registration of mSEM acquisitions, which typically yield extremely

large collections of tiles, reaching a solution at lower computational costs when compared to

least squares minimization. Our MSD global registration algorithm corrected for intrinsic

tracking discrepancies, requiring lower computational costs and similar final tile coordinates

to LS approaches. For the 60 mFOVs highlighted in Fig 4A, the difference in final tile position-

ing between weighted LSM and the MSD model was on average 5.6 pixels. Yet, MSD outper-

formed LS in both computational time and memory usage.

Both LSM and MSD approaches converged to a similar residual error, suggesting that

some distortions cannot be overcome with rigid translation models. Future studies will com-

pare, under consideration of computational cost, the accuracy of direct (pixel-intensity

matching) alignment against other more accurate registration approaches. Feature-based

methods, for instance, apply feature extraction (e.g. MOPS [24], SIFT [25]) and global corre-

spondence algorithms to estimate the geometric transformation model. These methods may

apply a combination of translational and affine motion models to the dataset, which in the

presence of sample-induced artifacts could improve pairwise registration in areas surround-

ing sample surface imperfections. Non-rigid models that account for aberrations induced by

lens effects will also be taken into account in the alignment [26]. Additionally, we will also

include a gain compensation step, to reduce intensity variation in overlapping regions, as

seen in Fig 6A.

Our resulting map shows the composite multiscale architecture of bone, revealing both its

structural intricacies and biological milieu. This reconstructed dataset, composed of more than

54,000 megapixels, has a considerably large field of view of 5.7 mm2, which compares to some

of the largest nanometer resolution, electron microscopy fields of view in current literature

[27]. Remarkably, the imaging of our specimen was performed in a practical amount of time, i.
e. just under 3.5 hours. Furthermore, with the potential to scale mSEM technology according

to higher beam counts, timeframe and throughput limitations will eventually become even less

of a factor [28].

This combination of high throughput microscopy and image reconstruction with an online

geographic information system (GIS) tool provides unparalleled, worldwide accessibility of

human tissue images to the scientific community and public alike. The Google Maps platform,

specifically, is a well-supported, familiar, user-friendly framework that allows for basic
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navigation of our dataset. Future developments will aim to share our maps in CATMAID [29],

which will allow for collaborative annotation and bookmarking of regions of interest.

Top-down and bottom-up approaches look to explore the connectivity of biological and

cellular components within certain physiological systems, to further model and analyze the

progression of disease throughout the body [4]. The ability to image sub-cellular to tissue-

organ scale structures is critical in providing an integrated understanding of physiological

mechanisms [2,30,31]. A variety of different imaging modalities are usually required to bridge

the gaps amongst various length scales.

Nonetheless, when coupled with the image reconstruction method presented in this paper,

multi-beam SEM enables high-resolution characterization of biological tissues across a wide

range of length scales. Aside from the modeling and analysis of tissues and organs, biocompati-

bility at the interface of an implant can also be assessed. Bridging local (e.g., how bone cells

adapt extracellular matrix to optimize structure for dynamic function) to systemic perspec-

tives, our method enables comprehensive characterization of multiscale biological phenomena

including tissues, cells, and molecules. Such a step forward can be used in health diagnostics

and to study health and disease etiology, enabling one to understand how tissue viability and

cell connectivity relate to the disruption and failure of tissue and to the pathogenesis of dis-

eases in organs. Already, a few recent studies in connectomics have utilized mSEM to render

volumetric image data from murine specimens sectioned with a microtome and reconstruct

neuronal circuits with single-synapse resolution [14]. Multiscale imaging of interfaces between

musculoskeletal tissue compartments could reveal precise architectures of tight junctions that

control functional barrier properties, which exert profound effects on human physiology

[1,2,12,32].

In conclusion, our work provides the methodology to create large high-resolution images

of biological tissues for structure-function characterization. Combining mSEM methodology

with efficient stitching algorithms and GIS applications enables efficient navigation and dis-

semination of large collections of image data, as shown in this study, delivering a practical

approach to assess materials over a wide range of scales. Open access of our reconstructed

mSEM datasets, via the Google Maps platform, provides unparalleled, world-wide accessibility

of human tissue images to the scientific community and public alike, in a well-supported,

familiar, and user-friendly framework. This enabling step leads to a more complete under-

standing of health and disease, from the length scale of a single cell to the complex system of

the human body.

Supporting Information

S1 Fig. Estimating translation vector p for image pairs with unsatisfactory alignment. (A)

All possible types of image overlaps for a tile t. Overlap types 1 and 2 represent adjacent tiles

from the same mFOV. (B) Corresponding relative coordinates prior to stitching, xi—xj, for all

image pairs i, j. (C) Calculated 2D registration alignment vectors, pmn, for tile pairs m,n with

Rmn > 0.9. The estimated translation vector pij was defined as the geometrical center of each

group.

(TIF)

S2 Fig. Tiled pyramid structure diagram. Tiles of higher zoom levels were recursively ren-

dered by grouping ’squares’ of four tiles (512 x 512 pixels) and downsampling each ’square’ to

a single, low-resolution 256 x 256 tile, increasing pixel size each unitary decrement in zoom

level by a factor of 2.

(TIF)
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S3 Fig. Examples of imaging artifacts shown in the reconstructed mosaic. (A) Dark region

caused by topographic depressions. (B) Close-up detail of white box in (A). (C) Detail of arti-

facts caused by crack in sample. (D) Region with high quality and adjacent blurred tiles.

(TIF)

S1 Video. Diagram of relaxation algorithm in five hexagonal fields of view. Lines represent

springs. Line color represents the respective local residual magnitude (green and red corre-

sponding respectively to low and high residual lengths).

(AVI)

S2 Video. Animation of relaxation algorithm in five hexagonal fields of view, for tiles cor-

responding to those depicted in S1 Video.

(AVI)

S3 Video. Magnified view of single osteocyte from S2 Video.

(AVI)
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