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A B S T R A C T   

The outbreak of COVID-19 has caused a severe shortage of healthcare resources. Ground Glass Opacity (GGO) 
and consolidation of chest CT scans have been an essential basis for imaging diagnosis since 2020. The similarity 
of imaging features between COVID-19 and other pneumonia makes it challenging to distinguish between them 
and affects radiologists’ diagnosis. Recently, deep learning in COVID-19 has been mainly divided into disease 
classification and lesion segmentation, yet little work has focused on the feature correlation between the two 
tasks. To address these issues, in this study, we propose MultiR-Net, a 3D deep learning model for combined 
COVID-19 classification and lesion segmentation, to achieve real-time and interpretable COVID-19 chest CT 
diagnosis. Precisely, the proposed network consists of two subnets: a multi-scale feature fusion UNet-like subnet 
for lesion segmentation and a classification subnet for disease diagnosis. The features between the two subnets 
are fused by the reverse attention mechanism and the iterable training strategy. Meanwhile, we proposed a loss 
function to enhance the interaction between the two subnets. Individual metrics can not wholly reflect network 
effectiveness. Thus we quantify the segmentation results with various evaluation metrics such as average surface 
distance, volume Dice, and test on the dataset. We employ a dataset containing 275 3D CT scans for classifying 
COVID-19, Community-acquired Pneumonia (CAP), and healthy people and segmented lesions in pneumonia 
patients. We split the dataset into 70% and 30% for training and testing. Extensive experiments showed that our 
multi-task model framework obtained an average recall of 93.323%, an average precision of 94.005% on the 
classification test set, and a 69.95% Volume Dice score on the segmentation test set of our dataset.   

1. Introduction 

COVID-19 has spread rapidly around the world. Reverse 
Transcription-Polymerase Chain Reaction (RT-PCR) is considered to be 
the primary diagnostic method for COVID-19, but it is time-consuming 
and may produce false-positive cases [1]. Thus, the false-negative 
cases of RT-PCR tests are a potential threat to public wellness, and the 
missing of any COVID-19 cases will probably cause secondary infections 
of large areas. 

Meanwhile, the works of [2,3] show that chest Computed Tomog-
raphy (CT) scans have higher recall in diagnosing COVID-19 which is 
particularly important in epidemic stricken regions [4,5]. In addition, 
CT scans are necessary to monitor the severity of the disease [6] due to 

the high density and spatial resolution. CT scans of patients with 
COVID-19 mainly show the GGO, consolidation, and other symptoms of 
the lung, which are also one of the important diagnostic indicators for 
diagnosis [7]. Therefore, chest CT scans are considered the primary 
diagnostic modality for COVID-19. There are hundreds of CT slices in 
each case, and it can be very time-consuming for radiologists to make a 
diagnosis based on the slices. Even an experienced radiologist can only 
diagnose an average of seven chest CT scans per hour [8,9]. 

Deep learning is widely used in medical image processing due to its 
high accuracy and fast response time. Convolutional Neural Networks 
(CNNs) significantly impact medical image segmentation and classifi-
cation tasks. Several CT scan diagnostic systems have been established 
to assist with COVID-19 diagnosis [10–12], but most suffer from four 
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problems: 

(1) For the segmentation task, the infected area of COVID-19 in-
cludes nodules, GGO, and other manifestations, as shown in 
Fig. 1. They have shortcomings of low contrast between GGO and 
background, boundary-blurring, making it hard to segment le-
sions [13] accurately.  

(2) For the classification task, Viral pneumonia has a wide range of 
imaging manifestations. It overlaps with other non-viral pneu-
monia, with COVID-19 having many similarities to other pneu-
monia, so how to differentiate is a major clinical challenge [14]. 

(3) Most existing systems are single-task, which ignores the correla-
tion between segmentation and classification tasks [15]. 

(4) CNNs are black-box models without interpretability, and physi-
cians do not have sufficient confidence in the model’s diagnostic 
results [16]. 

To solve the above problems and assist radiologists with COVID-19 
diagnosis, in this study, we proposed MultiR-Net, a joint classification 
and segmentation deep learning network for segmenting COVID-19 le-
sions and performing diagnosis. MultiR-Net consists of two subnets: a 
UNet-like subnet for segmentation of 3D lesions with multi-scale feature 
fusion and a classification subnet for disease diagnosis. Precisely, we 
weight summed the feature maps at each level of the segmentation 
subnet, using multi-scale fusion to obtain the final segmentation mask 
while including the enhanced reversed attention mechanism in the skip 
connection to improve the network for boundary identification. The 
segmentation mask obtained from the segmentation subnet is used to 
strengthen the input volume in the classification subnet. With the 
assistance of a segmentation mask, the classification subnet can enhance 
focus on lesions and has a better classification effect. Furthermore, in the 
training phase, we improve the loss function of the segmentation 
network by introducing the Focal Tversky loss to enhance the focus of 
the segmentation network on complex regions. Meanwhile, the iterative 
training strategy is employed to refine the features by using the pre-
dicted segmentation map as part of the input to guide feature extraction. 

In short, our contributions are as follows:  

(1) We present an interpretable multi-task model based on deep 
learning for 3D COVID-19 lesion segmentation and disease clas-
sification tasks that offers significant advantages over previous 
systems. 

(2) We adopt an iterative training strategy to improve the effective-
ness of the network by refining the features. 

(3) To comprehensively judge our model’s effectiveness, we intro-
duce a variety of surface and volume evaluation metrics to prove 
the vast superiority of the model segmentation results in terms of 
surface and volume. 

2. Related works 

2.1. Automatic COVID-19 diagnosis systems 

CT scan is an essential medical imaging diagnostic method, which 
plays a vital role in the diagnosis of lung diseases [17,18]. Since the 
outbreak of COIVD-19, a variety of deep learning-based methods have 
been developed to diagnose COVID-19. Two major categories of tasks 
are disease classification and lesion segmentation. 

The aim of the disease classification task is automatic COVID-19 
diagnosis. Aayush Jaiswal et al. [19] proposed a DenseNet201 based 
network to detect and diagnose COVID-19 in chest CT scans. The 
network was pre-trained on ImageNet dataset to extract features, then 
transferred to COVID-19 diagnosis with a transfer learning strategy. Li 
et al. [20] proposed COVNet, a COVID-19 detection network using 
ResNet-50 as the backbone, which identified 400 COVID-19 patients 
with a sensitivity of 90% and a specificity of 96% by generating a 
classification result from a series of CT slices. Wang et al. [21] developed 
a weakly-supervised deep learning framework. Specifically, they pro-
posed an unsupervised training strategy for localization by combining 
active regions and unsupervised connected components in the classifi-
cation network. 

In practice, the segmentation of lesions plays a positive role in 
improving diagnostic accuracy, reducing misdiagnosis, and assisting 
doctors in diagnosing lung diseases [22]. Several 3D U-Net [23] variants 
have been proposed to obtain more accurate results. Attention mecha-
nisms can learn some of the most discriminative features in the network. 
Oktay et al. [24] proposed attention U-Net capture fine structures in 
medical images and be suitable for the COVID-19 applications to 
segment lesions and pulmonary nodules. Fan et al. [25] proposed 
Inf-Net, a semi-supervised segmentation framework to reduce the need 
for annotated data. Wang et al. [26] introduced a noise-robust Dice loss 
to the network to better deal with the noisy training labels for 
COVID-19. UNet++ [27]is also introduced in COVID-19 lesion seg-
mentation, Jin et al. [28] used UNet++ as the backbone segmentation 
network to build a system for detecting COVID-19 infection regions. At 
the same time, UNet++ is hard to train due to its high calculation cost. 
Zhao et al. [29] proposed a lightweight 3D CNN for COVID-19 seg-
mentation by replacing conventional 3D convolution layers with an 
attention-based convolutional block. Yan et al. [30] introduced a feature 

Fig. 1. The example of COVID-19 lesions, where the red and green areas denote the consolidation and GGO respectively.  
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variation block that can adaptively adjust the global features into VNet 
to enhance the capability of feature representation for different cases. 

In recent years, transformer structure has been applied to medical 
image segmentation tasks and has achieved good performance. Chen 
et al. [31] combined transformer and U-Net, the transformer encoded 
image patches from a CNN feature map as input sequences for extracting 
global features, and the decoder upsampled the encoded features and 
combined them with high-resolution CNN features for precise localiza-
tion. Valanarasu et al. [32] proposed Medical Transformer (MedT), a 
Gated Axial-Attention model, by introducing an additional control 
mechanism in the self-attention module. Transformer has also been 
applied in the COVID-19 segmentation task. Roy et al. [33] presented a 
network derived from Spatial Transformer Networks, which simulta-
neously predicted the disease severity score associated with the input 
frame and provides localization of pathological artifacts in a weakly 
supervised manner. 

However, all of the above networks ignore the connectivity between 
disease classification and lesion segmentation tasks. The classification of 
pneumonia is highly correlated with the characteristics of its lesions. 

Interpretable classification results allow the network to focus on the 
features of the lesion part and can further improve the accuracy of the 
lesion segmentation results. In the meantime, the segmentation results 
can be used as an essential diagnostic basis for interpretable disease 
classification. 

2.2. Multi-task learning for COVID-19 

In contrast to the single-task classification and segmentation tasks 
described above, several deep learning methods have also been devel-
oped to implement multi-task segmentation and classification of COVID- 
19. Mahmud [34] proposed a tri-level attention mechanism-based 
network for disease classification, lesion segmentation, and disease 
severity prediction. Specifically, they pre-trained a subnet for lesion 
segmentation and integrated the weights obtained into two other tasks. 
Similarly, Wu et al. [16] proposed a COVID-19 automatic diagnosis 
system. They first trained a separate classification network withRes2Net 
as the backbone. They then used the weights of the classification 
network for feature fusion with the segmentation network to obtain 

Fig. 2. The overall architecture of MultiR-Net.  
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lesion segmentation results. Similarly, Jin et al. [28] proposed a linear 
optimization procedure, in contrast to Wu, who used the results of the 
segmentation network to guide the classification. 

However, the above approaches split the learning steps of segmen-
tation and classification tasks in the training strategy, ignoring the 
feature sharing between two tasks, and thus cannot be regarded as multi- 
task learning in the true sense. Currently, only a few studies have 
focused on feature correlation between tasks and jointly learned both 3D 
lesion segmentation and classification of covid-19. Wang et al. [15] 
proposed a joint deep learning model of 3D lesion segmentation and 
classification for diagnosing COVID-19. Specifically, the network con-
tains three subnetworks, extracts shared features through a cross-task 
feature subnet and proposes task-aware loss-enhanced task interaction 
between the classification and segmentation subnetworks. 

3. Methodology 

Inspired by V-Net [35] and Liu’s network [36], we propose 
MultiR-Net. Suppose a given 3D CT scan X ∈ Rl×w×h, where l, w, h denote 
the length, width, and depth of the 3D CT scan respectively. Manually 
labeled ground truth areas Yseg ∈ Rl×w×h and prediction results Ŷseg ∈

Rl×w×h have the same size as X. Firstly, X will be divided into a series of 
k-slice sequence {x1,x2,…,xk} ∈ Rl×w×h,k < h, which is the basic unit of 
network input. Then MultiR-Net will derive the predicted volumes Ŷseg 

and classification results Ŷcls . The network consists of two subnets, the 
segmentation subnet and the classification subnet. The UNet-like 
network can integrate high semantic-level and low semantic-level fea-
tures in the segmentation subnet; in the classification subnet, the input 
volume will be added to the segmentation map from the segmentation 
subnetwork, facilitating the focus of the subnet on the lesion. Mean-
while, the Iterative learning strategy is applied to guide the network 
training with the segmentation results. 

The following sections will introduce: 1) network architecture; 2) 
Reverse attention module; 3) Loss Function; 4) Iterative learning strat-
egy; 5) Evaluate metrics. 

3.1. Network architecture 

Our proposed network is illustrated by Fig. 2, where we use the V-Net 
as the backbone of the segmentation subnet due to the outstanding 
performance in various tasks [37]. Our segmentation subnet consists of 
encoding and decoding paths. Encoding path extracts features of the 
input volume and reduces to 16 times through down-sampling while 

preserving the information of each level; the symmetric decoding path 
restores the high-level semantic features obtained by an encoding path 
to the original dimension through up-sampling. The reverse attention 
module in skip connection can improve the segmentation of the edge of 
the lesion. In order to make full use of the features extracted by the 
classification subnet at different scales, we use 1*1 convolution to pro-
cess further the feature maps obtained from each layer of the decoding 
layer to generate a multi-scale segmentation map. Assuming that F̂i is 
the segmentation map at the i-th level, the final segmentation mask F̂ 
can be formalized as: 

F̂ =
∑5

i=1
σ
(
ηi ⋅ UP

(
F̂i , 25− i)) (1)  

where ηi is the hyperparameter used to balance the scale of features at 
each scale, σ is sigmoid operation, and UP(⋅) is the t-fold upsampling 
operation using deconvolution layer. 

The classification subnet consists of six layers of convolutional 
modules, and we add a residual structure between each convolutional 
module to alleviate the problem of difficult gradient back-propagation. 
The segmentation results are element-wise multiplied with the original 
input and then fed to the classification subnet to enhance the interaction 
between the tasks. The feature maps obtained will have higher activa-
tion values in the lesion region and make the classification subnet focus 
on the lesion. 

3.2. Reverse attention module 

The reverse attention mechanism is used for the salient object 
detection edge refinement [38], a different network structure from the 
U-Net. Our segmentation subnet was able to localize the lesions in the 
input volume; however, due to the blurred boundaries and low contrast 
of the lesions in COVID-19. They have shortcomings of low contrast 
between GGO and background, blurring boundary, making it hard to 
segment accurately. We modified the number of channels in the reverse 
attention module to segment these lesions accurately. We added the 
reverse attention module to the skip connection as a fine marker to 
identify infected regions in an erasing-strategy. By erasing the current 
prediction result from skip-connection features obtained by the encoder, 
where the current prediction result is upsampled from the high-level 
features, the network can learn the details of the complementary re-
gions to focus on the segmentation of the boundary regions. The 
top-down erasing strategy can eventually refine the coarse prediction 

Fig. 3. The architecture reverse attention module.  
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into a complete and high-resolution prediction result with these 
explored regions and details. The architecture of the RA module is 
illustrated in Fig. 3. Notably, we obtain the output reverse attention 
features R by multiplying(element-wise ⊙) the high-level features F by 
the reverse attention weights W, it is formalized as: 

Ri =Fi ⊙ Wi (2)  

where W can be obtained from the following formula: 

Wi = ⊖ (σ(UP(Fi+1))) (3)  

where ⊖ is a reverse operation subtracting the input feature from the 
matrix where all the elements are 1, as shown in Fig. 3, the reverse 
attention features Ri enable increased attention to boundaries. 

In order to make the reverse attention module work better in our 
network, we improve the numbers of output channels from 64 to be the 
same as each level of the segmentation subnet. The variable number of 
channels ensures that the reverse attention mechanism can refine all 
feature maps connected by skip connection, improving segmentation by 
adjusting imprecise and rough estimates to accurate and complete pre-
diction maps. 

3.3. Loss function 

The loss functions are introduced for training the MultiR-Net, 
including segmentation and classification. We will then introduce the 
two parts of the loss function separately.  

(1) Segmentation loss 

Dice Score Coefficient (DSC) is widely used in medical image seg-
mentation to assess the overlapping rate between the segmented region 
and ground truth. It is a significant metric to evaluate the segmentation 
performance. The two-class DSC and DSC Loss are defined in (4) and (5). 

DSCc =

∑N
i=1picgic + ε

∑N
i=1pic + gic + ε

(4)  

DLc =
∑

c
1 − DSCc (5)  

where N denotes the number of the voxels in a CT scan, c denotes the 
predicted classes, pic denotes the probability that voxel i is of the class c, 
gic denotes the ground truth that voxel i is of the class c, and ε is a 
constant to prevent division by zero. Using DSC Loss may encounter the 
problem that it equally weighs False-Positive (FP) and False-Negative 
(FN), which leads to the segment results with high precision but low 
recall. Experimental results prove that FN needs to be higher than FP in a 
highly imbalanced dataset such as COVID-19 lesions to improve recall 
rate [39]. Tversky similarity index [40] is a generalization of the DSC, 
which allows balancing FP and FN flexibly. Tversky similarity index is 
defined in (6). 

DSCc =

∑N
i=1picgic + ε

∑N
i=1picgic + α

∑N
i=1picgic + β

∑N
i=1picgic

+ ε (6)  

where pic denotes the probability that voxel i is of the class c, pic denotes 
the probability that voxel i is of the non-class c, gic denotes the ground 
truth that voxel i is of the class c, gic denotes the ground truth that voxel i 
is of the non-class c, α and β are hyperparameters that can shift the 
emphasis between FP and FN. Another problem in the COVID-19 dataset 
is the small Regions Of Interest (ROI), resulting in a low contribution to 
the loss. The Focal Tversky Loss function (FTL) [41] adds a hyper-
parameter to reduce the loss of easily classified samples. FTL is defined 
in (7). 

FTLc =
∑

c
(1 − TIc)

1/γ (7)  

where γ is a hyperparameter that varies in the range [1,3]. If the Tversky 
index is small and the misclassified pixel, the FTL will decrease signifi-
cantly. We use FTL to train the network for segmenting small ROIs in the 
COVID-19 dataset.  

(2) Classification loss 

For classification task, we use Cross Entropy loss as the classification 
loss function: 

L=
1
N
∑

i
Li = −

1
N
∑

i

∑M

c=1
yic log(pic) (8)  

where N is the number of class, yic is the true classification of the data, 
and pic is the predicted probability.  

(3) Total loss 

Finally, to balance the losses of segmentation and classification tasks 
to the same order of magnitude and thus improve the effectiveness of 
multi-task learning, the classification loss and the segmentation loss are 
combined linearly by the hyperparameter λ as a multitasking loss. The 
multi-task loss is defined as: 

Ljoint = λLcls + (1 − λ)Lseg (9)  

where λ ∈ [0, 1], is the weight of the classification loss. 

3.4. Iterative learning strategy 

COVID-19 lesions show blurred boundaries and variable shapes in CT 
scans, complicating lesion segmentation. In order to improve the per-
formance of the edge and improve the segmentation performance while 
further enhancing the interaction between tasks, we applied an iterative 
training strategy. We use the segmentation feature map from the pre-
vious iteration to update the features, as shown in Algorithm 1. The 
input volume is the original 3D chest CT scan in the first iteration. The 
output feature map contains contextual information that can direct the 
network to focus on the lesion region. In practice, it is performed on a 
feature map obtained after multi-scale feature fusion. In subsequent it-
erations, the input changes to the original chest CT scan with the seg-
mentation feature map obtained in the previous iteration. 

Algorithm 1. Iterative learning strategy.  

3.5. Evaluate metrics 

Segmentation accuracy determines the eventual performance of 
segmentation procedures. To measure the segmentation performance of 
the proposed methods, four evaluation metrics: Average Surface Dis-
tance (ASD), Average Surface Overlap (ASO), Surface Dice (SDSC), and 

C.-F. Li et al.                                                                                                                                                                                                                                     
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Volumetric Dice (VDSC) are used to obtain quantitative measurements of 
the segmentation accuracy. 

ASD determines the average difference between the surface of the 
segmented area and the ground truth in 3D. This metric is also used in 
the medical image segmentation challenges, such as CHAOS [42] and 
RT-MAC [43]. ASD can be defined as follows: 

ASD=
1

|S(P)| + |S(G)|

(
∑

p∈S(P)

min
g∈S(G)

p − g+
∑

g∈S(G)

min
p∈S(P)

g − p

)

(10)  

where S(P) denotes the set of surface voxels of the predicted mask, S(G)
denotes the set of ground truth surface voxels. ||⋅|| denotes the 
Euclidean distance. 

Average VDSC determines the overlapping parts of segmented and 
reference volumes. Standard VDSC are defined in (4). 

COVID-19 lesions are deformable without a uniform approximate 
shape. Thus, assessment of lesion segmentation quality may not be 
optimal in a volume-based comparison. Therefore, we also calculated 
SDSC and ASO for our dataset, which are also used in neuroimaging [44]. 

As shown in Fig. 4, ASO calculates the surface overlap ratio of the 
segmented area and the reference within a given tolerance range Bi and 
Bj while SDSC calculates the surface dice as the same way. Here, we set 
the tolerance range to be 1.0 mm. The surface S of a volumetric object 
can be defined as (11): 

|S | =

∫

S

dσ (11)  

where σ denotes the point on the surface S . Therefore, ASO can be 
defined as: 

ASO=

(⃒⃒S i ∩ Bj
⃒
⃒

⃒
⃒S i ∪ Bj

⃒
⃒
+

⃒
⃒Bi ∩ S j

⃒
⃒

⃒
⃒Bi ∪ S j

⃒
⃒

)/

2 (12) 

And SDSC can be defined as: 

SDSC =

(2
⃒
⃒S i ∩ Bj

⃒
⃒

|S i| +
⃒
⃒Bj
⃒
⃒
+

2
⃒
⃒Bi ∩ S j

⃒
⃒

|Bi| +
⃒
⃒S j

⃒
⃒

)/

2 (13) 

For classification task, we employ Recall (REC), Precision (PRE), 
Accuracy (ACC), F1-score for quantitative evaluation of: 

REC=
TP

TP + FN
(14)  

PRE=
TP

TP + FP
(15)  

F1=
2 Precision * Recall
Precision + Recall

(16)  

where TP, FP, TN, FN are the number of true positives, false positives, 
true negatives, and false negatives, respectively. 

4. Experiments 

To evaluate the effectiveness of the proposed network MultiR-Net, 
we conduct several ablation experiments. Furthermore, we systemati-
cally compare the MultiR-Net with existing multi-task learning methods, 
including Joint Classification and Segmentation System(JCS) [16]and 
Zhou’s network [45]. Also, we compare the method with existing 
single-task segmentation and classification networks to give a compre-
hensive picture of the performance of the proposed network. The data-
set, implementation details, and experimental results are shown as 
follows. 

4.1. Dataset and preprocessing 

The dataset used in this paper includes CT scans from 275 patients 
with COVID-19, CAP, and ordinary people, over 20000 CT images. The 
spacing of slices between CT scans varies considerably depending on the 
machine used for acquisition (from 1.0 mm to 5.0 mm). CT data is 
collected from a Class A tertiary hospital in Shanghai, 96 of which are 
positive cases of COVID-19, 107 cases are CAP patients, and the other 72 
cases are ordinary people. RT-PCR tests confirm all cases. Two radiol-
ogists labeled the images using two labels: GGO and consolidation. 
While due to the severe data imbalance, the number of slices with 
consolidation is much smaller than that with GGO, we take all the labels 
as unified COVID-19 lesion labels. The difficulty level of the dataset was 
proved to be balanced by radiologists. We randomly split the datasets 
into 70% and 30% for training and testing. The division of the dataset is 
shown in Table 1. 

Excessive spacing gaps can make it hard for the network to effec-
tively learn the space contextual information. Thus, before sending CT 
scans data to network training, we need to use Algorithm 2 for resam-
pling and normalization operation to enhance the region to be 
segmented. Then, COVID-19 lesion ROIs with the size of 32 × 96 × 96 
voxels were extracted from a scan at the approximate lesion center. 

Algorithm 2. COVID-19 Normalization.  

4.2. Implementation details 

Our network is implemented in Tensorflow. The experiments are run 
on a computer with a single Nvidia GPU Tesla V100 and an Intel(R) Xeon 
(R) Gold 5115 CPU @ 2.40 GHz. The network is optimized using the 
Adam optimizer and set β1, β2 as 0.9 and 0.999. The initial learning rate 
is set to 3e-4 with the patience of 100 epochs. We set the batch size to 4, 
and early stopping is employed to avoid overfitting. CT slices and the 
masks are resized into 32 × 96 × 96. For the Focal Tversky loss, the 
network is trained with α = 0.7, β = 0.3 and γ = 0.9 to get the best 

Fig. 4. The diagram for calculating ASO.  

Table 1 
Division of the dataset.   

COVID-19 CAP Ordinary People 

Training 67 75 50 
Testing 29 32 22 
Overall 96 107 72  
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performance. To evaluate the effectiveness of the proposed method, we 
employed four-fold cross-validation for all experiments. 

4.3. Lesion segmentation results 

To comprehensively evaluate the segmentation performance of the 
proposed method, we compare MultiR-Net with generic methods such as 
3D U-Net, 3D U-Net++, MedT, TransU-Net, and the specialized seg-
mentation method Inf-Net of COVID-19 segmentation. Also, to compare 
the effectiveness of our network on multi-task classification segmenta-
tion networks, we compare it with Zhou’s method and JCS, a dedicated 

COVID-19 multi-task classification segmentation network. All methods 
use their original implementation, except for Zhou’s method, and 3D U- 
Net++ are reimplemented. The training loss curves of the networks are 
shown in Fig. 5. The final results on the testing set are shown in Table 2 
and Fig. 6. 

As shown in Table 2, it can be seen that 2D networks are all lower in 
overall performance than networks with 3D input. This is mainly due to 
the characteristics of the COVID-19 dataset. COVID-19 lesions have a 
strong 3D consecutiveness and correlation between slices. 3D convolu-
tion can better extract the related information in three dimensions. At 
the same time, the 2D network extracts global features, while the 3D 
network with a patch extracts local features so that the 3D network 
performs better in the segmentation of edges. Our method achieved the 
best accuracy in all metrics with 1.48 mm,70.0%,73.7% and 75.3% in 
ASD, VDSC, SDSC, ASO respectively. Compared with our model, the per-
formance of other single-task models is lower. It is worth noting that the 
results of 3D U-Net++ are worse compared to U-Net, presumably 
because the U-Net++ decoder part is too complex and the number of 
parameters is too large to learn the volume features. At the same time, it 
can be seen that our method does not improve significantly in VDSC, with 
a difference of 1.2% over the second-best model. However, our method 
plays a better role in the other three metrics evaluating the degree of 
surface overlap, improving by 0.49 mm, 3.4%, and 3.2%, respectively, 
indicating that our network fits better in the volume surface, which is 
also shown in Fig. 7. Fig. 7 shows the visual segmentation model’s 
qualitative results. We use the binary segmentation result for 2D visu-
alization, and we convert the segmentation result to a 3D NumPy array 
and use the Mayavi package in Python for 3D scientific data 

Fig. 5. The training loss curves of the networks.  

Table 2 
Segmentation performance of nine networks tested on dataset.   

ASD(mm) VDSC(%) SDSC(%) ASO(%)

Inf-Net(2D) [25] 8.3673* 56.21* 45.83* 47.43* 
MedT(2D) [32] 9.9634* 48.25* 42.40* 44.33 
TransU-Net(2D) [31] 6.8709* 62.15* 46.63* 48.02 
3D U-Net 1.8579* 67.41* 69.69 72.96 
3D U-Net++ 2.2089** 57.53** 57.10** 63.19** 
JCS [16] 6.8589* 60.38* 47.94* 48.59 
Zhou’s [45] 1.9771* 68.87* 70.24* 72.09* 
MultiR-Net w/o cls 1.6334** 68.73** 71.63** 73.38** 
MultiR-Net with cls 1.4897 69.95 73.68 75.32 

Correction for comparisons is performed with the T test. * Highest average 
metric values are P <0.05 for all comparisons. ** Highest average metric values 
are P <0.0001 for all comparisons.  

Fig. 6. The segmentation performance of the networks.  
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visualization. Our method outperforms the other models in COVID-19 
and CAP segmentation. 

Meanwhile, we add Bland-Altman [46] plots to show the exact type 
of potential misbehaviors in the segmentation networks, as shown in 
Fig. 8. Bland-Altman is used to tell how far apart measurements by two 
methods are more likely to be for most individuals. It can be seen that 
most of the differences are within ±1.96 standard deviation, indicating 
that the two methods are in good agreement and may be used 
interchangeably. 

Also, to evaluate the segmentation effect of our multi-task model, we 
kept only the segmentation subnet of the network. We tested its effect on 

the dataset, as shown in Table 2. It can be seen that in terms of seg-
mentation, the overall accuracy of the single-task network is lower than 
that of the multi-task learning network, and the multi-task gains in terms 
of ASD, VDSC, SDSC and ASO are 0.14 mm, 1.2%, 2.1%, and 1.9% 
respectively. 

4.4. Explainable disease classification results 

To comprehensively evaluate the classification performance of the 
proposed method, we compare MultiR-Net with DenseNet, Res2Net 
[47], and other state-of-the-art multi-task models. JCS has consistent 

Fig. 7. The visualization images of 3D and 2D lesion segmentation results.  
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metrics for both in the classification task due to the Res2Net classifica-
tion model being trained separately first and then the fusion of features 
for multiple tasks. The quantitative results on the testing set are shown 
in Table 3 and Fig. 9. The Roc curves of each classification are shown in 
Fig. 10. 

As shown in Table 3, the classification performance of our method 
was significantly higher than other methods, achieving results of 92.6%, 

93.3%, and 94.0% in ACC, REC, and PRE, with improvements of 6.6%, 
5.9%, and 5.9% in each metric, compared to the suboptimal performing 
model. 

Meanwhile, to verify the interpretability of the method for classifi-
cation, we output the class activation map of MultiR-Net for COVID-19 
using the Grad-CAM [48] method, as shown in Fig. 11. It can be seen that 
as the network performs a Global Average Pooling operation on the 
feature map of the segmentation subnet together with the classification 
subnet to obtain the final classification results, the heatmap is highly 
consistent with the segmentation results, proving that our model does 
focus on the focal regions of the image and is interpretable. 

4.5. Ablation study of MultiR-Net 

This section conducts an ablation study to show that each module in 
the proposed method contributes to the segmentation and classification 
results. Specifically, we divide the modules in the proposed method into 
three parts: the reverse attention module, the Focal Tversky loss func-
tion, and the iterative learning strategy. We remove each part from the 
network while retaining the rest and analyzing the impact of different 
modules on network training. 

Fig. 8. The Bland-Altman plots of the segmentation networks.  

Table 3 
Classification performance of five networks tested on dataset.   

ACC(%) REC(%) PRE(%) F1 − score(%)

DenseNet 64.706* 70.068* 85.034* 76.829* 
Res2Net 82.482* 84.495* 89.322* 86.841* 
Zhou’s 86.029* 87.453** 88.134* 87.792* 
JCS 82.482* 84.495* 89.322 86.841* 
MultiR-Net 92.647 93.323 94.005 93.663 

Correction for comparisons is performed with the T test. * Highest average 
metric values are P <0.05 for all comparisons. ** Highest average metric values 
are P <0.0001 for all comparisons.  
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1) Effectiveness of Reverse attention module: We first analyze the impact 
of the reverse attention module on 3D lesion segmentation and dis-
ease classification. Specifically, we remove the reverse attention 
module from the skip connection. The specific segmentation and 
classification results are shown in Fig. 12. It can be seen that after 

removing the reverse attention module, the performance of the 
segmentation task was significantly reduced, especially for the three 
metrics ASD, SDSC and ASO, by 0.19 mm, 2% and 2.1%, indicating the 
effectiveness of the reverse attention module for segmentation. 

Fig. 9. The classification performance of the networks.  

Fig. 10. The ROC curves of our MultiR-Net and other models of (a) COVID-19, (b) CAP and (c) Normal people.  

Fig. 11. The interpretable visualizations of Grad-CAM.  
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2) Effectiveness of Reverse attention module: Secondly, we carry out 
further ablation experiments to analyze the impact of our improve-
ments on the loss function. To prove the effectiveness of the Focal 
Tversky loss in balancing FP and FN, we compare three different loss 
functions: (1) Dice Loss, (2) Tversky Loss, and (3) Focal Tversky Loss. 

Dice loss is a commonly used loss function in medical image seg-
mentation and can be used as a baseline to compare the effects of 
different loss functions. The results of different loss functions are shown 
in Fig. 12. It can be observed that the introduced Focal Tversky Loss can 
deliver the best performance.  

3) Effectiveness of Iterative Learning Strategy: Finally, to verify the 
effectiveness of the iterative learning strategy, the following exper-
iments are conducted. Expressly, we set different numbers of itera-
tions n, n = 0, n = 1, and n = 2, respectively. Note that n =

0 indicates that no iterative strategy is applied. Fig. 12 shows the 
segmentation and classification results. It can be seen that the seg-
mentation performance of the network gradually improves as the 
number of iterations increases, illustrating the effectiveness of the 
iterative training strategy. It is worth noting that the classification 
accuracy of the network reaches its maximum when n = 0, i.e., no 
iterative training strategy is used. 

4.6. Discussion  

1) Effectiveness and application 

We demonstrate the effectiveness of our method in COVID-19 seg-
mentation and classification. Considering that the commonly used Dice 
coefficients do not give a comprehensive representation of the seg-
mentation effect, we use several metrics to measure the effectiveness of 

Fig. 12. The effect of Reserve-attention module, Focal Tversky Loss and Iterative Learning Strategy on the performance of segmentation and classification.  
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the network at the volume level and the surface level. We obtain supe-
rior performance on all the metrics evaluated, meaning that the pro-
posed method correctly segments the COVID-19 foci in our test data. The 
introduction of reverse attention into the network proves to be effective. 

Our main goal is to assist physicians in the diagnosis of COVID-19:  

1. The model can segment and display portions of COVID-19 lesion at 
the volumetric level.  

2. The classification results can provide a quick prediagnosis for 
physicians.  

3. Based on the location and size of the segmentation results, our 
network can help physicians determine the condition’s severity.  

2) Limitations and future work: 

Dataset Limitations: The lesions in the COVID-19 dataset are much 
smaller than the background, presenting a class imbalance. We try to 
attenuate the effect of class imbalance by improving the loss function, 
but it still affects the network’s training to some extent. 

Meanwhile, since COVID-19 multi-task learning is an emerging field 
with no available public datasets and corresponding methods for com-
parison, the performance improvement of our proposed network cannot 
be fully demonstrated when compared with the standard algorithms for 
medical image segmentation. 

Method Limitations: Due to the high computational cost of a 3D 
input, a CT scan needs to be cropped to several small volumes. Thus the 
network is not an end-to-end framework. Meanwhile, our COVID-19 
dataset label is divided into consolidation and GGO. At the same time, 
the training uniformly views both as the lesion part for single-class 
segmentation, which may lead to unsatisfactory learning performance. 

Based on the above limitations, we plan to make the following im-
provements to the network: 

Dataset improvement: we will add more labeled COVID-19 CT 
scans to the existing dataset for training while collecting more data from 
different pneumonia cases to enhance the robustness of the network and 
reduce the impact of class imbalance. 

End-to-end framework: the preprocessing process will be improved 
with a multi-stage strategy that firstly detects the location of the focal 
part of the network and crops it to a small volume for segmentation and 
classification. In future work, we will investigate how to build an end-to- 
end framework for the segmentation task. 

Multi-classification segmentation: the existing single-class seg-
mentation network will be enhanced to a multi-class segmentation 
network to accommodate the different characterization of the COVID-19 
focal part and improve the network’s performance. 

5. Conclusion 

This study proposes a multi-task learning COVID-19 segmentation 
and classification network that utilizes the reverse attention mechanism 
to identify infected regions in an erasure fashion. The network can learn 
details of complementary regions to focus on the segmentation of 
boundary regions. In addition, we modify the loss function and propose 
an iterative learning strategy to enhance the interaction between tasks. 
To fully demonstrate the network’s performance, experimental and 
visualization results on the dataset show the existing frontier segmen-
tation model of the proposed network as a whole. Meanwhile, various 
evaluation metrics show the combined advantages of the proposed 
network in terms of volume and surface. Our system holds great promise 
in assisting physicians with COVID-19 diagnostics, such as rapid local-
ization of lesions and quantification of infected areas and exemplary 
performance in low-contrast, border-blurring lesion segmentation. In 
the future, we will add more labeled COVID-19 CT scans to the existing 
dataset for training and develop an end-to-end framework for segmen-
tation and classification. 
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