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Software to predict the change in protein stability upon point mutation is a valuable tool
for a number of biotechnological and scientific problems. To facilitate the development
of such software and provide easy access to the available experimental data, the
ProTherm database was created. Biases in the methods and types of information
collected has led to disparity in the types of mutations for which experimental data
is available. For example, mutations to alanine are hugely overrepresented whereas
those involving charged residues, especially from one charged residue to another, are
underrepresented. ProTherm subsets created as benchmark sets that do not account
for this often underrepresent tense certain mutational types. This issue introduces
systematic biases into previously published protocols’ ability to accurately predict the
change in folding energy on these classes of mutations. To resolve this issue, we have
generated a new benchmark set with these problems corrected. We have then used the
benchmark set to test a number of improvements to the point mutation energetics tools
in the Rosetta software suite.

Keywords: mutation, protein, mutation free energy, protein design and engineering, thermodynamics

INTRODUCTION

The ability to accurately predict the stability of a protein upon mutation is important for numerous
problems in protein engineering and medicine including stabilization and activity optimization of
biologic drugs. To perform this task a number of strategies and force fields have been developed,
including those that perform exclusively on sequence (Casadio et al., 1995; Capriotti et al., 2005;
Kumar et al., 2009) as well as those that involve sophisticated physical force fields both knowledge
based (Sippl, 1995; Gilis and Rooman, 1996; Potapov et al., 2009), physical models (Pitera and
Kollman, 2000; Pokala and Handel, 2005; Benedix et al., 2009), and hybrids (Pitera and Kollman,
2000; Guerois et al., 2002; Kellogg et al., 2011; Jia et al., 2015; Park et al., 2016; Quan et al., 2016).

To facilitate the development of these methodologies and provide easy access to the available
experimental information the ProTherm database (Uedaira et al., 2002) was developed. This
database collects thermodynamic information on a large number of protein mutations and makes
it available in an easy to access format. At the time of this writing it contains 26,045 entries.
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Due to its ease of access the ProTherm has served as the
starting point for a number of benchmark sets used to validate
different stability prediction software packages, including those
in the Rosetta software suite. However significant biases exist in
the representation of different types and classes of mutations in
the ProTherm, as it is derived from the existing literature across
many types of proteins and mutations. The most obvious example
of this is the large number of entries involving a mutation from
a native residue to alanine as making this type of mutation
is a common technique used to find residues important for
protein function. Therefore a large number of the benchmark
sets derived from the ProTherm, which did not account for this
bias, have significantly under or overrepresented these classes
of mutations. These findings suggest previous reports on the
accuracy of stability prediction software does not accurately
reflect these tools’ ability to predict stability changes across all
classes of mutations.

To address this issue we have generated a novel benchmark
subset which accounts for this bias in the ProTherm database
(Supplementary Table 1). We then used this benchmark set to
validate and improve upon an existing free energy of mutation
tool within the Rosetta software suite, “Cartesian 11G,” first
described in Park et al. (2016).

RESULTS

In order to benchmark our Rosetta-based stability prediction
tools we classified the possible mutations into 17 individual
categories as well as reported results on four aggregate categories.
We analyzed five previously published benchmark sets to
determine their coverage across the different classes of mutations
and found them inadequate in a number of categories, especially
involving charged residues (Figures 1A–E). For example, the
number of data points for mutational types ranged from 0 to
24 for negative to positive, 0 to 50 for positive to negative, 3
to 28 for hydrophobic to negative, and 3 to 44 for hydrophobic
to positive entries across the benchmark sets tested. Mutations
to and/or from hydrophobic residues dominated the benchmark
sets ranging from 75 to 92% of the total entries.

To compare the composition of these benchmark sets to that
of the database we examined the curated ProTherm (ProTherm∗)
provided by Ó Conchúir et al. (2015)1 which is a selection of
entries containing only mutations which occur on a single chain
and provide experimental 11G values (Supplementary Table 2).
We find that significant biases still exist here, with several
categories having fewer than 50 unique mutations. These include:
positive to negative, 42; hydrophobic to negative, 43; and non-
charged polar to positive, 47. Mutations involving hydrophobic
residues are still overrepresented, with 62.2% of all mutations in
the database being mutations to hydrophobic residues, compared
to the expected 39.8% if mutations from the starting structures
were chosen randomly (Figures 1F–G).

We also analyzed the benchmark sets with respect to the
number of buried vs. exposed residues in the data sets. No large

1https://guybrush.ucsf.edu/benchmarks/benchmarks/DDG

biases were observed. All benchmark sets were within 6% of what
would be expected if mutations were random (data not shown).

To sample more broadly across all types of mutations and
remove sources of bias in our algorithm development we created
a new benchmark set of single mutations that are more balanced
across mutational types and avoid other biases. To generate this
set we performed the following operations:

(1) Removed any entries from the curated ProTherm∗ that
occur on the interface of a protein complex or interact
with ligands—the energetics of these mutations would
include intra-protein and inter-molecular interactions that
would alter the desired intra-protein energetics of a free
energy calculation.

(2) We removed entries of identical mutation on similar-
sequence (>60%) backbones. For mutations occurring at
the same position in similar sequences, if the mutation is
identical (e.g., L → I) and the sequence identity >60%,
then that mutation is included only once in the database;
if the mutation is not identical (L→ I in one protein and
L→ Q in another) then the mutation is included.

(3) We populated each mutation category, excluding small to
large, large to small, buried, and surface, with 50 entries
except for the cases where insufficient experimental data
points exist. Statistics on the excluded categories were
derived from data points that were already present in the
other categories.

(4) When multiple experimental values (including identical
mutations as identified in point 2 above) were available we
chose the 11G value taken at the pH closest to 7.

The resulting benchmark set contains 767 entries across a
range of different types and classes of mutations (Figure 2).
This constitutes a reduction from the 2,971 total entries in the
curated ProTherm∗, with mutations to hydrophobics being the
most frequently being eliminated. This reduction does eliminate
potentially useful data, and introduces a slight bias toward solvent
exposed residues: 66% of the mutations being on residues with
greater than 20% solvent exposed surface area compared to
54% if chosen randomly. This change is useful to reduce bias
toward favoring hydrophobic mutations and has been controlled
for by checking our algorithm’s performance when residues are
classified by burial.

We tested Protocol 3 described in Kellogg et al. (2011) on this
benchmark set (Table 1). To assess method quality, we analyzed
prediction power by a number of different methods including
Pearson’s R, Predictive Index (Pearlman and Charifson, 2001),
and Matthews Correlation Coefficient (MCC) (Matthews, 1975).
We also analyzed classification errors instead of correlation.
A mutation is classified as stabilizing if the change in free
energy is ≤-1 kcal/mol, it is classified as destabilizing if the
change is ≥1 kcal/mol, and neutral if it falls between these
values. Each mutation is assigned a value of 0 for destabilizing,
1 for neutral, and 2 for stabilizing. We then scored each entry
by taking the absolute value of the difference between the
value for the experiment and the prediction. A value of 0
indicates the prediction was correct, 1 indicates the prediction
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FIGURE 1 | This figure shows the population of different mutation classes used to benchmark a number of methods ability to predict the change in free energy upon
mutation. The citations for these benchmark sets are as follows: (A) Guerois et al. (2002), (B) Potapov et al. (2009), (C) Kellogg et al. (2011), (D) Jia et al. (2015), (E)
Quan et al. (2016), curated ProTherm* (F) Ó Conchúir et al. (2015). The probability of these classifications occurring given the amino acid composition of the
structures in the Curated ProTherm* database are shown in (G). Classes involving charged residues are colored in red. All data sets are significantly biased in their
types of mutations present, especially when it comes to mutations to hydrophobics. All data sets contain greater than 27% hydrophobic to hydrophobic mutations
vs. the expected 18.4% (G).
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FIGURE 2 | Categorically Balanced Benchmark mutational category statistics.
This figure shows the metrics of our new benchmark set selected to provide a
more balanced representation of different mutation classifications. Classes
involving charged residues are shown in red.

was moderately incorrect, i.e., the mutation is destabilizing and
the prediction was neutral, and 2 indicates the prediction was
egregiously wrong.

To address some metrics on which Protocol 3 performs poorly,
we were interested in using a more modern Rosetta 11G
protocol, Cartesian 11G, first briefly described in Park et al.
(2016). We refactored the Cartesian 11G code to utilize the
Mover framework described in Leaver-Fay et al. (2011), keeping
the underlying science the same (other than changes highlighted
here) while eliminating bugs and improving efficiency and
modifiability (Supplementary Table 3).

We tested changes to the preparation phase of the
protocol relative to what was used in Park et al. (2016;
Figure 3). To improve the preparation step (step 1), we
tested Cartesian Relax (as opposed to traditional torsion
space Relax, used in Kellogg’s Protocol 3) (Kellogg et al.,
2011) both with and without all atom constraints and found
that Pearson’s R correlations were worse when models were
prepared without constraints but the Predictive Index
and MCC improved. The variability between runs also
dropped when models were prepared without constraints.
The biggest impact was on the classification of mutations,
however, with the number of egregiously wrong predictions
falling from 34.00 ± 2.0 to 24.67 ± 0.6 (Supplementary
Table 2). This likely has to do with the use of Cartesian
minimization during step 4, and the importance of preparing
a structure with similar sampling methods to those used
during mutational energy evaluation. We consider the
MCC and Predictive Index improvements more valuable
and thus recommend model preparation without all
atom constraints.

FIGURE 3 | Diagram of Protocol 3 and Cartesian 11G. This figure diagrams
the steps involved in the older Protocol 3 as well as the Cartesian 11G
protocol. Novel changes described in this paper include the removal of
constraints during step 1 of the Cartesian 11G protocol, the addition of Step
2.1 for mutations involving proline as well as the choice to repeat testing until
the protocol converges on a lower energy score instead of a fixed number (3)
of times.

We also examined a potential runtime improvement for
Cartesian 11G. In Park et al. (2016), the final energy for a
mutation is the average of three replicates. We examined a multi-
run convergence criterion, described in further detail below, and
settled on the convergence criterion method due to its equivalent
accuracy with reduced run time.

Finally, we tested adding increased backbone sampling around
residues that are being mutated to or from proline, which had
no impact on the Pearson’s R, Predictive Index, and MCC, but
reduced the number of egregious errors slightly from 25.33± 0.6
to 24.67± 0.6 (Supplementary Table 3).

This updated Cartesian 11G algorithm has improved
performance overall when compared to Protocol 3, especially in
the ability to accurately classify mutations including the large
reduction of egregious errors in classification (Tables 1, 2). For
example, the number of mutations predicted as stabilizing when
they are destabilizing or vice versa fell from an average of 53
with Protocol 3 to an average of 24.6 across three replicates. “Off
by 1” errors are also lower (317.3 vs. 289.3) (Supplementary
Table 2). This trend is much stronger than the improvement in
correlations, and more importantly reflects the practical value
of correctly classifying mutational categories. For example in
protein engineering, a protein designer’s practical interest is
whether any given mutation is stabilizing at all, more than which
of two mutations is more stabilizing.

The overall level of accurate classification predictions
increases from 51.7 to 59.1% from the Protocol 3 to Cartesian
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TABLE 1 | Correlations and Predictive Index for Protocol 3 and our improved Cartesian 11G across different mutation categories.

Protocol 3 Cartesian 11G

Mutation Type Pearson’s R Pearson’s R
Filtered

Predictive
Index

MCC Pearson’s R Pearson’s R
Filtered

Predictive
Index

MCC

Small to large 0.54 ± 0.000 0.68 ± 0.000 0.57 ± 0.001 0.36 ± 0 0.48 ± 0.0041 0.66 ± 0.006 0.55 ± 0.0096 0.55 ± 0.0221

Large to small 0.57 ± 0.000 0.76 ± 0.000 0.59 ± 0.000 0.37 ± 0 0.62 ± 0.0199 0.8 ± 0.0015 0.71 ± 0.0239 0.46 ± 0.0176

Positive to negative 0.40 ± 0.000 0.79 ± 0.000 0.28 ± 0.000 0.00 ± 0 0.65 ± 0.0024 0.88 ± 0.0072 0.74 ± 0.0054 0.5 ± 0.0891

Negative to positive 0.34 ± 0.000 0.61 ± 0.000 0.26 ± 0.000 0.19 ± 0 0.36 ± 0.0128 0.57 ± 0.0176 0.48 ± 0.0312 0.53 ± 0.0302

Negative to hydrophobic 0.27 ± 0.000 0.55 ± 0.000 0.27 ± 0.000 0.15 ± 0 0.58 ± 0.0064 0.71 ± 0.0124 0.64 ± 0.0068 0.43 ± 0.0228

Hydrophobic to negative 0.83 ± 0.000 0.87 ± 0.000 0.84 ± 0.000 0.27 ± 0 0.73 ± 0.0554 0.81 ± 0.0477 0.8 ± 0.0867 0.5 ± 0.0551

Positive to hydrophobic 0.06 ± 0.000 0.23 ± 0.000 0.01 ± 0.000 0.35 ± 0 0.46 ± 0.0266 0.62 ± 0.0326 0.51 ± 0.0283 0.66 ± 0.0016

Hydrophobic to positive 0.57 ± 0.000 0.73 ± 0.000 0.63 ± 0.002 0.37 ± 0 0.51 ± 0.0112 0.7 ± 0.0031 0.67 ± 0.0074 0.44 ± 0.0858

Non-charged polar to
positive

0.40 ± 0.000 0.67 ± 0.000 0.39 ± 0.004 0.43 ± 0 0.28 ± 0.0075 0.78 ± 0.0148 0.4 ± 0.0196 0.28 ± 0.0

Positive to non-charged
polar

0.32 ± 0.000 0.67 ± 0.000 0.52 ± 0.000 0.26 ± 0 0.43 ± 0.0042 0.8 ± 0.0178 0.72 ± 0.0084 0.55 ± 0.0602

Non-charged polar to
negative

0.64 ± 0.000 0.73 ± 0.000 0.69 ± 0.000 0.00 ± 0 0.62 ± 0.0196 0.83 ± 0.0042 0.66 ± 0.0153 0.67 ± 0.0

Negative to non-charged
polar

0.13 ± 0.000 0.44 ± 0.000 -0.07 ± 0.000 0.22 ± 0 0.37 ± 0.0076 0.69 ± 0.0138 0.44 ± 0.0135 0.53 ± 0.028

Non-charged polar to
hydrophobic

0.70 ± 0.000 0.70 ± 0.000 0.64 ± 0.001 0.38 ± 0 0.74 ± 0.0014 0.78 ± 0.0012 0.66 ± 0.0027 0.38 ± 0.0

Hydrophobic to
non-charged polar

0.41 ± 0.000 0.66 ± 0.000 0.39 ± 0.000 0.47 ± 0 0.57 ± 0.0105 0.75 ± 0.022 0.58 ± 0.0027 0.11 ± 0.022

Non-charged polar to
non-charged polar

0.76 ± 0.000 0.76 ± 0.000 0.66 ± 0.002 0.15 ± 0 0.52 ± 0.0049 0.84 ± 0.0038 0.79 ± 0.0021 0.49 ± 0.0313

Hydrophobic to
hydrophobic

0.67 ± 0.000 0.74 ± 0.000 0.72 ± 0.000 0.57 ± 0 0.61 ± 0.0051 0.75 ± 0.0068 0.68 ± 0.0111 0.28 ± 0.0282

charge to charge 0.31 ± 0.000 0.73 ± 0.000 0.36 ± 0.000 0.26 ± 0 0.32 ± 0.0067 0.7 ± 0.0143 0.35 ± 0.0055 0.44 ± 0.0397

Involves cysteine 0.25 ± 0.000 0.63 ± 0.000 0.27 ± 0.000 0.26 ± 0 0.07 ± 0.0428 0.49 ± 0.0946 0.16 ± 0.0498 0.08 ± 0.0708

Involves proline 0.02 ± 0.000 0.54 ± 0.000 0.33 ± 0.000 0.30 ± 0 0.51 ± 0.0277 0.76 ± 0.0264 0.54 ± 0.0271 0.51 ± 0.1401

Same size 0.36 ± 0.000 0.38 ± 0.000 0.37 ± 0.000 0.22 ± 0 0.45 ± 0.0035 0.45 ± 0.0035 0.51 ± 0.0091 0.31 ± 0.0251

Buried 0.20 ± 0.000 0.54 ± 0.000 0.55 ± 0.000 0.35 ± 0 0.43 ± 0.0022 0.43 ± 0.0022 0.54 ± 0.0104 0.26 ± 0.0056

Surface 0.31 ± 0.000 0.34 ± 0.000 0.35 ± 0.000 0.23 ± 0 0.47 ± 0.006 0.5 ± 0.0064 0.6 ± 0.0076 0.42 ± 0.0165

Everything 0.25 ± 0.000 0.47 ± 0.000 0.48 ± 0.000 0.28 ± 0 0.49 ± 0.0025 0.49 ± 0.0025 0.61 ± 0.0062 0.41 ± 0.0127

This table contains the Pearson’s R correlations for each class of mutations in our benchmark set for both Protocol 3 and Cartesian 11G. Each is repeated three times
using the same inputs and the average and standard deviation are shown. Given the sensitivity to outliers of Pearson’s R we also report it as Pearson’s R filtered after
removing up to five outliers from each set. An outlier is defined as any single entry which, when removed, changes the correlation coefficient by 0.025 or greater. We
also report the Predictive Index and the Matthews Correlation Coefficient which are less sensitive to the absolute free energy of a prediction but rather whether it can be
correctly classified. Cartesian 11G significantly outperforms Protocol 3 both in the unfiltered Pearson’s R, Predictive Index, and Matthews Correlation Coefficient. In each
analysis metric the higher value indicates greater accuracy.

11G Rosetta methods. We also note that over all charged
residues the category predictions accuracy was 47.9% for protocol
3 and increases to over 60.5% with Cartesian 11G. The Cartesian
11G algorithm is more broadly useful across any type of protein
mutation, while Protocol 3 had uneven applicability.

DISCUSSION

Here we describe a number of issues in previous benchmark sets
used to assess the quality of protein stability prediction software.
In particular we have found a lack of adequate experimental data
being included for mutations involving charged residues.

Using these updated benchmarks we show that protein
stability prediction tools in Rosetta vary widely across different

types of mutation classes. In addition, given that this problem
is pervasive throughout the field, it is likely that the reported
accuracy of many methods for stability prediction may not
reflect the diversity of possible mutation types. We encourage
other developers to analyze the performance of their tools across
different types of mutations using our benchmark set or one
which has appropriately accounted for the biases that exist within
the databases (Supplementary Table 1). The reduced size of this
data set may also be useful for rapid training or situations with
computational limitations.

Last, we have refactored the Cartesian 11G protocol code
to improve consistency and modifiability, and have also made
minor modifications to the structure preparation and analysis
step as well as to how mutations involving proline are sampled.
By analyzing these algorithms with the new benchmark set, and
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TABLE 2 | The ability of Protocol 3 and Cartesian 11G to correctly classify mutations.

Protocol 3 Cartesian 11G

Mutation class Same
class (%)

Off by one
(%)

Off by two
(%)

Same
class (%)

Off by one
(%)

Off by two
(%)

Total
entries

Small to large 55.7 42.7 1.6 67.7 29.2 3.1 64

Large to small 60.4 34.1 5.5 53.5 42.9 3.7 91

Positive to negative 32.3 61.3 6.5 67.7 32.3 0.0 31

Negative to positive 26.1 56.5 17.4 55.1 35.5 9.4 46

Negative to hydrophobic 32.0 50.0 18.0 56.0 38.0 6.0 50

Hydrophobic to negative 53.8 43.6 2.6 70.9 29.1 0.0 39

Positive to hydrophobic 50.0 42.0 8.0 47.3 50.0 2.7 50

Hydrophobic to positive 73.0 18.9 8.1 79.3 18.0 2.7 37

Non-charged polar to positive 50.0 50.0 0.0 61.1 35.6 3.3 30

Positive to non-charged polar 58.0 38.0 4.0 61.3 36.7 2.0 50

Non-charged polar to negative 48.0 48.0 4.0 58.0 40.0 2.0 50

Negative to non-charged polar 44.0 36.0 20.0 50.7 47.3 2.0 50

Non-charged polar to hydrophobic 48.0 48.0 4.0 48.7 49.3 2.0 50

Hydrophobic to non-charged polar 56.0 42.0 2.0 66.0 28.7 5.3 50

Non-charged polar to non-charged polar 57.3 38.7 4.0 67.3 30.7 2.0 50

Hydrophobic to hydrophobic 76.0 22.0 2.0 72.0 26.0 2.0 50

Charge to charge 65.7 34.3 0.0 51.4 48.6 0.0 35

Involves cysteine 55.1 40.8 4.1 49.3 44.0 6.7 49

Involves proline 54.0 38.0 8.0 52.0 44.0 4.0 50

Buried 65.4 26.5 8.1 65.0 29.4 5.6 260

Surface 44.7 49.0 6.3 56.1 41.9 2.0 507

Everything 51.7 41.4 6.9 59.1 37.7 3.2 767

This table shows the ability of Protocol 3 and Cartesian 11G to correctly classify a mutation. Mutations are assigned a value of 0 for destabilizing, 1 for neutral, and 2 for
stabilizing. The absolute value of the difference between the predicted class and the experimental class represents no error, mild error (off by one class), or egregious error
(off by two classes). Performance across the benchmark is reported here as a percentage of mutations in each class. Cartesian 11G correctly classifies more entries
(59.1 vs. 51.7%), and produces fewer catastrophic off by two errors (3.2 vs. 6.9%).

focusing on previously underrepresented categories of mutations
(e.g., uncharged to charged), we are able to demonstrate
the Cartesian 11G algorithm has improved correlation to
experimental values and improved ability to correctly classify
(stabilizing/destabilizing/neutral) a mutation relative to the older
Protocol 3 methodology. These results show the importance
of diverse datasets in algorithm benchmarking, and the need
to look beyond the surface when analyzing the results of
these algorithms.

METHODS

Benchmark Set Pruning
To create our benchmark set, we began by making a copy of
the curated ProTherm∗ database (Ó Conchúir et al., 2015) and
began removing entries that were unsuitable. Because we wished
to develop a point mutation algorithm without the complexities
of multiple mutation interactions, we excluded any entry which
did not represent a single mutation. Because the algorithm
is intended to represent 11G of monomer folding and not
binding interactions, we also removed entries on the interface
of a protein-protein complex, or interacting with a non-water
ligand. Interactions were defined as any atom in the mutated

TABLE 3 | Residue category assignments and category combinations.

Type and 1 letter codes Combination categories

Small GAVSTC Positive to negative Non-charged polar
to hydrophobic

Large FYWKRHQE Negative to positive Hydrophobic to
non-charged polar

Negative DE Positive to non-charged polar Non- charged polar
to non-charged polar

Positive RK Negative to non-charged polar Hydrophobic to
hydrophobic

Polar YTSHKREDQN Non-charged polar to positive Like to like charge

Non-charged polar
YTSNQH

Non-charged polar to negative Involves proline

Hydrophobic FILVAGMW Negative to hydrophobic Involves cysteine

Cysteine C Hydrophobic to negative Small to large

Proline P Positive to hydrophobic Large to small

Hydrophobic to positive

On the left, we list the nine residue groupings considered in this benchmark and
annotate which residues go in each class. At center and right, we list the 19
mutational types considered by combining these classes.

residue within 5 Å of an atom not on the same chain. To increase
experimental diversity, we wished to remove duplicate mutations.
To identify duplicates, we performed an all to all sequence
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alignment to find parent backbones with≥60% sequence identity.
Within these clusters of sequences, any entries in which the
same native residue is mutated to the same target were treated
as identical. When multiple experimental 11G values were
available for an identical mutation we chose the value taken at
closer to neutral pH.

Benchmark Category Population
We identified 21 categories of mutation type by combinations
from nine residue type classifications (Table 3). We then
populated each narrowly defined category (e.g., polar non-
charged to negative) with up to 50 entries. Some categories (large
to small, small to large, buried, and surface) are supersets of the
more narrowly defined categories and were sufficiently populated
by the experiments selected from the other groups.

A few categories involving charged residues (positive to
negative, negative to positive, non-charged polar to positive,
hydrophobic to negative, hydrophobic to positive, and like to
like charge) did not have enough data to hit 50 entries so every
available unique experiment was added.

11G Prediction
To prepare models for 11G calculations, structures were
stripped to only the chain in which the mutation occurs.
Rosetta local refinement, consisting of alternating cycles of side
chain packing and all atom minimization (“Relax”), was then
performed 20 times on the chain of interest and the model with
the lowest Rosetta energy was selected as input. As noted in
the Results, this was done without all atom constraints and in
Cartesian space, not torsional space.

11G predictions were then performed using Protocol 3
described in Kellogg et al. (2011), the version of the Cartesian
11G application described originally in Park et al. (2016),
or the refactored and improved version of Cartesian 11G
elaborated upon here.

To provide context for our modifications, a brief description
of the Cartesian 11G protocol as presented in Park et al.
(2016) is warranted. Cartesian 11G calculates the change in
folding energy upon mutation by taking the prepared starting
structures, then mutating the target residue. This residue and
its neighbors within 6 Å are then repacked. After repacking the
mutated residue, the side chain atoms of residues within 6 Å
of the target residue and the side chain and backbone atoms
of sequence-adjacent residues are minimized in Cartesian space.
The same optimization, without the change in sequence, is done
on the starting structure to determine the baseline energy. The
process is performed three times for both the mutant and the
wild type sequence and the 11G is calculated from the average

of each. There is no particularly different handling of mutations
involving proline.

Our modifications to the Cartesian 11G tool include a
change to the analysis and a change to proline handling
(Figure 2). In the analysis step, we changed the number of mutant
models generated using the following convergence criterion: the
lowest energy 2 structures must converge to within 1 Rosetta
Energy Unit, or take the best of 5 models, whichever comes first.
In either case the lowest, not the average, energy is used. In order
to address changes in the backbone resulting from mutations to
and from proline we added additional fragment based sampling
around mutations involving proline. By default 30 fragments
of 5 residues in length, centered on the mutation, are sampled
and the best scoring structure is carried forward for analysis.
This uses the Cartesian Sampler system described in Wang et al.
(2016). Command line flags and XML files can be found in
Supplementary Material.
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