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Abstract 

Background: The triglyceride-glucose index (TyG) has been proposed as a surrogate marker of insulin resistance, 
which is a typical trait of pregnancy. However, very few studies analyzed TyG performance as marker of insulin resist-
ance in pregnancy, and they were limited to insulin resistance assessment at fasting rather than in dynamic condi-
tions, i.e., during an oral glucose tolerance test (OGTT), which allows more reliable assessment of the actual insulin 
sensitivity impairment. Thus, first aim of the study was exploring in pregnancy the relationships between TyG and 
OGTT-derived insulin sensitivity. In addition, we developed a new version of TyG, for improved performance as marker 
of insulin resistance in pregnancy.

Methods: At early pregnancy, a cohort of 109 women underwent assessment of maternal biometry and blood tests 
at fasting, for measurements of several variables (visit 1). Subsequently (26 weeks of gestation) all visit 1 analyses were 
repeated (visit 2), and a subgroup of women (84 selected) received a 2 h-75 g OGTT (30, 60, 90, and 120 min sam-
pling) with measurement of blood glucose, insulin and C-peptide for reliable assessment of insulin sensitivity (PREDIM 
index) and insulin secretion/beta-cell function. The dataset was randomly split into 70% training set and 30% test set, 
and by machine learning approach we identified the optimal model, with TyG included, showing the best relationship 
with PREDIM. For inclusion in the model, we considered only fasting variables, in agreement with TyG definition.

Results: The relationship of TyG with PREDIM was weak. Conversely, the improved TyG, called TyGIS, (linear function 
of TyG, body weight, lean body mass percentage and fasting insulin) resulted much strongly related to PREDIM, in 
both training and test sets  (R2 > 0.64, p < 0.0001). Bland–Altman analysis and equivalence test confirmed the good 
performance of TyGIS in terms of association with PREDIM. Different further analyses confirmed TyGIS superiority over 
TyG.

Conclusions: We developed an improved version of TyG, as new surrogate marker of insulin sensitivity in pregnancy 
(TyGIS). Similarly to TyG, TyGIS relies only on fasting variables, but its performances are remarkably improved than 
those of TyG.

Keywords: Triglyceride-glucose index, Insulin resistance, Pregnancy, Gestational diabetes, Machine learning, 
Mathematical modelling
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Introduction
Insulin resistance is a typical trait of pregnancy, even 
when not complicated by any endocrinological, meta-
bolic or cardiovascular disorder [1–6]. Of note, when 
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pregnancy is complicated by gestational diabetes mel-
litus (GDM), insulin resistance further deteriorates 
[7–10]. According to international guidelines, GDM can 
be diagnosed by fasting glycemia or by an oral glucose 
tolerance test (OGTT) [11]. With regard to the OGTT, 
GDM diagnosis requires collecting only the 60 min and 
the 120  min blood samples following glucose ingestion, 
and only glycemia needs to be assessed [11]. Thus, in rou-
tine clinical practice, the OGTT includes only two time 
samples in addition to the fasting sample, and with no 
measurement of insulin or C-peptide. In fact, more com-
plete OGTT studies are currently limited to clinical trials 
rather than the clinical routine. However, the information 
of the simple diagnostic OGTT do not allow assessment 
of insulin resistance, which requires insulin measurement 
in addition to glucose and takes advantage from possible 
collection of more blood samples rather than the 60 and 
120  min samples only [12–17]. Nonetheless, the assess-
ment of insulin action may be clinically relevant in GDM 
and even in pregnant women with overweight, obesity 
or with signs of dysglycemia (though in the absence of 
overt GDM), since the degree of insulin resistance can 
drive specific therapeutic intervention and care [18, 19]. 
In addition, though there are still controversies about 
optimal timing for metabolic assessment in pregnancy 
[20, 21], the assessment at early pregnancy (i.e., before 
24 weeks of gestation) of the insulin resistance level (and, 
possibly, other metabolic parameters) may allow predic-
tion of GDM risk and severity of the disease at later stage. 
Thus, the problem arises on how to assess insulin resist-
ance or sensitivity without the OGTT or even more com-
plicated tests, such as the hyperinsulinemic-euglycemic 
clamp, which are hardly feasible in the clinical practice 
(especially in pregnant women).

There is an increasing interest in the triglyceride-
glucose index (TyG) [22], as mirrored by the remark-
ably growing number of articles dealing with TyG in the 
recent years. Especially, in the 2019–2021 period the 
number of pertinent articles has increased each year 
by about the 50% compared to the previous year, and 
at mid-2022 the number of articles has already reached 
that of the whole 2020 (source: PubMed). This is likely 
due to the relevant properties of TyG, despite its simple 
formulation, as it only relies on fasting triglycerides and 
glucose [22]. The importance of TyG has in fact been 
summarized in several review studies, which have shown 
TyG ability to predict risk for cardiovascular diseases, 
type 2 diabetes and GDM as well [23–32]. In addition, 
TyG has been proposed in several investigations as sur-
rogate marker of insulin resistance [24, 33, 34]. TyG as 
surrogate of insulin resistance appears in fact the original 
reason for its introduction in the scientific community 
[22, 35]. Notably, insulin resistance is a relevant aspect of 

the metabolic syndrome, and, as such, an important risk 
factor for cardiovascular diseases or diabetes [36–46]. 
However, studies on TyG potential and relevance in preg-
nancy are still relatively scarce [30, 47–55]. Furthermore, 
studies on TyG performance as surrogate marker of insu-
lin resistance in pregnancy are even rarer [47, 51], and 
limited to the assessment of insulin resistance at fasting 
rather than in dynamic conditions (i.e., during a glucose 
or meal challenge), which allow more reliable assessment 
of the actual degree of whole body insulin resistance. On 
the other hand, in a previous study from our research 
group we found that in pregnant women fasting triglyc-
erides are associated with insulin resistance derived from 
an OGTT [56]. However, we did not investigate the rela-
tionships between OGTT-derived insulin resistance and 
TyG.

Thus, one aim of the present study was to explore 
OGTT-derived insulin resistance and TyG relationships 
in pregnancy. To our knowledge, in pregnancy no previ-
ous study analyzed the performance of TyG as marker of 
insulin resistance derived by a metabolic test, such as the 
OGTT. In addition, and most importantly, we aimed to 
develop a new version of TyG for improved performance 
as marker of OGTT-derived insulin resistance in preg-
nancy, spanning from normal glucose tolerance to overt 
GDM. This was accomplished by exploiting advanced 
methodologies based on machine learning techniques. 
Notably, to ensure simplicity of the improved TyG, and 
hence wide applicability in the clinical context, the pos-
sible factors assessed as possible complements of TyG 
for OGTT-derived insulin sensitivity prediction were 
restricted to those stemming from fasting measures or 
general subjects’ characteristics.

Methods
Study design, participants and measures
Between 2015 and 2020, 109 pregnant women were 
recruited among all women attending the pregnancy out-
patient department at the Medical University of Vienna. 
Women after bariatric surgery, with preconceptional 
(type 1 or type 2) diabetes or other endocrine disor-
ders, HIV, hepatic infection or malignant tumors were 
excluded. At early pregnancy (visit 1, median gestational 
age: 15.9 weeks, interquartile range, IQR: 13.4 to 18.9) all 
women underwent assessment of maternal biometry and 
blood tests at fasting, for measurements of total choles-
terol, HDL-cholesterol, LDL-cholesterol, hemoglobin 
(Hb), glycated hemoglobin (HbA1c), aspartate ami-
notransferase (ASAT), alanine aminotransferase (ALAT), 
gamma glutamyltransferase (GGT), albumin, creatinine, 
C-reactive protein, platelet count, glucose, insulin and 
C-peptide.
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At a median gestational age of 26.0  weeks (IQR: 25.3 
to 27.1) all analyses were repeated, and a subgroup of 
women received a 2  h-75  g OGTT to assess dynamic 
parameters of glucose metabolism (visit 2). After an over-
night fast, women ingested a solution containing 75 g of 
glucose and venous blood samples were taken at fasting 
and for 120  min (at 30, 60, 90, and 120  min) for blood 
glucose, insulin and C-peptide measurements. GDM was 
diagnosed according to the International Association of 
the Diabetes and Pregnancy Study Groups recommen-
dations (in some women presence of GDM was verified 
by glucose self-monitoring in accordance with Austrian 
national guidelines) [57]. Maternal and neonatal parame-
ters and outcomes were also recorded. Calculations of age 
and sex adjusted percentiles of newborns’ birth weight 
were based on international anthropometric standards, 
whereby LGA (large for gestational age) was defined as 
birth weight above the 90th percentile [58]. In the pre-
sent analysis, following exclusion of some women due 
to OGTT data not suitable for modelling and machine 
learning analysis (e.g., incomplete OGTT data or pres-
ence of outliers), we ended up with a group of 84 women, 
having glucose, insulin and C-peptide measurement at 
every time sample of the OGTT, as well as measurement 
of all variables indicated above. Data of a subset of the 
participants included in this work were previously pub-
lished [56], whereas other participants derived from an 
internal cohort, collected with comparable study design. 
The study was approved by the Ethics Committee of the 
Medical University of Vienna and performed in accord-
ance with the most recent version of the Declaration of 
Helsinki. All participants gave written informed consent.

Laboratory analysis details
All laboratory parameters were measured according to 
the standard methods at the Department of Medical and 
Chemical Laboratory Diagnostics (http:// www. kimcl. 
at). As regards the OGTT variables, plasma glucose was 
measured by the hexokinase method (coefficient of varia-
tion (C.V.): 1.3%, 101 mg/dL), whereas insulin (C.V. from 
4 to 7%, 2  µU/mL) and C-peptide (C.V. from 3 to 4%, 
0.08  ng/mL) were measured by luminescence immuno-
assays. HbA1c was assessed by high-performance liquid 
chromatography using Variant II, Bio-Rad, International 
Federation of Clinical Chemistry (IFCC) standardized 
and Diabetes Control and Complications Trial (DCCT)-
aligned with C.V. of 1.8% (HbA1c = 5.6%).

Calculation of insulin sensitivity and beta‑cell function
At visit 2 (when OGTT data were available), total body 
insulin sensitivity was assessed by the PREDIM (pre-
dicted M) index, which has shown particularly good per-
formances against the gold-standard insulin sensitivity 

index derived from the hyperinsulinemic-euglycemic 
clamp technique [59]. Specific parameters describing dif-
ferent aspects of insulin secretion and beta-cell function 
were assessed from C-peptide according to mathemati-
cal modelling [60, 61]. Briefly, we assessed basal insulin 
secretion rate (BSR) and total insulin secretion (TIS), 
glucose sensitivity (G-sens, representing the mean slope 
of the dose response function describing insulin release 
for the absolute glucose levels), rate sensitivity (R-sens, 
representing early insulin release for the rate of change 
of glucose) and potentiation factor (PFR, representing the 
ratio of the insulin secretion potentiation at the end vs. 
the beginning of the OGTT).

Determination of an improved version 
of the triglyceride‑glucose index
The machine learning approach: at visit 2, we exploited 
the traditional TyG values and other data measured 
at the time of the OGTT to identify by machine learn-
ing approach an improved version of TyG, which can 
accurately predict the OGTT-derived insulin sensitiv-
ity as assessed by PREDIM. We named the new index 
TyGIS (where IS stands for insulin sensitivity). Of note, 
the clinical variables that we analyzed for possible inclu-
sion in the TyGIS formulation were only those measured 
at fasting, rather than during the dynamic conditions of 
the OGTT. Indeed, we aimed to preserve the basic con-
cept behind TyG, this being simplicity of calculation due 
to need for variables measured at fasting only, thus not 
requiring glucose challenge or other metabolic tests. It 
is also worth clarifying that TyG is a possible marker of 
insulin resistance, whereas TyGIS is built as a marker of 
insulin sensitivity, for direct comparison with PREDIM 
(the latter being an index of insulin sensitivity rather than 
resistance).

One key factor towards the possible clinical applica-
tion of machine learning models is the easy interpretabil-
ity [62]. To this purpose, we aimed to develop a model 
described by a simple algebraic equation. To reach the 
final model formulation, multivariate polynomial regres-
sion was employed using the L2-regularized (also known 
as Ridge) Support Vector Machine approach (SVM) 
[63]. Nonetheless, other model building strategies were 
tested that showed superior performance over ordinary 
least squares regression in previous studies [64], such 
as L1-regularized (or LASSO, i.e., least absolute shrink-
age and selection operator) SVM [63] and robust linear 
regression [65]. All models were implemented in MAT-
LAB (version 2020a) and related Statistics and Machine 
Learning toolbox (MathWorks, Inc., USA). More details 
about our machine learning approach are reported in the 
following paragraphs.

http://www.kimcl.at
http://www.kimcl.at
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Feature selection procedure: from the original clini-
cal data, we initially considered several variables (fea-
tures) for possible inclusion in the formulation of 
TyGIS. The value of each analyzed feature was that 
at the time of the OGTT (i.e., visit 2), except obvi-
ously for pre-pregnancy weight. The first considered 
feature was the traditional TyG, whose definition is 
TyG = ln[fasting triglycerides · fasting glucose/2] , with both  
triglycerides and glucose in mg/dL [22]. Since TyGIS 
is intended being an improved TyG, our procedure 
forced TyG to be included among the selected fea-
tures. We also tested possible inclusion of triglycerides 
and glucose separately. The other features considered 
in this analysis were age, height, pre-pregnancy body 
weight, body weight, body mass index (BMI), body sur-
face area (BSA), lean body mass (LBM), total pregnancy 
number, parity, week of gestation, multiple pregnancy 
(e.g., twin pregnancy), GDM condition, total choles-
terol, HDL-cholesterol, LDL-cholesterol, Hb, HbA1c, 
ASAT, ALAT, GGT, albumin, creatinine, C-reactive 
protein, platelet count, fasting insulin, fasting C-pep-
tide. The body mass index was computed as tradition-
ally: BMI = bodyweight/height2 ; body surface area was 
BSA = 0.164 · bodyweight0.515 · height0.422 [66]; lean body 
mass was   LBM = 0.296 · bodyweight + 41.813 · height − 43.293 
[67] (with body weight in kg and height in meters in all 
formulas).

The dataset of the studied 84 women was split into 70% 
training set and 30% test set, according to common prac-
tice [68], thus obtaining a training set of 59 women and a 
test set of 25. While the training set was used to imple-
ment the model, the test set was used only after the final 
model was determined, thus obtaining an independent 

evaluation of the generalization capability of the new 
index formulation (i.e., of TyGIS performance in predict-
ing PREDIM). Standardization of each feature was car-
ried out on the training set data, yielding zero mean and 
unit variance for each feature, to cope with the depend-
ence of the implemented learning algorithms on the fea-
ture scales [69]. This phase of the procedure yielded the 
selection of 46 subsets as inputs for the following phases 
in model formulation (see Additional file 1 for details).

Final model generation, selection and application: for 
the final model generation and selection, a nested CV 
technique was implemented, consisting of an outer and 
an inner loop (Fig. 1). For ensuring low features to sample 
size ratio [70], in the selection of the final model both the 
root mean squared error (RMSE) and the Bayesian infor-
mation criterion (BIC) [71] values were considered, pre-
ferring models with fewer predictors that still achieved 
good performance. Once the best input was selected 
(that is, the final model determined), such model was re-
trained on the training set, and its generalization capa-
bility was finally evaluated on the test set. Further details 
on this phase of the procedure are reported in Additional 
file 1.

It has to be emphasized that the final model for TyGIS 
calculation was determined at visit 2, when PREDIM 
was available. However, TyGIS was then computed also 
at visit 1. Indeed, at visit 2 we tested the association 
between TyGIS and PREDIM, computed only at visit 2 as 
it requires OGTT data (only available at visit 2). On the 
other hand, TyGIS computation at visit 1 allowed inves-
tigating its ability to predict insulin sensitivity at later 
pregnancy period (i.e., PREDIM at visit 2).

Fig. 1 Framework for generation and selection of the regularized SVM regression model. The yellow and purple blocks outline the implemented 
nested cross-validation procedure



Page 5 of 15Salvatori et al. Cardiovascular Diabetology          (2022) 21:215  

Statistical analysis
Linear regression analysis was performed between PRE-
DIM and the new TyG index, TyGIS, as well as between 
PREDIM, TyGIS, TyG and the model-derived param-
eters of insulin secretion and beta-cell function (BSR, 
TIS, G-sens, R-sens, PFR). PREDIM and TyGIS were 
also compared by Bland–Altman plot. In addition, test 
of equivalence was also used to compare PREDIM and 
TyGIS [59]. In that analysis, we identified how small the 
equivalence limit parameter (representing the tolerance 
of the test) could be while maintaining the significance of 
the test (i.e., p-value just slightly lower than 0.05) [59].

Comparison of one variable between two groups was 
performed by the Welch’s t-test, to account for typically 
different variable variances in the groups. For compari-
son among three groups, we used analysis of variance 
(ANOVA), and Dunnett Tukey Kramer post-hoc test 
for comparison in pairs of groups. Fisher’s exact test 
was used for group comparison of categorical variables. 
Lastly, correlation between TyGIS at the time of the 
first visit (visit 1) and PREDIM at visit 2 was evaluated. 
Similarly, a logistic regression analysis was performed to 
investigate whether TyGIS at visit 1 can be predictive of 
non-normal glucose tolerance [72] or GDM condition at 
visit 2. Some of the indicated analyses were repeated for 
the traditional TyG.

Continuous variables were summarized by mean ± stand-
ard deviation (SD) or median and IQR (depending on varia-
ble distribution, according to Shapiro–Wilk test). Categorical 
variables were summarized by counts and percentages. For 
continuous variables,  loge transformation was applied in case 
of skewed distribution. A two-sided p < 0.05 was considered 
statistically significant. Due to the explorative character of 
this observational study, we used no adjustment for multi-
ple statistical testing if not otherwise indicated. Statistical 
analysis was performed with R (V4.0.2) and contributing 
packages.

Results
Features and OGTT parameters
Table 1 reports the features value in the studied women 
divided for glucose tolerance, i.e., normal glucose toler-
ance (NGT) and non-NGT (GDM or impaired glucose 
regulation), or divided for BMI, i.e., Lean and Overweight 
(BMI ≥ 25 kg/m2), in both cases according to the features 
value at visit 2.

In Table  2, we reported the values of insulin sensitiv-
ity (PREDIM), insulin secretion (BSR, TIS) and beta-cell 
function (G-sens, R-sens, PFR), as derived by the OGTT.

Of note, with regard to the features available in the 
whole dataset (N = 109), both at visit 1 and visit 2 there 
was no difference between the whole dataset and the 

studied women (N = 84) dataset, in any of the features 
(details not shown).

Performance in training set
The model selected was the one with minimum BIC 
value, which also achieved low RMSE on the CV valida-
tion folds, and it corresponded to a linear model with 
four predictors: TyG, body weight, fasting insulin and 
LBM. With this model, the new index for insulin sensitiv-
ity prediction, called TyGIS, was calculated as follows:

Coefficient values are:

Of note, though the Eq. (1) was obtained from the analy-
sis of the normalized features version, for easier usability 
we finally expressed Eq.  (1) with non-normalized fea-
tures. Units of selected features are kg for Body Weight, 
pmol/L for Fasting Insulin, and % for LBM; TyG is unit-
less, but it has to be calculated with triglycerides and glu-
cose in mg/dL, as in its original formulation [22].

In the training set, when comparing TyGIS to PRE-
DIM by linear regression analysis, we found adjusted 
 R2 of 0.642, p < 0.0001 (Fig.  2a). In contrast, the rela-
tionship between TyG and PREDIM was not significant 
(p = 0.21). The Bland–Altman plot showed that only 2 
out of 59 observations were outside the limits of agree-
ment (Fig. 3a), which corresponded to the extreme PRE-
DIM values, this suggesting possible lower agreement on 
higher insulin sensitivity. According to the equivalence 
test, PREDIM and TyGIS values were virtually identi-
cal up to a tolerance (equivalence limit parameter) equal 
to only 8.0% of mean PREDIM, with mean difference 
between the two indices of 0.166 (p < 0.05). 

Performance in test set
When applying Eq. (1) to the test set to analyze the pro-
posed model generalization capability, we again found 
good relationship between TyGIS and PREDIM, with 
adjusted  R2 = 0.687, p < 0.0001, by linear regression anal-
ysis (Fig.  2b). When assessing TyG and PREDIM rela-
tionship, it was still significant, but with  R2 considerably 
lower (adjusted  R2 = 0.425, p < 0.001). For TyGIS, Bland–
Altman plot did not detect any observation outside the 
limits of agreement (Fig.  3b). According to the equiva-
lence test, PREDIM and TyGIS values were similar up to 
a tolerance equal to 9.2% of mean PREDIM, showing a 
mean difference equal to 0.058 (p < 0.05).

(1)
TyGIS = A× TyG + B× BodyWeight + C

× Fasting Insulin+ D × LBM + E

A = −0.4670326,B = −0.1219702,C = −0.0226746,

D = 0.2214735,E = 9.7092789
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Subgroups discrimination
When comparing the NGT to the non-NGT subgroup 
(i.e., including women with GDM, or with impaired 
fasting glucose or impaired glucose tolerance [72]), 
both TyGIS and PREDIM showed significant difference 
between the two subgroups (p < 0.002 and p < 0.0001, 
respectively; see Fig.  4), whereas the traditional TyG 

showed borderline p-value (p = 0.046). In lean and over-
weight subgroups, TyGIS and PREDIM again consistently 
showed significant difference (p < 0.0001 and p < 0.001, 
respectively). TyG showed as well significant difference, 
but with less marked p-value (p < 0.01). In addition, with 
women stratified into normal weight, simple overweight 
(BMI ≥ 25 and < 30 kg/m2) and obesity (BMI ≥ 30 kg/m2), 

Table 1 Feature values in pregnant women divided for glucose tolerance or for body mass index (BMI)

Data for continuous variables are reported as mean ± SD or median [IQR] as appropriate, and as counts and percentages for categorical variables. Except for pre-
pregnancy body weight, the values of all anthropometric and clinical features refer to visit 2. Accordingly, stratification in NGT and non-NGT, as well as Lean and 
Obese/Overweight, refers to visit 2

NGT normal glucose tolerance, Lean BMI < 25 kg/m2, Overweight/Obese otherwise
a p < 0.05 for NGT and Non-NGT
b p < 0.01 for NGT and Non-NGT
c p < 0.001 for NGT and Non-NGT
d p < 0.0001 for NGT and Non-NGT
e p < 0.05 for Lean and Overweight/Obese
f p < 0.01 for Lean and Overweight/Obese
g p < 0.001 for Lean and Overweight/Obese
h p < 0.0001 for Lean and Overweight/Obese

Feature NGT Non‑NGT Lean Overweight/Obese

N 72 12 23 61

TyG index (unitless) 8.84 ± 0.36 9.12 ± 0.42a 8.69 ± 0.35 8.96 ± 0.37f

Age (years) 30.1 ± 4.9 32.8 ± 6.0 30.3 ± 4.8 30.5 ± 5.3

Pre-pregn. body weight (kg) 63.50 [13.50] 76.00 [33.85]a 59.00 [8.75] 70.00 [19.13]h

Body weight (kg) 72.95 [15.60] 81.20 [33.00]a 62.00 [7.38] 77.00 [14.64]h

Height (m) 1.66 ± 0.06 1.63 ± 0.06 1.67 ± 0.07 1.65 ± 0.06

BMI (kg/m2) 26.51 [4.35] 29.80 [11.51]d 22.46 [1.68] 28.07 [5.54]h

BSA  (m2) 1.88 [0.25] 2.02 [0.35] 1.75 [0.13] 1.93 [0.23]h

LBM (%) 48.81 ± 5.42 51.75 ± 7.71 45.90 ± 4.64 50.49 ± 5.78

Total pregnancy no. (counts) 2.00 [2.00] 2.00 [2.00] 2.00 [2.00] 2.00 [2.00]

Parity (counts) 0.00 [1.00] 0.00 [0.50] 0.00 [1.00] 0.00 [1.00]

Multiple pregn. (counts, perc.) 8 (11.1%) 0 (0.0%) 1 (4.3%) 7 (11.5%)

Week of gestation (weeks) 26.00 [1.86] 25.86 [1.28] 25.57 [1.39] 26.14 [1.85]

GDM (counts, perc.) 0 (0.0%) 9 (75.0%)d 1 (4.3%) 8 (13.1%)

Fasting glucose (mmol/L) 4.27 [0.56] 4.91 [0.56]b 4.16 [0.49] 4.44 [0.72]e

Fasting insulin (pmol/L) 51.30 [44.49] 86.97 [64.17]a 45.36 [48.38] 57.06 [47.72]e

Fasting C-peptide (nmol/L) 0.63 [0.28] 1.03 [0.46]b 0.60 [0.26] 0.73 [0.40]f

Hb (g/L) 112.75 ± 9.89 118.17 ± 10.68 113.65 ± 11.83 113.48 ± 9.51

HbA1c (%) 4.79 ± 0.30 5.3 ± 0.35c 4.71 ± 0.34 4.92 ± 0.34e

Platelet count (U/L) 242.50 [54.50] 279.50 [58.50] 243.00 [37.00] 250.00 [80.00]

C-reactive protein (mg/L) 0.40 [0.58] 0.77 [0.47] 0.29 [0.58] 0.47 [0.61]

Albumin (g/L) 39.68 ± 2.32 39.93 ± 2.47 39.73 ± 2.55 39.71 ± 2.26

Creatinine (µmol/L) 43.77 [8.84] 41.56 [11.94] 42.44 [10.17] 43.33 [8.84]

Triglycerides (mmol/L) 1.99 [0.95] 2.36 [1.08] 1.85 [0.80] 2.10 [1.05]f

Cholesterol (mmol/L) 6.53 ± 1.27 6.28 ± 1.22 6.69 ± 1.38 6.42 ± 1.21

HDL (mmol/L) 1.89 [0.80] 1.70 [0.56] 2.07 [0.87] 1.84 [0.85]

LDL (mmol/L) 3.54 ± 1.10 3.37 ± 0.99 3.76 ± 1.22 3.42 ± 1.01

ASAT (U/L) 20.00 [8.00] 20.50 [6.00] 22.00 [8.00] 20.00 [7.00]

ALAT (U/L) 14.00 [6.75] 15.50 [14.00] 14.00 [5.00] 14.00 [10.00]

GGT (U/L) 8.00 [4.00] 11.50 [21.00] 9.00 [4.00] 8.00 [5.50]
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both TyGIS and PREDIM revealed progressive signifi-
cant reduction for increasing levels of overweight (Fig. 5), 
with p < 0.01 and p < 0.05 for lean-overweight compari-
son, p < 0.0001 and p < 0.001 for overweight-obese com-
parison, respectively, and p < 0.0001 for both indices for 
lean-obese comparison. In contrast, the TyG did not 
show significant difference either in lean-overweight or 
in overweight-obesity comparison (p = 0.06 and p = 0.25, 
respectively).

Relationships between insulin sensitivity and insulin 
secretion/beta‑cell function
Results of regression analysis in all studied women 
(N = 84) between model-derived insulin secretion/beta-
cell function parameters and insulin sensitivity (PRE-
DIM), as well as TyGIS, and TyG, are summarized in 
Table 3.

It can be appreciated that relationships between insu-
lin secretion/beta-cell function parameters and PREDIM, 
TyGIS, and TyG were typically weak or even absent. 
From this point of view, PREDIM, TyGIS, and TyG 
showed consistent results.

Prediction performance
In all studied women, the correlation between TyGIS 
computed at visit 1 and PREDIM at visit 2 was rela-
tively strong, yielding an adjusted  R2 of 0.513, p < 0.0001. 
Instead, the relationship between TyG at visit 1 and 

PREDIM at visit 2 was very weak (virtually absent), with 
an adjusted  R2 of 0.083 (p < 0.01).

Regarding the ability of TyGIS at visit 1 to predict non-
NGT or specifically GDM (9 of the 12 non-NGT) at visit 
2, logistic regression showed significant Odds Ratio (OR) 
values. For non-NGT prediction, OR was equal to 0.499 
(95% Confidence Intervals, CI 0.335–0.743, p < 0.001), 
i.e., the higher the TyGIS, the lower the probability of 
later non-NGT condition. TyG at visit 1 proved as well to 
be a predictor of non-NGT condition, but with border-
line p-value (OR = 9.116, 95% CI 1.854–44.817, p < 0.05). 
Similar results were found for the specific GDM condi-
tion, with again marked prediction performance for 
TyGIS (OR = 0.476, 95% CI 0.307–0.736, p < 0.001) and 
only borderline p-value for TyG (OR = 19.607, 95% CI 
2.814–136.604, p < 0.05). Of note, since TyGIS has been 
built as marker of insulin sensitivity (direct predictor 
of PREDIM), whereas TyG is a possible marker of insu-
lin resistance, OR value was lower than 1 for TyGIS and 
higher than 1 for TyG.

Discussion
TyG has been shown to be a surrogate marker of insu-
lin resistance [24, 33, 34]. In this study, we developed an 
improved version of TyG, for insulin sensitivity assess-
ment in pregnancy. This is particularly important in this 
population, since impairment in insulin sensitivity is a 
common trait of pregnancy, even when normal. The new 

Table 2 OGTT parameters in women divided for glucose tolerance or for body mass index (BMI)

Data are reported as median [IQR]. The values of the parameters refer to visit 2. Accordingly, stratification in NGT and non-NGT, as well as Lean and Obese/Overweight, 
refers to visit 2

NGT normal glucose tolerance, Lean BMI < 25 kg/m2, Overweight/Obese otherwise
a p < 0.05 for NGT and Non-NGT
b p < 0.01 for NGT and Non-NGT
c p < 0.001 for NGT and Non-NGT
d p < 0.0001 for NGT and Non-NGT
e p < 0.05 for Lean and Overweight/Obese
f p < 0.01 for Lean and Overweight/Obese
g p < 0.001 for Lean and Overweight/Obese
h p < 0.0001 for Lean and Overweight/Obese

OGTT parameter NGT Non‑NGT Lean Overweight/Obese

N 72 12 23 61

Insulin sensitivity

 PREDIM (mg kg  min−1) 5.89 [2.34] 2.89 [1.01]d 6.49 [3.57] 4.88 [2.54]g

Insulin secretion

 BSR (pmol  min–1  m–2) 84.12 [39.63] 136.20 [48.33]b 77.84 [36.27] 99.68 [47.85]f

 TIS (nmol  m–2) 46.80 [19.42] 69.06 [16.96]c 44.92 [16.85] 54.16 [22.39]

Beta-cell function

 G-sens (pmol  min–1  m–2  mM–1) 140.24 [81.51] 89.92 [31.27]d 154.55 [106.32] 122.33 [59.01]

 R-sens (pmol  m–2  mM–1) 1028.41 [1313.86] 706.17 [705.18] 716.84 [1727.23] 1028.36 [974.72]

 PFR (unitless) 1.35 [0.49] 1.42 [0.71] 1.35 [0.40] 1.37 [0.61]
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index, called TyGIS, was based on TyG complemented 
to other parameters. To maintain the simplicity of TyG 
(likely one of the reasons for its success) we only consid-
ered basic patient’s clinical characteristics and variables 
measured at fasting, thus not requiring metabolic tests 
such as the OGTT. This choice was also driven by the 
notion that the OGTT is not always and ubiquitously per-
formed in pregnancy, and when performed the current 
clinical routine accomplishes a simple three samples, glu-
cose only OGTT, for possible GDM diagnosis. Instead, in 
our study a more complete OGTT was exploited to com-
pute a reliable parameter of insulin sensitivity (PREDIM), 
fully validated against the hyperinsulinemic-euglycemic 
clamp [59]. Another benefit of our dataset was the het-
erogeneity of the population, since women had glucose 
tolerance spanning from normal to GDM, and BMI from 
lean to overweight or even obese. In addition, the OGTT 
included glucose, insulin and C-peptide at each time 
sample, such complete OGTT allowing deep characteri-
zation of the TyGIS performance.

We found that TyGIS is a remarkably better surrogate 
marker than the traditional TyG for insulin sensitivity 

Fig. 2 Linear regression plot in the training set (a) and the test set 
(b). Regression equations (bold solid line) are y = 1.102x − 0.388 , 
 R2 = 0.649, p < 0.0001 (a), and y = 1.073x − 0.335 ,  R2 = 0.700, 
p < 0.0001 (b). The 95% confidence and prediction intervals are also 
reported (dashed and solid lines, respectively)

Fig. 3 Bland–Altman plot in the training set (a) and the test set (b)

Fig. 4 Boxplot for TyGIS (a) and PREDIM (b) in the subsets of subjects 
stratified by glucose tolerance
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assessment in pregnancy. Indeed, TyGIS is much strongly 
associated with the OGTT-derived insulin sensitivity 
(PREDIM). It also has to be noted that TyGIS was devel-
oped as an index of insulin sensitivity, although TyG is an 
index of insulin resistance. This was done for more direct 
comparison of TyGIS to its reference, PREDIM, which is 
an index of insulin sensitivity rather than resistance. We 
also found that, at difference with TyG, TyGIS agrees 
with PREDIM as regards determination of insulin sen-
sitivity differences among several subgroups of patients, 
stratified according to glucose tolerance or BMI. Further-
more, TyGIS calculated at early pregnancy (patients’ visit 
1) was good predictor of PREDIM and of abnormal glu-
cose tolerance at later pregnancy stage (second trimester, 
visit 2), again showing superiority compared to TyG.

It was previously reported that 4.9  mg∙kg−1∙min−1, as 
derived by the clamp (the M parameter), can be assumed 

as cut-off for insulin resistance [73]. PREDIM was devel-
oped as predictor of clamp-derived M parameter, with 
the same units and expected range of variation [59]. 
Similarly, TyGIS was developed as predictor of PREDIM. 
Thus, the same cut-off value can be reasonably assumed 
for TyGIS, for determination of insulin resistance. Inter-
estingly, both PREDIM and TyGIS showed several values 
below that cut-off even in the absence of GDM (details 
not shown), this being reasonable for women during 
pregnancy. This result further indicates the reliability of 
our study findings.

In our study, we also analyzed relationships with 
model-based parameters of insulin secretion and beta-
cell function, this being an important aspect for detailed 
testing of the new index performance. All indices (TyG, 
TyGIS and PREDIM) agreed in terms of correlation with 
insulin secretion parameters (BSR and TIS). All three 
indices also agreed in showing substantial lack of cor-
relation with the beta-cell function parameters (G-sens, 
R-sens, PFR). For R-sens and PFR, it has to be noted that 
in the general population the degree of relationship with 
insulin sensitivity remains partly unclear, whereas sev-
eral studies showed that G-sens (the most relevant beta-
cell function model parameter) is typically unrelated to 
insulin sensitivity (this is an advantage, since it implies 
that there is no need to correct for the insulin sensitivity 
level for appropriate interpretation [74–79]). Thus, these 
analyses based on insulin secretion and beta-cell function 
parameters further proved the reliability of the TyGIS 
formulation.

In the TyGIS formula, one may expect the presence of 
BMI. Instead, anthropometry contribution to the new 
index was provided by simple body weight (BW), as well 
as lean body mass percentage (LBM, computed by an 
empirical formula [67]). Nonetheless, if BW and LBM 
are replaced by BMI, the performance of the new index 
deteriorates only slightly (details not shown). The fact 
that the BMI role resulted to some extent less signifi-
cant than that of BW and LBM may be due to the rea-
son that in pregnancy the relationship between insulin 
resistance and BMI may be less strong than in the gen-
eral population, possibly due to the role of the variable 
mother’s weight gain, which can act as confounding fac-
tor [18]. Also, insulin resistance in pregnancy depends 
upon several factors, such as placental hormones and 
others [80], and this is another reason for lower relation-
ship between insulin resistance and BMI during gesta-
tion. Of note, in the TyGIS formula the BW coefficient 
is negative, whereas that of LBM is positive. This means 
that higher BW determines lower TyGIS, as expected 
(TyGIS is a marker of insulin sensitivity). On the other 
side, in TyGIS formula, higher LBM determines higher 
TyGIS, and this again appears reasonable: since LBM is 

Fig. 5 Boxplot for TyGIS (a) and PREDIM (b) in the subsets of subjects 
stratified by BMI

Table 3 Adjusted  R2 in regression analysis between insulin 
secretion/beta-cell function parameters (BSR, TIS, G-sens, R-sens, 
PFR) and PREDIM, TyGIS and TyG

This analysis was performed over all studied women (N = 84), with values of the 
parameters calculated at visit 2. The relationship of BSR and TIS with TyG was 
direct, whereas with PREDIM and TyGIS was inverse

N.S. non-significant
a p < 0.05
b p < 0.01
c p < 0.001
d p < 0.0001

BSR TIS G‑sens R‑sens PFR

PREDIM 0.402d 0.221d N.S. N.S. 0.042a

TyGIS 0.642d 0.143c N.S. N.S. N.S.

TyG 0.290d 0.130c N.S. N.S. N.S.
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expressed as percentage of total body mass (i.e., BW), for 
a prescribed BW value higher LBM means lower amount 
of fat mass, and this is expected to determine better insu-
lin sensitivity.

Opportunities for comparison to previous studies are 
limited. To our knowledge, only a couple of studies ana-
lyzed associations between TyG and insulin resistance in 
pregnancy [47, 51]. However, comparison of TyG to insu-
lin resistance indices was limited to that with the fast-
ing HOMA-IR index [81], thus in pregnancy no studies 
compared TyG with insulin resistance/sensitivity indices 
derived by dynamic tests as the OGTT, which typically 
reflects reference insulin sensitivity (from the clamp) 
remarkably better than insulin sensitivity at fasting 
[82–84]. In addition, in pregnancy no studies developed 
a version of TyG for improved relationship with insulin 
sensitivity from the OGTT. In Poveda’s study [47], TyG 
correlated with HOMA-IR in the first and second tri-
mester of pregnancy, but not in the third trimester, and 
even in first and second trimesters correlation was weak. 
This suggests that in pregnancy TyG is not a good sur-
rogate marker of insulin resistance, though on the other 
hand HOMA-IR has limits in the assessment of insulin 
resistance, as outlined above [82–84]. Similarly, in the 
Sánchez-García’s study [51] the relationship between TyG 
and HOMA-IR was not strong. Overall, such findings 
emphasize the need for an improved TyG as surrogate 
marker of insulin resistance (or sensitivity) in pregnancy. 
This is in fact what we have done in the present study 
developing the proposed new index, which on one side is 
built upon comparison with OGTT-derived insulin sen-
sitivity rather than fasting insulin sensitivity, and on the 
other side it essentially preserves TyG simple formulation 
and hence easy applicability in the clinical practice.

Similarly to our study, in previous studies some indices 
based only on fasting variables were proposed as mark-
ers for insulin resistance/sensitivity [85–89]. Specifically, 
some studies developed an improved version of TyG, 
but none with pregnant women as the target popula-
tion [85–87]. In terms of different fasting-based indices, 
one relatively popular is the triglyceride-HDL ratio (TG/
HDL) [88], or its evolution (SPISE) [89]. However, after 
scientific literature analysis we were convinced that TyG 
performs somehow better than TG/HDL, and this was 
corroborated in our data by the slightly higher associa-
tion of TyG rather than TG/HDL to PREDIM, despite 
such association being weak in both cases (details not 
shown). Thus, we developed our new index with TyG 
rather than TG/HDL as the starting point.

TyGIS was derived through machine learning 
approach. This approach is often used in large datasets, 
but it is also valuable in smaller datasets with many vari-
ables, as in our case [70, 90–93]. Of note, those articles 

[70, 90–93] emphasize the importance of the initial fea-
ture selection process, as we carried out as first step in 
our approach. It is also worth noting that in the spe-
cific domain of pregnancy and GDM we already applied 
machine learning techniques to a relatively small cohort 
of former GDM patients to predict the risk of developing 
type 2 diabetes [94]. In the machine learning approach 
of the current study, we first evaluated several variable 
subsets. Assuming the existence of non-linear dynamics, 
interactions between variables and their quadratic terms 
were also considered, but the best model was found to 
be a linear one. For the selection of the optimal subset, 
we oriented towards methods providing a simple equa-
tion, thus easy to use and hence potentially applicable in 
the clinical context. Therefore, SVM models were con-
sidered, with linear kernel and L2 or L1 regularization, 
though robust linear regression model was also tested 
[95]. Non-linear models were also considered, but they 
were not providing simple predictor coefficients, and 
hence did not allow to end up with an algebraic equation 
of easy interpretation and use [96]. The next step for final 
model selection was applying on the training set a nested 
CV procedure, this yielding unbiased performance esti-
mates even in case of limited dataset size [70]. The selec-
tion of the optimal model was based on both the RMSE 
obtained from the nested CV and the BIC criteria. The 
final selected model was that with the lowest BIC and one 
of the lowest RMSE. Of note, the model with the lowest 
RMSE had unsatisfactory BIC, and it was in fact not able 
to discriminate between subgroups on the training set 
population (details not shown).

Our study has some limitations. The first is the size of 
the cohort, which was not big. However, this is justified 
by the wide battery of variables, including OGTT with 
frequent (30  min) sampling frequency rather than the 
traditional 1-h frequency, and with measurement of glu-
cose, insulin and C-peptide. Such OGTT characteristics 
allowed reliable assessment of both insulin sensitivity and 
insulin secretion/beta-cell function. Indeed, both aspects 
were relevant for development and testing of the new 
index performance, since insulin sensitivity and insulin 
secretion/beta-cell function may be related. Thus, when 
testing performances of a new insulin sensitivity/resist-
ance index, assessment of its possible relationships with 
insulin secretion and beta-cell function should definitely 
be considered. It is also worth noting that datasets larger 
than the dataset analyzed in the current study, with simi-
lar features (variables) available, are rare. This is likely due 
to the reason that investigators typically limit the bur-
den and discomfort of the study procedures in pregnant 
women, due to the intrinsic frailty of the gravid condition 
even in the absence of any morbidity. Thus, to our knowl-
edge few studies (one of which partly from our research 
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group) reported datasets of pregnant women larger than 
the dataset under analysis with OGTT measurement of 
glucose, insulin and C-peptide [97–99], and at any rate 
those studies [97–99] missed lipid profile information 
(including triglycerides). In summary, we are not aware 
of any dataset with larger number of participants and all 
necessary features for the goals of the current study. On 
the other hand, the size of the current dataset is simi-
lar (slightly larger) to that analyzed in some of our pre-
vious studies related to pregnancy, where the glucose/
insulin/C-peptide OGTT was available [56, 100–102]. Of 
note, in one of those studies we already applied a tech-
nique classified within the machine learning domain (i.e., 
principal component analysis) [101].

It also has to be reported that we searched for a pre-
cise indication about the appropriate number of sam-
ples (observations) in relation to the number of features, 
but we did not find a unique and robust recommenda-
tion. However, for machine learning approaches similar 
to ours, we found that some investigators suggested a 
minimum number of observations equal to the number 
of features plus 50 in cases up to five features, and equal 
to 10 observations per feature in cases of 6 or more fea-
tures [103]. These indications essentially are met in our 
analysis, since we tested models with two to six features 
at most (apart for some of the models including the GDM 
presence variable), and in the training set we had in fact 
about 10 × 6 observations (precisely, 59). Moreover, if we 
consider the final selected model, it includes four features 
only. Thus, the applicable indication for the observations 
number is that of 50 plus the features number, yielding 
54 in our case (this being fully consistent with our train-
ing set size). On the other hand, it is worth noting that 
the main findings of the study confirm the size of the 
dataset as sufficient for our purposes. Indeed, TyGIS per-
formance was satisfactory according to all tests, in both 
training and test set. Furthermore, when stratifying the 
subjects into subgroups, both PREDIM and TyGIS con-
sistently showed the expected differences in insulin sen-
sitivity (i.e., higher in NGT than in non-NGT, and in lean 
than in overweight people). In addition, as previously 
outlined, results related to the relationships with model-
based insulin secretion and beta-cell function param-
eters were typically as expected, again according to both 
PREDIM and TyGIS. It is also worth noting that possible 
larger datasets would not necessarily improve TyGIS per-
formance further. Indeed, TyGIS by definition does not 
include information from metabolic tests (such as the 
OGTT), to maintain the original simplicity and easy use 
of the traditional TyG. On the other hand, it is unlikely 
that one index based on variables measured in non-stim-
ulated conditions can predict with extreme accuracy the 
stimulated metabolic state, even in the case of very large 

datasets exploited for the index development. For this 
reason, TyGIS has to be considered a surrogate marker of 
insulin sensitivity, and this would hold even if TyGIS was 
developed on larger datasets.

Another limitation of our study was that the reference 
insulin sensitivity measure, as derived from a hyperin-
sulinemic-euglycemic clamp, was not available in our 
dataset. However, the OGTT data allowed calculation 
of PREDIM, which has same units and range of variation 
of the clamp-derived index, and was proved being excel-
lent predictor of the latter [59]. Nonetheless, another 
issue to consider is whether PREDIM was validated in a 
sufficiently wide range of insulin sensitivity values, thus 
comprising values typical of insulin resistance observ-
able in pregnancy, especially when complicated by GDM. 
To this purpose, it is convenient examining the typical 
values of insulin sensitivity in pregnancy, as assessed by 
the reference clamp-derived index. One study reported 
the clamp M parameter in both GDM and non-GDM 
pregnant women, in each trimester of pregnancy [104]. 
Lowest average values were observed in GDM in the 
third trimester (2.70 ± 0.81  mg∙kg−1∙min−1, mean ± SD). 
This translates into 95% interval (mean ± 2 × SD) 
equal to 1.08–4.32  mg∙kg−1∙min−1. However, although 
1.08 mg∙kg−1∙min−1 is quite low insulin sensitivity value, 
PREDIM validation included such low values (lowest val-
ues ≈0.5 mg∙kg−1∙min−1 [59]). Other studies reported in 
pregnancy similar clamp M parameter values [105, 106]. 
On the other hand, it should be acknowledged that PRE-
DIM formula includes the BMI, and such variable may 
be not completely reliable in pregnancy. However, based 
on our analyses, this potential bias may determine inac-
curacies in PREDIM calculation not exceeding 10–15%, 
which appears acceptable from a clinical point of view 
(details not shown). It is also worth noting that PREDIM 
provided reliable findings in some previous studies in 
pregnancy [56, 102, 107].

One further limitation was that the lean body mass, 
which resulted as feature selected for the final TyGIS 
formula, was not directly measured, but estimated by 
an empirical formula [67]. However, the formula is 
widely accepted and has been extensively used in many 
investigations. In addition, though not specific for 
pregnancy, where a contribution to the lean body mass 
may come from the fetus, the used empirical formula is 
specific for females, thus we assumed it as sufficiently 
reliable.

Finally, it is necessary to recommend some restrictions 
in the use of TyGIS. Indeed, despite TyGIS being remark-
ably improved compared to the traditional TyG as predic-
tor of insulin sensitivity/resistance, it remains a surrogate 
marker. Thus, TyGIS is appropriate for possible compari-
son among different subgroups of pregnant women, but 
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the investigator should be aware that the value in a sin-
gle subject may be affected by a relevant error. As a fact, 
whenever possible, insulin sensitivity/resistance should 
be always assessed stimulating subject’s metabolism with 
glucose or food administration, as with the OGTT. On 
the other hand, when the metabolic test is not practi-
cally feasible (such as in possible epidemiological studies 
including large cohorts), TyGIS has proven as good insu-
lin sensitivity surrogate marker, at least in pregnancy.

It may also be asked whether the TyGIS formula could 
be applied to other populations. In our opinion, even in 
different populations TyGIS may perform better than 
TyG, as marker for insulin sensitivity/resistance. How-
ever, this was not proved in the present study, thus we 
do not recommend TyGIS use in other populations. 
Nonetheless, the current study may trigger future stud-
ies aimed at developing improved TyG-based surrogates 
of insulin sensitivity/resistance specifically tailored for 
different populations, in the context of precision medi-
cine [108–111]. In such new studies, the methodology of 
the present study may be exploited as guide for a robust 
approach. On the other hand, in pregnancy future studies 
may explore the possible TyGIS ability to predict relevant 
aspects other than insulin sensitivity, such as maternal/
neonatal outcomes.

Conclusions
We developed an improved version of the triglyceride-
glucose index (TyG), as a new surrogate marker of insulin 
sensitivity in pregnancy. Similarly to the traditional TyG, 
the new index, called TyGIS, does not require OGTT or 
other metabolic tests, but its performances as surrogate 
marker of insulin sensitivity are remarkably improved 
than those of TyG. Thus, although the stimulation of 
metabolism with a glucose load or a meal (as in the 
OGTT or meal test) remains preferable for insulin sen-
sitivity assessment, when such metabolic test is not pos-
sible for any reason, in populations of pregnant women 
the use of TyGIS as marker of insulin sensitivity appears 
acceptable.
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