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Abstract Non-coding mutations may drive cancer development. Statistical detection of non-
coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact.
Here, we develop a statistically founded non-coding driver-detection method, ncdDetect, which
includes sample-specific mutational signatures, long-range mutation rate variation, and position-
specific impact measures. Using ncdDetect, we screened non-coding regulatory regions of protein-
coding genes across a pan-cancer set of whole-genomes (n = 505), which top-ranked known drivers
and identified new candidates. For individual candidates, presence of non-coding mutations
associates with altered expression or decreased patient survival across an independent pan-cancer
sample set (n = 5454). This includes an antigen-presenting gene (CD1A), where 5'UTR mutations
correlate significantly with decreased survival in melanoma. Additionally, mutations in a base-
excision-repair gene (SMUGT) correlate with a C-to-T mutational-signature. Overall, we find that a
rich model of mutational heterogeneity facilitates non-coding driver identification and integrative
analysis points to candidates of potential clinical relevance.

DOI: 10.7554/elife.21778.001

Introduction

Cancer is caused by somatically acquired changes in the DNA sequence of genomes
(Stratton et al., 2009). Recently, large-scale sequencing of cancer-genomes coordinated by the
International Cancer Genome Consortium (ICGC), The Cancer Genome Atlas (TCGA), and others has
catalogued the molecular changes across hundreds of cancer samples (Hudson et al., 2010;
Weinstein et al., 2013). The quest is now to analyze and understand the role of these changes in
cancer development. The aberrations in non-coding regions are of particular interest as they have
only become evident with the advent of whole cancer-genomes. Here, we develop the method
ncdDetect for non-coding cancer driver detection. The method captures the heterogeneities of the
mutational processes in cancer and aggregates signals of mutational burden as well as functional
impact in the significance evaluation of a candidate driver element. We apply the method to 505
TCGA whole-genomes (Fredriksson et al., 2014).

Cancer arises by an evolutionary process where natural selection operates on genetic variation
stemming from randomly occurring somatic mutations. Thousands of somatic mutations distinguish
tumor tissue from healthy tissue, as a result of the mutational processes that cancer cells go through
during the lifetime of a cancer patient. The somatic mutations are identified through Next-
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elLife digest Cancers are diseases caused by changes in DNA sequences. Some changes occur
in the protein-coding part of the DNA sequence, in other words, in the stretches of DNA that
include the instructions to make a given protein. Other changes occur in the remaining parts of the
DNA that do not code for proteins, which accounts for about 98% of the human genome. Modern
technologies allow us to identify these DNA changes, but, up until recently, this has only been
possible for the protein-coding part of the DNA. Many studies have thus analyzed DNA changes in
the protein-coding part of the human genome, while the larger, non-coding part remains rather
unexplored.

Advances in technology means that large datasets are becoming available where changes in DNA
sequences are identified across the entire genomes of a collection of cancer patients. However, it is
not clear which of these DNA changes play a role in the development of cancer and which are
neutral with no effect on cancer.

Now, Juul et al. have developed a new method, named 'ncdDetect’, to search the human
genome and identify stretches of DNA that when changed give cancer cells an advantage and allow
them to grow. Juul et al. refer to these DNA stretches as ‘driver elements’, and, after analyzing the
genomes from 505 patients with cancer, they identified some known driver elements and some
potentially new ones. For example, possible driver elements were found in non-coding parts of the
DNA that regulate genes called SMUG1 and CD1A. Both of these genes encode proteins that had
been linked to cancer in the past, but driver elements had not previously been described in the
nearby non-coding regions. Juul et al. also found a number of possible driver elements that might
be important to consider in the treatment of cancers.

Importantly, not all the candidate driver elements identified with ncdDetect are true drivers. The
changes in DNA vary greatly between different types of cancer and even between different cases of
a single type of cancer. Understanding and describing this variation continues to be a challenge in
identifying driver elements, and so Juul et al. plan to keep improving the method to make sure that
the driver elements it identifies are all trustworthy.

DOI: 10.7554/elife.21778.002

Generation Sequencing (NGS) and commonly labeled according to their effect on cancer develop-
ment: Driver mutations are subject to positive selection during the evolutionary process of cancer, as
they offer the cell a growth advantage and contribute to the expansion of tumors. By definition,
driver genes contain one or more driver mutations. Passenger mutations, on the other hand, have a
neutral, or perhaps slightly negative, fitness contribution to the cell, and accumulate as passive pas-
sengers during the evolutionary process of cancer (Stratton et al., 2009; Pon and Marra, 2015).
Many more passenger than driver mutations exist in cancer cells, and distinguishing the two is chal-
lenging (Marx, 2014). Typically, the strategy is to search for signs of recurrent positive selection
across a set of cancer genomes.

Signs of recurrent positive selection across cancer genomes can be detected by comparing the
somatic mutation frequency to an estimated background mutation rate (Pon and Marra, 2015).
However, modeling the background mutation rate is complicated as it varies along the genome with
a large degree of heterogeneity (Lawrence et al., 2013; Polak et al., 2015; Alexandrov et al.,
2013). Not only does the mutation rate in cancer exhibit high variation between different cancer
types; this is also the case between different samples of the same cancer type. Furthermore, the
mutational processes are affected by various genomic features, primarily replication timing, expres-
sion, and the position-specific sequence context (Lawrence et al., 2013; Bertl et al., 2017). It is
thus crucial to take these features into account when estimating the background mutation rate in
cancer. Another strategy for detecting signs of positive selection in cancer is to rank mutations
according to their impact on protein function (Marx, 2014). In particular, point mutations might
introduce alterations in the amino acid sequence of a protein, and thereby change its function
(Reva et al., 2011).

Systematic mutational screens of cancer exomes have expanded the set of known cancer driver
genes over the past decade (Forbes et al., 2015). Many tools exist for the identification of such
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genes (Dees et al.,, 2012, Lawrence et al., 2013, Gonzalez-Perez and Lopez-Bigas, 2012,
Tamborero et al., 2013, Reimand and Bader, 2013), and at present, 616 cancer driver genes are
catalogued as causally implicated in cancer (Cosmic, 2016). However, less than 2% of the genome
codes for protein. While it is established that non-coding elements play diverse roles in regulating
the expression of protein-coding genes, only few studies systematically explored the role of non-
coding somatic mutations in cancer development (Weinhold et al., 2014; Lochovsky et al., 2015;
Melton et al., 2015; Fredriksson et al., 2014; Mularoni et al., 2016; Lanzds et al., 2017). The first
identified non-coding driver element was the TERT promoter with highly recurrent mutations across
several cancer types (Huang et al., 2013; Horn et al., 2013). In general, the functional understand-
ing of non-coding regions is poor compared to protein-coding regions, challenging the interpreta-
tion of non-coding mutations (Khurana et al., 2016).

We develop the method ncdDetect for detection of non-coding cancer driver elements. With this
method, we consider the frequency of mutations alongside their functional impact to reveal signs of
recurrent positive selection across cancer genomes. In particular, the observed mutation frequency
is compared to a sample- and position-specific background mutation rate, which is estimated based
on various genomic annotations. A scoring scheme (e.g. position-specific evolutionary-conservation
scores) is applied to further account for functional impact in the significance evaluation of a candi-
date cancer driver element.

To strengthen our conclusions regarding the driver potential of candidate elements, we draw on
additional data sources. Non-coding mutations may perturb gene expression patterns, and we thus
correlate their presence with expression levels in an independent data set (Ding et al., 2015). Like-
wise, we correlate mutation status with survival information for these candidates.

What sets ncdDetect aside from other non-coding driver detection methods is the position-speci-
ficity, and the derived ability to include genomic annotations of varying resolution down to the level
of individual positions. In one existing non-coding driver detection method, the position- and sam-
ple-specific probabilities of mutation are derived, much like in ncdDetect but are then aggregated
across a candidate element during significance evaluation (Melton et al., 2015). This means that
knowledge about the exact position and probability of a mutation is not fully utilized. In another
method, the genome is divided into bins according to the average value of replication timing
(Lochovsky et al., 2015), and in a recent method, the significance evaluation is performed by locally
conditioning on the number of observed mutations within a candidate element (Mularoni et al.,
2016). To our knowledge, no existing non-coding driver detection method derive and apply posi-
tion- and sample-specific probabilities of mutation in the significance evaluation of a candidate
driver element, and allows the use of position-specific scores and accurate evaluation of their expec-
tation across a candidate element. This unique feature of ncdDetect means that candidate elements
of arbitrary size and location can be analyzed, and that the potential large variation of mutational
probabilities within a candidate element is handled.

With ncdDetect, we model the different levels of heterogeneity in the somatic mutation rate
known to be at play in cancer and evaluate the relative merit of different position-specific scoring-
schemes. The result is a driver detection method tailored for the non-coding part of the genome,
and with it we aim to contribute to the understanding of non-coding cancer driver elements.

Results

ncdDetect evaluates if a given non-coding element is under recurrent positive selection across can-
cer samples. The method takes as input (a) a candidate genomic region of interest, (b) position- and
sample-specific probabilities of mutation, and (c) position- and sample-specific scores measuring
mutational burden or impact.

Position- and sample-specific model of the background mutation rate

A key feature of ncdDetect is the application of position- and sample-specific probabilities of muta-
tion. These are obtained by a statistical null model, inferred from somatic mutation calls of a collec-
tion of cancer samples (Material and methods: Statistical null model) (Bertl et al., 2017). The model
predicts the mutation rate from a set of explanatory variables, that is genomic annotations
(Figure 1A). In the present paper, the null model is trained on 505 whole genomes distributed
across 14 different cancer types generated by TCGA (Fredriksson et al., 2014) (Figure 1B).
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Figure 1. Variation in mutation rate at different scales and various explanatory variables. (A) The flowchart illustrates the input to the model fit that
predicts the position- and sample-specific mutational probabilities. (B) The number of mutations observed per sample divided into the 14 different
cancer types. (C) The set of genomic annotations used as explanatory variables are illustrated on a 300 kb region of chromosome 1 for the colorectal
cancer sample CRC_TCGA-A6-6141-01A. For illustrative purposes, the nucleotide sequence is shown on a 30 bp section of chromosome 1 and
trinucleotides likewise on a 5 bp section.

DOI: 10.7554/eLife.21778.003

The following source data and figure supplements are available for figure 1:

Source data 1. The number of mutations observed for each of the 505 samples.

DOI: 10.7554/elife.21778.004

Figure supplement 1. The average number of mutations observed per sample per bp for each of the considered element types, as well as for
intergenic regions.

DOI: 10.7554/elLife.21778.005

Figure 1 continued on next page
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Figure supplement 1—source data 1. The number of mutations per sample per bp for the defined element types.

DOI: 10.7554/elife.21778.006

As explanatory variables, the model includes genomic annotations known to correlate with the
mutation rate in cancer, as well as annotations we have found to improve the model fit. It is well
known that the mutation rate varies between samples (Lawrence et al., 2013; Alexandrov et al.,
2013). Indeed, the mean and median number of mutations per sample is approximately 32 x 10°
and 8 x 10° respectively, with a large degree of variation between and within cancer types
(Figure 1B). For example, the average number of mutations per sample is 73 times higher for colo-
rectal cancer than for thyroid cancer, and within melanoma cancer, the least mutated sample has
224 times fewer mutations compared to the highest mutated sample. The mutation rate depends on
the position-specific sequence context (Alexandrov et al., 2013) and correlates with replication tim-
ing and gene expression level (Lawrence et al., 2013). The mutation rate also varies between differ-
ent types of genomic regions (Weinhold et al., 2014). Finally, we find that the local mutation rate in
a window around a given genomic position helps to capture unaccounted mutation rate variation
and increases the goodness of fit. The complete model specification, including the definition of the
local mutation rate, is given in Material and methods: Statistical null model. Consequently, genomic
annotations considered as explanatory variables in the null model for each sample are replication
timing, tissue-specific gene expression level, trinucleotides (the nucleotide under consideration and
its left and right flanking bases, thus taking into account the sample-specific mutational signature),
genomic segment (3' and 5’ untranslated regions (UTRs), splice sites, promoter elements and pro-
tein-coding genes) and local mutation rate (Figure 1C). Given these explanatory variables for a spe-
cific genomic position, the model predicts the particular probability of observing a mutation of a
given type for a specific sample at this particular position.

Strand symmetric model
The reference sequence is divided into weak (A and T) and strong (G and C) base pairs (bps) (Cor-
nish-Bowden, 1985). As strands generally cannot be distinguished in non-coding regions, we handle
them symmetrically, with weak bps denoted with an A and strong bps denoted with a G. The 12 dif-
ferent types of point mutations are thus collapsed into the six classes, ‘A—C’ (thus including both
A—C and T—=G mutations), 'A—=G’, ‘A>T, 'G->T', 'G—=C’ and 'GoA'.

Our model considers four possible outcomes for each position: Transitions (TSia_6, G_sa)), two
types of transversions (TVia_st, g1} and TVia_,c, g_scy) as well as the reference class of no mutation.

Mutation-rate predictions and position-specific scores

For a given non-coding element of interest, the null model ensures the availability of position- and
sample-specific probabilities of each of the four possible outcomes (Figure 2A). Due to the rarity of
observing a mutation, the predicted mutational probabilities are of small magnitude (Figure 2B-C,
Figure 1—figure supplement 1). Additional to these probabilities, each position is associated with
a score that may be sample-specific, and may depend on the outcome class (Figure 2D-E). The scor-
ing scheme can be freely defined, and in the present paper, we illustrate three different choices of
scores, namely the number of mutations, log-likelihoods and conservation scores (Figure 2E). A
wide variety of other scoring schemes can be considered. In particular, the flexibility of ncdDetect
allows for different scoring schemes to be chosen for different types of candidate elements.

Scoring schemes

A good scoring scheme must be able to discriminate well between events that constitute true cancer
drivers and events that are neutral. The scoring scheme can, for example, evaluate the mutational
burden and be defined by means of the number of mutations in a candidate region. This approach
has been taken by existing non-coding cancer driver detection methods (Lochovsky et al., 2015).
Here, the score for a given position is defined to be one if a mutation of any type occurs, and zero if
no mutation occurs. Another approach is to evaluate the goodness of fit of the observed mutations
to the null model, and define the scores as log-likelihoods, that is, minus the natural logarithm of the
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Figure 2. Position- and sample-specific predicted mutation rates and scoring-schemes. (A) A multinomial logistic regression model is used to predict
the sample- and position-specific background mutation-probabilities. (B) The genomic annotations and the reference sequence (Figure 1) are used as
explanatory variables in a regression fit of the somatic mutation rate. In effect, a logistic regression model is fitted for each of the four types of outcome
(three types of mutation and no mutation) and combined into a multinomial logistic regression fit. Logistic regression ensures probability-predictions
between zero and one. The mutation probabilities are of such small magnitude that we observe near linearity of the logistic regression curve. (C)
Sample- and position-specific predicted mutation probabilities for each of the four outcomes in a 300 bp region of chromosome 1 (chr1:115,824,535-
115,824,834) for the colorectal cancer sample CRC_TCGA-A6-6141-01A. (D) Observed sample-specific somatic mutations within the same region. For
the sample in question, two mutations are observed; one of type TVia_,t, g1} and one of type TV(a_sc, gy (E) Sample- and position-specific scores

for each of the three considered scoring schemes.
DOI: 10.7554/elife.21778.007

predicted position- and sample-specific mutation probabilities. This scoring scheme ensures that the
more unlikely a mutational event, the higher the associated score. A third approach is to also evalu-

ate the functional impact of mutations when defining the scores. However, for non-coding regions,

Juul et al. eLife 2017;6:21778. DOI: 10.7554/eLife.21778

6 of 34


http://dx.doi.org/10.7554/eLife.21778.007
http://dx.doi.org/10.7554/eLife.21778

LIFE

Cancer Biology | Computational and Systems Biology

we often lack the functional understanding to interpret and predict the functional impact. We there-
fore illustrate this approach using phyloP, a position-specific score of evolutionary conservation
(Pollard et al., 2010), as a proxy score for functional impact (Material and methods: Scoring
schemes).

The three proposed scoring schemes assign an observed score value of zero (number of muta-
tions and conservation scores), or a value close to zero (log-likelihoods), to positions with no muta-
tions, and a positive score to positions with mutations (Figure 2E). The assigned scores for mutated
positions depend on the mutation type and the scoring scheme. Also, for each position, all possible
score values and the associated predicted probabilities are integrated in the calculation of the back-
ground score distribution.

Driver detection

Although ncdDetect is designed for the analysis of non-coding elements, it can also be applied on
protein-coding genes. We initially evaluate the performance of different versions of ncdDetect null
models and different scoring schemes on protein-coding genes. We then use it to detect driver can-
didates among promoter elements, splice sites, 5 UTRs and 3’ UTRs (Table 1, Material and meth-
ods: Candidate elements). While all the analyses presented here are pan cancer, individual cancer
types can be analyzed separately.

ncdDetect significance evaluation

With ncdDetect, significance evaluation of the observed mutations in a given genomic region of
interest is performed (Figure 3). ncdDetect uses a two-step algorithm in which sample-specific calcu-
lations are followed by calculations across all samples in the dataset. The output is a p-value indicat-
ing if the region of interest is under recurrent positive selection across the sample set (Figure 3A).

The test statistic used in the significance evaluation performed by ncdDetect is the observed
score. This value is defined as the sum of sample- and position-specific observed scores across the
specific element that is being tested. For a given sample and a given position, the observed score
will depend on the chosen scoring scheme. For instance, the scoring scheme using the number of
mutations will always give a score of 1 to a mutated position, and a score of 0 to an unmutated posi-
tion. The scoring scheme using phyloP will give a score corresponding to the position-specific phyloP
value to a mutated position, and a score of 0 to an unmutated position. Thus, the observed score for
a specific element will depend on the chosen scoring scheme.

The observed score is significance evaluated in the background score distribution. Again, the
shape of this distribution will depend on the chosen scoring scheme: All possible sample- and posi-
tion-specific scores for the chosen scoring scheme are combined with the sample- and position-spe-
cific mutational probabilities to form the background score-distribution.

The algorithm to obtain the background score-distribution works as follows: for a specific sample
i, the genomic region of interest is annotated with position-specific probabilities of mutation and
scores (Figure 3B-C). As noted above, the observed score of sample i is defined as the sum of
observed scores across all positions in the region (Figure 3D). In the current implementation, only
the two highest scoring mutations are considered for each sample. The position-specific mutational
probabilities and scores are aggregated using mathematical convolution; a method to efficiently cal-
culate the exact probability of observing a given sample-level score by summing up the probabilities

Table 1. Overview of elements analyzed with ncdDetect. Regions located on chromosome X and Y are excluded from the analyses

(Material and methods: Candidate elements).

Element type Number of elements Median element length (bps) Percentage of genome covered
protein-coding genes 20,153 1296 1.19
promoter elements 20,052 848 0.69
splice sites 18,682 30 0.03
3" UTRs 19,346 1007 1.06
5" UTRs 19,078 259 0.25

DOI: 10.7554/elife.21778.008

Juul et al. eLife 2017;6:21778. DOI: 10.7554/elLife.21778 7 of 34


http://dx.doi.org/10.7554/eLife.21778.008Table%201.Overview%20of%20elements%20analyzed%20with%20ncdDetect.%20Regions%20located%20on%20chromosome%20X%20and%20Y%20are%20excluded%20from%20the%20analyses%20(Material%20and%20methods:%20Candidate%20elements).%2010.7554/eLife.21778.008Element%20typeNumber%20of%20elementsMedian%20element%20length%20(bps)Percentage%20of%20genome%20coveredprotein-coding%20genes20,15312961.19promoter%20elements20,0528480.69splice%20sites18,682300.033&x2019;%20UTRs19,34610071.065&x2019;%20UTRs19,0782590.25
http://dx.doi.org/10.7554/eLife.21778

e LI FE Research article Cancer Biology | Computational and Systems Biology

A F Sample 1 Sample 1
probability score
(Figure 2) (Figure 2) .
non-coding ‘Somatic mutation probabilities
score annotations
element calls of mutation %
L | i ) convolution 8 8 ./
— 3
l 9 :
152 3 .. m B m
Il o mutation (panel £} (panel F) (panel G) X X
mutation type TS, convolution: convolution: " |
= tati (yp e sample specfic across samples final p-value Sample 2 Sample 2
mutation type TVy,; 6. probability score

Il mutation type TV, . . .,

1
convolution
B . D observed outcome and
Sample i o

01008

corresponding scores T2 3 m T2 3 m S
score score . X
— :
fr— Sample k Sample k
. probability score
1
j convolution
osition osition = g
1 2 3 L m P 1 2 3 L m P ]
X X x: mutations o g
12 B e m 1 2 3 o m H
X X
c E G probability
Sample i sample-specific score distribution
probability probability obtained from convolution
1
final p-value
0 ; i )} ] h ]
osition e T T T T
1 2 3 .. m - P [ ] [ . score scoreg?® scoreg”® scoref®® oore?bs
m score; k overall
obs obs scored’s, . = score?”
score]”® = E scoref; overall = i
=t i=1
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positive score-value, which in practice will be near zero. (E) The sample-specific background score-distribution is obtained by convolution. (F) Sample-
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DOI: 10.7554/elife.21778.009

The following figure supplement is available for figure 3:

Figure supplement 1. lllustration of time complexity of the ncdDetect algorithm.
DOI: 10.7554/¢lLife.21778.010

of all possible combinations of positional outcomes that could lead to it (Grinstead and Snell,
1997). The use of convolution is inspired by previously published protein-coding driver detection
methods (Lawrence et al., 2013; Dees et al., 2012). These calculations lead to the sample-specific
background score-distribution (Figure 3E). By repeating this process, background score-distribu-
tions are found for each individual sample (Figure 3F). These distributions are aggregated, again
using convolution, to yield the overall background score-distribution across samples. The individual
sample-specific observed scores are summed to give the overall observed score, which is signifi-
cance evaluated in the overall background score-distribution. (Figure 3G) (more details are given in
Appendix, section 3).

Protein-coding driver detection and model selection

To build a robust background null-model and evaluate the performance of ncdDetect, we apply it to
protein-coding genes (Figure 4). While we lack a well-established true-positive driver set for the
non-coding part of the genome, the COSMIC Cancer Gene Census (Cosmic, 2016) provides that for
the protein-coding genes. As a performance measure, we therefore use the fraction of COSMIC
genes recalled among the ncdDetect candidate sets.
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Figure 4. Analysis of protein-coding genes to evaluate ncdDetect performance. (A) The final null model is obtained through forward model-selection.

The QQ-plot shows the p-values of all genes (n = 19,256) plotted against their uniform expectation under the null for each of the five models
considered. Deviations from the expectations (red identity line) are seen for a varying proportion of the genes (0.5-10%). Results are shown for

conservation scores. Similar plots for log-likelihoods and number of mutations are shown in Figure 4—figure supplement 1. (B) Venn diagram showing
Figure 4 continued on next page
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Figure 4 continued

the overlap between protein-coding genes called as drivers by ncdDetect (q<0.10) for the three scoring schemes and the COSMIC Gene Census list.
(C) COSMIC Gene Census recall plot. The fraction of COSMIC genes recalled in the top ncdDetect candidates. (D-F) The two most significant genes
called by ncdDetect are TP53 and PIK3CA. An example of a gene not called significant is SLFN11. For each of these, the convoluted background score-

distributions are shown together with the observed scores and resulting p-values.
DOI: 10.7554/elife.21778.011
The following source data and figure supplements are available for figure 4:

Source data 1. P-values obtained on protein-coding genes for each of the five models considered.

DOI: 10.7554/elife.21778.012

Source data 2. COSMIC Gene Census recall data.

DOI: 10.7554/elife.21778.013

Source data 3. The background score distribution for the protein-coding gene TP53 obtained with conservation scores.
DOI: 10.7554/elife.21778.014

Source data 4. The background score distribution for the protein-coding gene PIK3CA obtained with conservation scores.

DOI: 10.7554/elife.21778.015

Source data 5. The background score distribution for the protein-coding gene SLFN11 obtained with conservation scores.

DOI: 10.7554/elife.21778.016

Figure supplement 1. Analysis of protein-coding genes to evaluate ncdDetect performance for scores defined by log-likelihoods and the number of

mutations.

DOI: 10.7554/elife.21778.017

Figure supplement 1—source data 1. P-values obtained on protein-coding genes for each of the models considered.
DOI: 10.7554/elife.21778.018

Figure supplement 2. The p-values (based on conservation scores) plotted as a function of the total number of mutations across samples observed per

bp for all protein-coding genes.
DOI: 10.7554/elife.21778.019

Figure supplement 2—source data 1. For each protein-coding gene, the gene length, the number of observed mutations across all 505 samples, and

the p-value obtained using conservation scores are given.
DOI: 10.7554/¢elife.21778.020

With ncdDetect, multiple hypothesis tests are performed. For example, protein-coding driver
detection requires significance evaluation of 19,256 genes. In order to evaluate all these tests simul-
taneously, QQ-plots are used to assess the distribution of the p-values and the number of true
hypotheses (Schweder and Spjotvoll, 1982). In these plots, the observed p-values are plotted
against the expected (uniform) p-values of the null distribution. P-values, which follow the expected
uniform distribution, will thus fall on the identity line, while smaller p-values will deviate from this
line. Per construction, 90% of the expected values lie in the interval [1,107"], 99% lie in the interval
[1,1072], etc. (Figure 4A).

Model selection
The final model underlying ncdDetect is determined through a forward model-selection procedure.
In each step, position- and sample-specific probabilities are predicted for the protein-coding genes,
which are then evaluated with ncdDetect (Figure 4A, Figure 4—figure supplement 1). The basic
model includes the genomic annotations sample id, replication timing and trinucleotides as these
are all known to correlate with mutation rate. The resulting p-values appeared slightly inflated. To
increase robustness of the predicted mutation-probabilities, we defined model 1a by adding the var-
iable local mutation rate to the basic model. This addition resulted in less inflated p-values. However,
the p-values were below the identity line in the QQ-plot for more than 99% of the analyzed genes,
indicating that the predicted probabilities of mutation were too large. As we found the somatic
mutation rate is elevated in intergenic regions compared to other functional elements, we defined
model 1b by adding the variable genomic segment to the basic model (Figure 1—figure supple-
ment 1). This had the desired effect of decreasing the final p-values, although leading to severe
inflation. We defined model 1c that extended the basic model with the local mutation rate, genomic
segment, and tissue-specific gene expression level. This lowered the p-values, although a small
amount of inflation was still observed.

Since we do not know all the relevant genomic annotations that correlate with mutation rate for
all of our samples, it is unavoidable that we observe a difference between the actual and predicted

Juul et al. eLife 2017;6:21778. DOI: 10.7554/eLife.21778 10 of 34


http://dx.doi.org/10.7554/eLife.21778.011
http://dx.doi.org/10.7554/eLife.21778.012
http://dx.doi.org/10.7554/eLife.21778.013
http://dx.doi.org/10.7554/eLife.21778.014
http://dx.doi.org/10.7554/eLife.21778.015
http://dx.doi.org/10.7554/eLife.21778.016
http://dx.doi.org/10.7554/eLife.21778.017
http://dx.doi.org/10.7554/eLife.21778.018
http://dx.doi.org/10.7554/eLife.21778.019
http://dx.doi.org/10.7554/eLife.21778.020
http://dx.doi.org/10.7554/eLife.21778

LI FE Cancer Biology | Computational and Systems Biology

mutation rate (Appendix 1—figure 1). The effect of this difference will be accumulated along ele-
ments, and even small biases in the predicted versus observed mutation rate may become significant
if elements are sufficiently long (Appendix 1—figure 2). The difference between the predicted and
observed mutation rate will cause overdispersion of the mutation rate. In the final model, we thus
correct for overdispersion by adjusting the sample- and position-specific probabilities of mutation
with an overdispersion-based rate adjustment (Materials and methods: An overdispersion-based
mutation rate adjustment, Appendix section 1). The resulting p-values follow the expected uniform
distribution, with less extreme p-values for the top-ranked genes than for the previous models.

Recall of known protein-coding drivers

The p-values obtained with ncdDetect are corrected for multiple testing using a false discovery rate
of 10% (Benjamini and Hochberg, 1995). The resulting ncdDetect candidate protein-coding drivers
are compared to the COSMIC Gene Census list for each of the three proposed scoring schemes. We
call 64 protein-coding genes significant using the conservation scores of which 15 (23%) are in COS-
MIC. In contrast, we call 109 protein-genes significant with log-likelihoods of which 19 (17%) are in
COSMIC, and 52 with the number of mutations of which 14 (27%) are in COSMIC (Figure 4B,
Supplementary files 1-3). The mean number of mutations per bp is on average eight times higher
for the COSMIC genes detected by ncdDetect compared to the undetected COSMIC genes (Fig-
ure 4—figure supplement 2). The three proposed scoring schemes have similar recall graphs,
although the use of conservation scores appears the most sensitive as it generally recalls the highest
fraction of COSMIC genes (Figure 4C). For example, in the top-15 protein-coding genes called by
ncdDetect with conservation scores, nine are COSMIC genes. This number is seven for the number
of mutations, and seven for log-likelihoods (Figure 4C, Figure 5—figure supplement 1A). The use
of log-likelihoods results in the highest number of elements called significant across most element
types (Figure 5—figure supplement 2).

As the mutational process is stochastic, it varies which drivers are involved in cancer develop-
ment, both within and between cancer types. COSMIC genes are identified from analyses across
many individual cancer types and a large fraction are likely not drivers in the particular set of cancer
samples analyzed here. Furthermore, there might exist true protein-coding cancer drivers not yet
included in COSMIC. Out of the three proposed scoring schemes, the conservation scores appear to
have the highest sensitivity. It is more conservative than the log-likelihoods, as it finds fewer signifi-
cant protein-coding genes. Furthermore, it is compelling that the use of this scoring scheme incorpo-
rates a measure of functional mutational impact in the driver significance evaluation. In light of these
considerations, we focus on the results obtained with conservation scores in the following, and
include the remaining two scoring schemes for comparison.

To give an impression of how the calculated background score-distributions behave in practice,
we highlight a few examples (Figure 4D-F). The top-two protein-coding genes called by ncdDetect
are TP53 (spanning 1378 bps) and PIK3CA (spanning 3207 bps), which are both well-known cancer
driver genes. An example of a protein-coding gene not called significant by ncdDetect is SLFN11
(spanning 2706 bps). The smoothness of the overall score-distribution is related to the length of the
gene.

The performance of ncdDetect on protein-coding genes was benchmarked against a recent non-
coding cancer driver detection method, ExInAtor (Lanzds et al., 2017) (Appendix, section 2). In gen-
eral, ExInAtor predicts much fewer candidates than ncdDetect, and thus has a lower false-positive
rate. However, ncdDetect performs better at ranking genes compared to ExInAtor (Appendix 1—
figure 3).

Non-coding driver detection

Although the functional impact of non-coding mutations in cancer is not yet fully understood, it is
widely believed that they may play an important role in cancer development (Diederichs et al.,
2016). Here, we apply ncdDetect to gene-associated non-coding elements of various types (pro-
moter elements, splice sites, 3' UTRs and 5’ UTRs) to evaluate their cancer driver potential (Figure 5,
Figure 5—figure supplement 1, Supplementary files 1-3, Material and methods: Candidate
elements).
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Figure 5. Q-values and top-ten ranking non-coding elements for each of the three proposed scoring schemes. The results discussed in the text relate
to conservation scores. Non-coding elements associated to COSMIC genes are highlighted in red. For each element, the region size is given together
with the observed number of mutations and the expected number of mutations under the null model. (A) The QQ-plot shows the p-values for all
promoter elements (n = 19,157) plotted against their uniform expectation under the null. One hundred and sixty promoter elements are found to be
significant. (B) QQ-plot of p-values for all splice sites (n = 17,867). The p-values do not follow the expectation under the null. This is explained by the
fact that 90% of all splice sites carry no mutations. Three splice sites come up significant with ncdDetect after correcting for multiple testing.

DOI: 10.7554/elife.21778.021

The following source data and figure supplements are available for figure 5:

Source data 1. P-values obtained on promoters and splice sites using conservation scores.

DOI: 10.7554/elLife.21778.022

Figure supplement 1. Q-values and top-ten ranking elements for each of the three proposed scoring schemes.

DOI: 10.7554/elife.21778.023

Figure supplement 1—source data 1. P-values obtained on protein-coding genes, 3" UTRs and 5’ UTRs using conservation scores.

DOI: 10.7554/elife.21778.024

Figure supplement 2. The number of elements called significant for each of the three proposed scoring schemes, for each of the defined element
types.

DOI: 10.7554/elife.21778.025

Figure supplement 2—source data 1. The number of elements called significant for each of the three proposed scoring schemes, for each of the
defined element types.

DOI: 10.7554/elLife.21778.026

Figure supplement 3. Length distributions of all defined element types.

DOI: 10.7554/elife.21778.027

Figure supplement 3—source data 1. The length of each of the analyzed elements.

DOI: 10.7554/elLife.21778.028

Recall and function of previously described non-coding drivers

Promoter mutations might dysregulate gene expression in cancer. In particular, such mutations
might affect the expression levels of tumor suppressor genes or oncogenes (Diederichs et al.,
2016). The average mutation rate in the analyzed promoter elements is 7.0 mutations per mega
base (Mb) per sample (Figure 1—figure supplement 1). Of the investigated non-coding element
types, the promoter elements have the most significant calls in the ncdDetect analyses. Approxi-
mately 1% of the evaluated promoter elements have a more significant p-value than expected under
the null (Figure 5A). We find a total of 160 significant (q < 0.10) promoter elements. Within these,
the observed mutation rate is 31.3 mutations per Mb per sample, which is a fourfold increase of the
mutation rate among all promoter elements. Of the promoter elements, the TERT promoter is
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ranked most significant (q = 2.4 x 107%°, ncdDetect). The promoter of the TERT gene is known to
play an important role in telomerase expression, and cancers with TERT promoter mutations have
been shown to exhibit an elevated expression of the TERT gene. This increased expression might
ensure telomere maintenance, believed to enable cancer cells to divide (Heidenreich et al., 2014).
Two other identified promoter elements are WDR74 (q = 4.1 x 10™*, ncdDetect) and PLEKHS1
(q = 4.3x107°, ncdDetect). Mutations in the promoter region of WDR74 have been associated with
increased gene expression and are thought to have functional relevance for tumorigenesis
(Khurana et al., 2013). Mutations in the PLEKHS1 promoter are also previously found to be signifi-
cant in non-coding driver screens (Weinhold et al., 2014; Melton et al., 2015). We note that out of
the 863 whole genomes analyzed in Weinhold et al. (2014), 356 are sequenced by TCGA. These
samples appear to be a subset of the 505 samples analyzed in the present work, and the data sets
are thus not completely independent. In total, 29 of the 160 significant promoter elements called
with ncdDetect are previously found to be significant in non-coding cancer driver studies
(Weinhold et al., 2014) (Appendix 1—figure 4). As a benchmark of the performance of ncdDetect
on regulatory non-coding regions, we compared our results on promoter elements to those
obtained with another non-coding cancer driver detection method, LARVA (Lochovsky et al., 2015).
The ncdDetect promoter candidates that are not detected by LARVA include the previously
described WDR74, PLEKHS1 and promoters of COSMIC genes (Appendix, section 2).

Another class of non-coding mutations are splice site mutations. They might disrupt the splicing
code and have been linked to cancer development (Srebrow and Kornblihtt, 2006). The destruc-
tion of a splice site will typically introduce stop codons or frameshifts and ruin the function of the
translated protein. The splice site mutation rate is 5.1 mutations per Mb per sample. Three splice
sites are found significant in this analysis (Figure 5B). As many as 90% of the splice sites have zero
observed mutations across the 505 samples. By construction, this means that the resulting p-values
are 1, and the p-value distribution is thus not uniform. More samples would increase the detection
power in these cases. Interestingly, in the top-ten ranking splice sites, we see a highly significant
enrichment of splice sites associated to COSMIC genes (p=6.1 x 1077, Fisher's exact test). Within
the three significant splice site elements, the mutation rate is 130.0 mutations per Mb per sample,
corresponding to a 25-fold increase of the mutation rate among all splice site elements. Splicing
mutations in TP53 are previously described in cancer studies (Lee et al., 2010; Varley et al., 2001).
Here, we observe that 12 samples from six different cancer types are mutated in the 52 bps that
make up the splice sites of TP53. These splicing mutations are highly significant (q = 1.2 x 1072,
ncdDetect), and might lead to inactivation of the tumor suppressor TP53 gene (Eicheler et al.,
2002).

Finally, we investigate somatic mutations in the 3’ and 5' UTRs (Figure 5—figure supplement
1B-C), which regulate mRNA stability and translation. UTR mutations might disrupt binding sites for
miRNAs and RNA-binding proteins and thereby affect post-transcriptional regulation. They might
also alter the structural conformations of the UTRs, which have previously been associated with can-
cer (Diederichs et al., 2016). The average number of mutations is 6.4 per Mb per sample for 5’
UTRs and 7.1 per Mb per sample for 3’ UTRs. We find a total of 16 significant 3' UTRs and 86 signifi-
cant 5’ UTRs (Figure 5—figure supplement 1B-C). Within the significant 5’ UTRs, the mutation rate
is 36.3 mutations per Mb per sample, a sixfold increase compared to all 5° UTRs. For the significant
3’ UTRs, the mutation rate is 20.6 mutations per Mb per sample, which is a threefold increase of the
average 3' UTR mutation rate. Two of the called 3' UTRs (DRD5 and PCMTD1) have previously been
detected in cancer driver studies (Weinhold et al., 2014). This is also the case for 12 of the 86 called
5’ UTRs, one of them SDHD (q = 2.3 x 1073, ncdDetect) (Appendix 1—figure 4). A recent study
identified the promoter region as well as the 5 UTR of SDHD to be potential cancer drivers in mela-
noma. In particular, promoter mutations of SDHD were shown to be associated with reduced gene
expression and poor survival prognosis (Weinhold et al., 2014). In the present data set, we observe
six mutated melanoma samples in the 5" UTR of SDHD, which covers 135 bps.

Case studies
The absence of a true-positive driver set for the non-coding part of the genome means that we must
find alternative ways to validate the driver potential of the candidates found by ncdDetect. We thus
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seek to support the significance of the candidate elements and further characterize them with evi-
dence from two additional data sources.

A first approach is to analyze the effects of mutations on gene expression. To be able to look up
individual driver candidates, we gather expression values for each of the 505 considered whole
genome samples (Fredriksson et al., 2014) and perform a Wilcoxon rank sum test for top-ranking
candidates of each element type. To further support the findings, we obtain mutation calls and
expression values from the larger set of TCGA exomes (Weinstein et al., 2013; Supplementary file
7) and likewise perform a rank sum test on these data (Supplementary file 5, Material and methods:
Expression analysis). Reassuringly, we recover known differences in TERT gene expression levels
between samples mutated and not mutated in the promoter region of the gene for the 505 whole
genome samples (g = 1.4 x 1073, Fisher's method) (Vinagre et al., 2013). Similarly for the TCGA
exome samples, splice-site mutations in TP53, which are known to drive cancer (Varley et al., 2001,
Lee et al., 2010), correlated with differences in gene expression levels (q = 2.3 x 1072, Fisher's
method).

Another approach we take to validate the ncdDetect candidates is to look at correlation between
mutation status and survival data for both the 505 whole genome samples and the TCGA exomes.
For this purpose, we download clinical data from the TCGA data portal (TCGA Data Portal, 2016;
Supplementary file 7). For a particular candidate driver, we test the significance of the difference in
survival between mutated and non-mutated samples using a one-sided Log-rank test on the Kaplan-
Meier estimated survival curves (Supplementary file 6, Material and methods: Survival analysis). This
recovers some known prognostic markers, such as TP53 where splice site mutations correlate with a
significant decrease in survival (q = 1.0 x 107", Fisher's method) (Yang et al., 2013). In the analysis
of the 505 whole genome samples, we furthermore observe a significant decrease in survival associ-
ated with HLA-DRB1 promoter mutations (q = 2.0 x 1072, Fisher's method). Although this finding is
potentially interesting, further investigation of this candidate is beyond the scope of this paper, as
genotyping in HLA regions is challenging due to the highly polymorphic nature of these genes
(Ehrenberg et al., 2014).

In the following, we study a number of the top-ranking non-coding ncdDetect driver candidates
in detail. For each of them, we further evaluate their driver potential by including results from
expression analysis and survival analysis.

SMUG1T mutations and a uracil-DNA glycosylase deficiency mutational
signature

We observe 19 mutations in the 997 bp-long SMUG1 promoter-region, which is approximately seven
times more than expected under the null model (g = 1.1 x 107%, ncdDetect) (Figure 6A). The muta-
tions are distributed among 14 samples from three different cancer types (one breast cancer sample,
two colorectal cancer samples and eleven melanoma samples). As 15 out of 16 of the melanoma
mutations are of type C—T in a CC context (or its reverse complement), they are consistent with the
mutational signature of ultraviolet (UV) light (Alexandrov and Stratton, 2014). They may be a result
of a mutational mechanism (Sabarinathan et al., 2016); however, they may also affect SMUG1
function.

SMUGT1 is involved in base excision repair (BER). Together with UNG, it acts in BER as an uracil-
DNA glycosylase, that is, an enzyme that removes uracil from DNA (Visnes et al., 2009). Uracil in
DNA arises from spontaneous deamination of non-methylated cytosine, which causes the occurrence
of U:G mismatches. If unrepaired, they give rise to G—A transition mutations. Mouse cell line experi-
ments have shown additive effects of SMUG1 and UNG inactivation on G—A mutation rates
(An et al., 2005). Furthermore, UNG and SMUG1 expression has recently been found to correlate
negatively with genomic uracil levels in B cell lymphomas (Pettersen et al., 2015). We therefore
hypothesize that SMUG T mutations may affect the rate of G—A (and C—T) mutations. To investigate
this further, we define the uracil-DNA glycosylase deficiency signature as the proportion of G—A
(including C—T) mutations outside CpG sites (Figure 6B). For melanoma samples, we further deduct
C—T mutations in a CC context, as potentially induced by UV light (Material and methods: Enrich-
ment of G—A mutations in SMUG 1 mutated samples).

There is a tendency for an increased value of the uracil-DNA glycosylase deficiency signature sta-
tistic in SMUG 1 mutated melanoma samples (p=8.2 x 1072, one-sided Wilcoxon rank sum test), and
a significantly increased value of this statistic for the one SMUG1 mutated uterus cancer sample
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Figure 6. SMUG1 mutations and base excision repair. (A) Genomic overview of SMUG1 showing its promoter region (Kent et al., 2002). The DNase
clusters track shows DNase hypersensitive regions where the darkness is proportional to the maximum signal strength observed in any cell line
(ENCODE Project Consortium, 2012). The transcription-factor-binding sites (TFBSs) track shows core regions of transcription factor binding
(Gerstein et al., 2012). The phyloP track shows evolutionary conservation of positions (Pollard et al., 2010). (B) Uracil-DNA glycosylase deficiency
signature definition: (1) Cytosines may be methylated (orange circles) at CpG sites (gray box). (2) Spontaneous deamination (red boxes) of non-
methylated cytosine results in uracil, causing U:G mismatches. Spontaneous deamination of methylated cytosine results in thymine, causing T:G
mismatches. (3a) SMUG1T and UNG are uracil-DNA glycosylases, which, via base excision repair, will repair the U:G mismatches caused by deamination.
(3b) If unrepaired, the U:G mismatches will result in G—A mutations. (C) A one-sided Wilcoxon rank sum test is performed per cancer type to
investigate if samples with a SMUGT mutation have a higher value of the uracil-DNA glycosylase deficiency signature statistic than samples without
such a mutation. The analysis is based on the 505 whole genome TCGA samples. Each dot represents a sample, and the color represents the SMUG1-
associated mutated element. (D) Correlation between the uracil-DNA glycosylase deficiency signature statistic and the product of SMUGT and UNG
gene expression using TCGA exome data for lung adenocarcinoma.

DOI: 10.7554/elLife.21778.029

The following source data and figure supplement are available for figure 6:

Source data 1. The defined uracil-DNA glycosylase deficiency signature statistic for each sample of the cancer types GBM, BLCA, CRC, BRCA, LUAD,
SKCM and UCEC.

DOI: 10.7554/eLife.21778.030

Source data 2. The defined uracil-DNA glycosylase deficiency signature statistic, as well as SMUG1 gene expression, UNG gene expression, and
SMUG1xUNG gene expression for TCGA exome samples.

DOI: 10.7554/elife.21778.031

Figure supplement 1. Examples of correlation between the uracil-DNA glycosylase deficiency signature statistic and SMUG1 gene expression (first
column), UNG gene expression (second column) and the product of SMUGT and UNG gene expression (third column) using TCGA exome data for
seven different cancer types (rows).

DOI: 10.7554/elife.21778.032

(p=2.1 x 1072, one-sided Wilcoxon rank sum test), compared to samples not harbouring a SMUG1
mutation (Figure 6C). This is also the case when restricting the analysis to only include coding and
splice site mutations (melanoma: p=5.3 x 1072, uterus cancer: p=2.1 x 1072, one-sided Wilcoxon
rank sum tests). These findings indicate that SMUG T mutations might perturb the uracil-DNA glyco-
sylase function.
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We further hypothesize that SMUG1T and UNG expression may correlate with the uracil-DNA gly-
cosylase deficiency signature statistic. With the expression data available for the 505 analyzed TCGA
samples, we are unable to detect a significant correlation between gene expression of SMUGT or
UNG and the signature statistic (SMUGT: p=9.4 x 10”7, UNG: p=1.0 x 107", Fisher's method). To
further investigate expression correlations, we look at the larger data set of TCGA exomes. From
these data, the uracil-DNA glycosylase deficiency signature statistic is seen to be negatively corre-
lated with SMUG 1 gene expression (p=3.8 x 1072, Fisher's method), and with UNG gene expression
(p=5.1 x 10~*, Fisher's method). As SMUG1 and UNG are thought to have complementary roles in
BER (Pettersen et al., 2007), we also investigate the correlation between the signature statistic and
the product of SMUG1T and UNG gene expression, which is negative and also significant (p=2.4 x
103, Fisher's method) (Figure 6D, Figure 6—figure supplement 1).

Finally, we investigate whether survival correlates with SMUG 1 mutation status. With the present
data set, we are not able to detect such a pattern (p=8.2 x 107", Fisher's method).

The observed correlations combined with the existing literature (Pettersen et al., 2015;
An et al., 2005) suggest that mutations that functionally impact SMUG1 and UNG may cause a
mutational phenotype as captured by the defined deficiency signature. However, further validation
must await availability of larger sets of cancer genomes.

Promoter and UTR candidates where mutations associate with decreased
survival

The 5" UTR of CD1A spans 533 bp. In the region we observe 11 mutations from 10 different sam-
ples, distributed across eight different cancer types. This corresponds to five times the amount of
mutations expected under the null model (g = 1.1 x 1072, ncdDetect). For TCGA exome melanoma
samples, we observe a highly significant decrease in survival associated with mutations in the region
(p=1.2 x 1077, Log-rank test) (Figure 7A), which is top-ranked among the non-coding regions tested
(Supplementary file 6). CD1 proteins present antigens to T cells and are involved in eliciting adap-
tive immune responses. They are distantly related to HLA (MHC) proteins and similarly bind T cell
receptors; however, they display glycoproteins and small molecules instead of peptides (Van Rhijn
et al., 2015). Intriguingly, CD1A is generally lowly expressed in healthy tissue with high expression
particularly in skin (GTEx Consortium, 2013), where it is found in the antigen-presenting Langerhans
cells. CD1A has previously been implicated with cancer development, with expression and positive
correlation to survival reported for some cancer types (Coventry and Heinzel, 2004). Although we
cannot functionally interpret the observed TCGA melanoma mutations, the strong association with
survival suggests potential clinical relevance, not-the-least given the success of immunotherapy in
melanoma (Drake et al., 2014).

A total of 22 mutations are observed in the 1976 bp-long promoter region of PRSS3. This is four
times more mutations than expected under the null model, and they occur in 13 samples from seven
different cancer types (g = 1.1 x 1072, ncdDetect). Previous studies have established the role of
PRSS3 in the progression of pancreatic and ovarian cancer (Jiang et al., 2010; Ma et al., 2015). Not
only the promoter region of this gene comes out significant in the driver detection screen; this is
also the case for its 3' UTR (g = 1.4 x 1075, ncdDetect) as well as its protein-coding gene (g = 6.8 x
107%°, ncdDetect). Based on the TCGA exome set, we observe a significantly decreased survival for
head and neck cancer (HNSC) samples mutated in the promoter region of PRSS3 (p=1.8 x 1073,
Log-rank test) (Figure 7B) as well as in the PRSS3 coding gene (p=1.2 x 1072, Log-rank test). We
also observe a tendency for decreased survival among melanoma samples with 3" UTR mutations
(p=8.3 x 1072, Log-rank test).

The 3" UTR of SEC14L1 spans 3052 bps and contains 31 mutations from 27 samples distributed
across 10 different cancer types. This is approximately four times the amount of expected mutations
(g=8.9 x 1075, ncdDetect), and the majority (58%) of these are found in breast- and colorectal can-
cer. Although little is known about SEC714L1 in cancer, one study hypothesized that altered expres-
sion of the gene could contribute to breast tumorigenesis (Kalikin et al., 2001). Another study
found SEC14L1 to be overexpressed in prostate cancer (Burdelski et al., 2015). For TCGA exome
HNSC samples, we find a significant decrease in survival associated with mutations in the 3" UTR
region of the gene (p=5.8 x 1073, Log-rank test).
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Figure 7. Survival- and expression analysis of CD1A, PRSS3 and STK11 mutations. (A) Kaplan-Meier survival curves for melanoma samples with and
without mutations in the 5" UTR of CD1A. For illustration purposes, the data are shown for a follow-up time of 2000 days, at which point 98 out of 324
patients (30%) are still at risk. The analysis is based on the TCGA exome sample set. (B) Kaplan-Meier survival curves for HNSC patients with and
without PRSS3 promoter mutations. The data are shown for a follow-up time of 2000 days, at which point 42 out of 484 patients (9%) are still at risk. The
Figure 7 continued on next page
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analysis is based on the TCGA exome sample set. (C) Genomic overview of STK11, zooming in on its combined splice sites region. The phyloP track
shows evolutionary conservation of positions. (D) A two-sided Wilcoxon rank sum test is performed for LUAD samples from the TCGA exome sample
set, to investigate if samples mutated in the splice site region of STK17 have a different gene expression level than samples without such mutations. (E)
Kaplan-Meier survival curves for LUAD samples with and without STK17 splice site mutations. The data are shown for a follow-up time of 2000 days, at
which point 36 out of 438 patients (8%) are still at risk. The analysis is based on the TCGA exome sample set.

DOI: 10.7554/elife.21778.033

The following source data is available for figure 7:

Source data 1. STK11 mutation status and STK11 gene expression (RSEM) for 469 LUAD TCGA exome samples.

DOI: 10.7554/elife.21778.034

STK11 splice sites mutations and their expression correlation

The combined splice site region of STK11 covers 36 bps and is mutated in four lung adenocarcinoma
(LUAD) cancer samples, which is approximately 56 times more mutations than expected under the
null model (Figure 7C). ncdDetect ranks the splice site region of STK11 second among all splice sites
(g = 2.2 x 1073, ncdDetect). STK11 is a known COSMIC tumour suppressor gene, which has been
shown to be involved in lung and cervical cancers (Gill et al., 2011), and very recently, splice site
mutations of the gene were described in relation to cancer (Mularoni et al., 2016; Wei et al.,
2016). From the 505 whole genomes analyzed here, we are unable to associate the splice site muta-
tions of STK11 with a changed level of gene expression (p=4.4 x 107", Fisher's method). Looking at
the larger set of TCGA exomes, however, we detect a significantly lower expression level for LUAD
samples mutated in the splice site region of STK11, compared to LUAD samples without such muta-
tions (p=1.3 x 1073, two-sided Wilcoxon rank sum test) (Figure 7D). We further observe a marginally
significant decrease in survival associated with STK11 splice site mutations for LUAD TCGA exome
samples (p=6.5 x 1072, Log-rank test) (Figure 7E).

Discussion

Non-coding somatic mutations play part in tumour initiation and progression. With the advent of
whole genome sequencing, the systematic screening of such mutations is possible. We have devel-
oped the method ncdDetect with the goal of detecting non-coding cancer driver elements and
thereby gain an understanding of the underlying mechanisms of tumorigenesis. With ncdDetect, we
model the heterogeneous neutral background mutation-rate, taking genomic annotations known to
correlate with the mutation rate into account. We consider the mutational burden and functional
impact to reveal signs of recurrent positive selection across cancer genomes.

The position- and sample-specific approach behind ncdDetect sets the stage for a number of dis-
tinct types of analyses. The analysis of one contiguous region is a straight-forward application of
ncdDetect, as is the combined analysis of disjoint regions, potentially with vastly different back-
ground mutation-rates. The flexible setup conveniently ensures that no constraints are necessary
when defining the size and location of a particular region of interest. Furthermore, the method can
be used to evaluate more complex functional hypotheses than those presented here. For instance,
different sets of regions in different samples can be jointly evaluated, and sample- or tissue-specific
scoring schemes can be applied directly.

Not all the significant non-coding elements can be regarded as true cancer drivers. ncdDetect
might falsely identify driver elements ('false positives’) for both technical and biological reasons. The
false positives stemming from predicting too low a mutation rate in certain regions can be reduced
by adding relevant genomic annotations as explanatory variables to the null model. In general, fail-
ing to include an explanatory variable that explains variation in the mutation rate will cause too little
variation in the predicted mutational probabilities. We handle such overdispersion of the mutation
rate by adjusting each sample- and position-specific probability of mutation with an overdispersion-
based correction factor. This improves the model fit, although some inflation appears to remain for
long elements. We acknowledge that the false-positive rate among long genes is not properly con-
trolled and likely higher than the applied FDR threshold. We therefore continue to strive to improve
our model of the site-specific mutational process, which will also improve power. The observed
mutation rate also varies for technical reasons. For instance, the power to call mutations and the rate
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with which mutations are missed, will vary with genomic complexity, including repeats, pseudo-
genes, etc. The predicted mutational probabilities can thus be further improved by including geno-
mic annotations that correlate with the rate of either false-negative or false-positive mutation calls as
explanatory variables.

Likewise, ncdDetect might miss true driver elements ('false negatives’). Especially, with the size of
the current whole cancer-genome data sets, we lack statistical power to detect infrequently mutated
driver elements, or driver elements that may operate within an individual cancer type. This issue will
be remedied as larger sets of sequenced whole genomes become available. In the near future, more
than 2500 whole genomes will be available from the Pan-Cancer Analysis of Whole Genomes
(PCAWG) project. However, it is becoming evident that some instances of detected potential driver
regions may be explained by local mutational mechanisms rather than recurrent selection
(Sabarinathan et al., 2016). This emphasizes the importance of critical scrutinization and eventually
independent validation of driver candidates emerging from ncdDetect.

With ncdDetect, we screen for non-coding cancer drivers and highlight cases of special interest.
To gain further evidence for the identified candidates, we correlate the presence of non-coding
mutations with gene expression as well as patient survival: We find that mutations in the promoter
and in the coding region of a gene in the Base Excision Repair pathway, SMUG1, correlate with an
increase of C—T mutations. We hypothesize that SMUG 1 mutations might perturb uracil-DNA glyco-
sylase function and cause a specific mutational phenotype. Although our study is limited to correla-
tive observations between the expected mutational signature for uracil-DNA glycosylase deficiency
and mutational presence as well as gene expression, perturbation experiments in cell lines support
the hypothesis (An et al., 2005). We also identify non-coding regulatory regions that associate with
patient survival, including the potential clinically important 5' UTR of CD1A, the promoter and 3'UTR
of PRSS3, and the 3'UTR of SECT4L1. Finally, we identify lung cancer mutations in the splice sites of
STK11 as potential driver events. By extending the analysis to the larger TCGA data set, we show
that these correlate significantly with expression. The patients also show a strong tendency for
poorer survival.

In this work, we have addressed the challenges associated with distinguishing driver and passen-
ger non-coding mutations. We evaluated three different scoring schemes and found that a conserva-
tion-based scheme performed better than mutation counts and log-likelihoods in our setting. For
selected candidate cases, we found a significant effect on expression levels and a significant
decrease in survival for mutated samples. The combined analyses of mutational impact on expres-
sion and survival across cancer types allowed us aggregate evidence and gain power. The screen
identified candidates of potential clinical relevance. However, sample sizes remain small and further
studies in large independent cohorts are necessary to establish their potential as prognostic bio-
markers or therapeutic targets.

As we continue to gain larger cancer genomics data sets for driver screens, accurate modelling of
the mutational heterogeneity will become increasingly important. This will help control the false-pos-
itive rate as the power of the data increases. As our understanding of the general differences in
mutational mechanisms between cancer types improves further, this knowledge should be incorpo-
rated in ncdDetect.

Materials and methods

Statistical null model

The statistical null model that enables us to predict position- and sample-specific probabilities of
mutation is a multinomial logistic regression model (Agresti, 2013). The model is described in detail
in Bertl et al., 2017. Logistic regression has been used to model the background mutation rate in
cancer in previous non-coding driver detection studies (Melton et al., 2015). The model considers
four possible outcomes; transitions (TSia_sg, G_sa)), two types of transversions (TVia T, g7 and
TViassc, gscy) as well as the reference class of no mutation. The use of logistic regression ensures
that the predicted probabilities are restricted to lie in the interval between zero and one. The refer-
ence sequence used in the model is the GRCh37 assembly (hg19) for the human genome. The
explanatory variables of the model are listed below.

e Sample id: a factor variable with 505 levels.
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e Replication timing: A numeric variable with values between zero (early replication) and one
(late replication) (Chen et al., 2010). The variable is computed for 100 kb windows. Originally,
the variable corresponds to the hg18 assembly for the human genome. It is converted to the
hg19 assembly using the UCSC liftOver tool (UCSC Genome Browser, 2016).

e Trinucleotides: This variable is broken down into two separate variables; the reference bp in
question as well as the left and right flanking bases. The bp in question is encoded as a factor
variable with two levels, ‘A’ for A:T bps with weak hydrogen bonds, and ‘G’ for G:C bps with
strong hydrogen bonds. The left and right flanking bases are implemented in a factor variable
with 16 different levels, ‘AA" to ‘TT'. Including this variable in an interaction term with sample
id effectively takes the sample-specific mutational signatures into account.

e Genomic segment: A factor variable with six levels, ‘protein-coding genes’, ‘promoter ele-
ments’, ‘splice sites’, ‘5" UTRs’, ‘3" UTRs' and ‘other’.

o Expression level: A numeric variable based on all available RNAseq expression data from
TCGA (version 2, RSEM values, level 3 data). All RSEM values were logy(x + 1) transformed.
For each cancer type, the median expression was calculated for all genes. If multiple annota-
tions of a gene existed, the longest annotation was used. For overlapping genes, the expres-
sion is summed up. We collapsed colon (COAD) and rectal carcinoma (READ) to a joint cancer-
type CRC by averaging over the expression values (Fredriksson et al., 2014).

e Local mutation rate: A numeric variable calculated per base position. For each position, the
position itself plus the flanking 10 kb on either side is skipped to avoid that the rate of the
tested element has a large effect on local mutation rate. The local mutation rate is then based
on the next flanking 20 kb regions on either side of the skipped regions. For each sample, the
number of mutations in the two 20 kb regions are weighted by the reciprocal of the total num-
ber of mutations in the sample. The value of the local mutation rate is the weighted sum of the
mutations across all samples.

The multinomial logistic regression model fit is based on a so-called count-table. For the purpose
of creating this data structure, the three numeric variables, replication timing, local mutation rate,
and expression level are each discretized into five bins. For each combination of explanatory variable
levels (505 x 5 x 2 x 16 x 6 x 5 x 5= 12,120,000 combinations), the number of genomic positions
as well as the number of mutations of each type are counted. Before constructing the count-table,
all COSMIC genes were excluded from the data set.

For fast and memory-efficient estimation, the multinomial logistic regression model is split up
into three binomial logistic models (Begg and Gray, 1984). Estimation is conducted in R
(R Development Core Team, 2008) (RRID:SCR_001905) using the function glm4 from the contrib-
uted package MatrixModels (Bates and Maechler, 2015), which provides efficient estimation for
GLMs with sparse design matrices. Three-fold multiple imputation is used to handle missing values
in the variable replication timing (Schafer, 1997). The imputed values are randomly drawn from the
marginal distribution of observed replication timing values.

Scoring schemes

In the implementation of ncdDetect, the scores must be discrete values. For speed efficiency, inte-
ger values are recommended. The conservation scoring scheme is based on the phyloP scores. To
ensure that all scores are positive, the phyloP values are shifted by adding 20 to all values. For
computational reasons, the values are rounded downwards to the first decimal point, and multiplied
by a factor of 10 to create integers. No mutation is associated with a score value of zero. The log-
likelihood scoring scheme defines the scores as minus the natural logarithm of the sample- and posi-
tion-specific neutral somatic mutation probabilities predicted by the null model. The scores are con-
verted into integer values by the same procedure used for the conservation scores. Effectively, this
means that positions with no mutations will be given a score of zero.

Candidate elements

The candidate elements are defined based on the protein-coding transcript annotations of GEN-
CODE version 19 basic annotation set (GENCODE, 2016). Regions are divided into five categories;
protein-coding genes, promoter elements, splice sites, 3' UTRs, and 5’ UTRs. The different regions
are defined per transcript and collapsed per gene. Splice site regions are defined as the two intronic
bases on either side of all internal exons. Promoter elements are defined as 500 bps in either direc-
tion from transcriptional start sites. A hierarchy for the categories is defined as protein-coding genes
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> splice sites > 3' UTRs > 5’ UTRs > promoter elements. Bps included in two or more categories are
retained only for the category higher in the hierarchy. Region definitions are available in
Supplementary file 4.

Elements located on chromosome X and Y are not considered in the analyses conducted here.
The number of analyzed elements thus differ from the total number of elements defined (Table 1).
We analyze 19,256 protein-coding regions, 19,157 promoter elements, 17,867 splice sites, 18,481 3’
UTRs and 18,220 5' UTRs. The length distributions of the element types are depicted in Figure 5—
figure supplement 3.

An overdispersion-based mutation rate adjustment

To correct for overdispersion of the mutation rate, we adjust each sample- and position-specific
mutational probability by an overdispersion-based mutation rate correction factor. The correction
factor is modeled with a beta binomial model. Details are given in Appendix, section 1.

TCGA exome data

To support our findings from the 505 whole genome TCGA samples, we obtain mutation calls,
expression values and survival data based on the larger set of TCGA exomes (Weinstein et al.,
2013; Supplementary file 7). These data are applied in the expression analyses, in the analyses of
enrichment of G—A mutations in SMUGT mutated samples, as well as in the survival analyses
performed.

We obtain mutation calls for 5802 samples. Of these, we remove 348 samples, which are also
present in the original 505-sample data set. The final mutation call set thus consists of 5454 TCGA
exome samples. We obtain expression data for 8471 samples, and after removing samples present
in the 505-sample set, a total of 4295 samples have both mutation calls and expression data avail-
able. A total of 5336 TCGA exome samples have both mutation calls and clinical survival data avail-
able, after subtracting samples that are also present in the 505 whole genome TCGA sample set.

Expression analysis
For a given candidate, we perform a two-sided Wilcoxon rank sum test. With this, we test the
hypothesis that there is no difference in gene expression levels between samples that are mutated
and samples that are not mutated in a given candidate element. Such a test is performed for each
individual cancer type, and the p-values are combined across cancer types using Fisher’s method.
These analyses are performed for both the 505 whole genome TCGA samples and the 4295
TCGA exome samples with the necessary data available. Data overview and results are available in
Supplementary file 5.

Enrichment of G—A mutations in SMUG1 mutated samples

In order to test if the proportion of G—A (including C—T) mutations outside CpG sites are greater
for samples harboring a SMUG1 mutation, compared to samples not carrying such a mutation, we
first count the 192 (=4 x 4 x 4 x 3) different mutation types (including left and right flanking bases
for a given mutated position) for each of the samples. For each sample, we count the number of
G—A mutations, excluding those in CpG sites and, for melanoma samples, those part of the CC—TT
UV induced mutational signature (Alexandrov and Stratton, 2014). The counts are normalized by
the total number of mutations for the sample. These proportions are referred to as the uracil-DNA
glycosylase deficiency signature. For a given cancer type, we divide the samples into two groups;
those that carry a SMUGT mutation, and those that do not. A one-sided Wilcoxon rank sum test is
performed to test the null hypothesis that SMUG 1-mutated samples do not have higher values of
the uracil-DNA glycosylase deficiency signature statistic, compared to samples without SMUG1
mutations. Fisher's method is used to combine p-values across cancer types. This type of analysis is
performed for the 505 whole genome TCGA sample set.

We further analyze whether there is a correlation between the uracil-DNA glycosylase deficiency
signature and SMUG1, UNG, or SMUG1 x UNG gene expression. This type of analysis is performed
for both the 505 whole genome TCGA samples and the 4295 TCGA exome samples with the neces-
sary data available. The uracil-DNA glycosylase deficiency signature statistic calculated on the basis
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of the TCGA exome data set is based only on captured CDS regions. Results and data overview are
available in Supplementary file 5.

Survival analysis

We investigate the correlation between mutation status and survival data in the following manner:
We download clinical data from the TCGA data portal (TCGA Data Portal, 2016) (running date 01/
11/2015) using the RTCGAToolbox R library (Samur, 2014). For a candidate driver element, the dif-
ference in survival between mutated and non-mutated samples is tested per cancer type using a
one-sided Log-rank test on the Kaplan-Meier estimated survival curves (Kaplan and Meier, 1958).
The tests are only performed when at least four mutations are observed within a given cancer type.
Evidence is combined across cancer types with Fisher's method.

The survival analysis is performed for each of the top-50 ranked ncdDetect candidates of each
non-coding element type (promoters, splice sites, 3' UTRs and 5’ UTRs), or all significant elements of
a given type. The analyses are performed for both the 505 whole genome TCGA sample set, and
the 5336 TCGA exome sample set with mutation calls and clinical survival data available. Results and
data overview are available in Supplementary file 6.

Time complexity

The use of mathematical convolution on the fine grained sample- and position-specific scores and
probabilities makes ncdDetect computationally intensive (Figure 3—figure supplement 1). Convolu-
tion is the procedure of calculating the distribution function of the sum of independent discrete ran-
dom variables. The algorithm is implemented using dynamic programming (Touzet and Varre,
2007) and can be thought of as filling out a matrix from the bottom left corner to the upper right
corner. Convoluting each cell in the matrix has time complexity O(1), and the running time is thus
determined by the size of the matrix. The time complexity of the algorithm is O(m x k X smpax),
where m is the element size, k is the number of samples and s.x is the maximum score.

Implementation
ncdDetect is implemented in the software environment R (R Development Core Team, 2008)
(RRID:SCR_001905), using the Rcpp and RcppArmadillo packages (Eddelbuettel, 2016) for speed
optimization. The core ncdDetect functions to perform convolution are collected in the R package
ncdDetectTools available at github.com. The package can be installed using the devtools package
(Tools to Make Developing R Packages Easier, 2016): install_github(‘MaleneJuul/ncdDetectTools’).
A few examples of the package functionalities are given in the package vignette, also available in
the github repository.

The null model estimates used for the current application is provided at http://moma.ki.au.dk/
ncddetect/ along with a tutorial on how to obtain p-values from these estimates using ncdDetect.

Availability of data and materials

Mutational, expression and clinical data for the TCGA samples are administered by dbGaP (https://
dbgap.ncbi.nlm.nih.gov) (RRID:SCR_002709). The additional datasets supporting the conclusions of
this article are included within the article and its supplementary files.
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Appendix

Overdispersion-based rate adjustment

As our understanding of the mutational process is limited and as we do not know all relevant
explanatory variables for all our samples, there will always be a difference between the
predicted and actual mutation rate (Appendix 1—figure 1). The unaccounted for

explanatory variables are likely to have auto-correlated regional effects. The effect of
differences between actual and predicted mutation rates will thus be accumulated along
elements and be most pronounced for long elements (Appendix 1—figure 2). Even small
biases in the predicted versus actual mutation rate may become significant if elements are
sufficiently long. In our case, the protein-coding genes are the longest element type and
therefore the most likely to be affected by such biases.

—— mutation rate deviation
(predicted mutation rate - true mutation rate)
== candidate element

mutation rate deviation

A B

Appendix 1—figure 1. lllustration of the motivation behind the overdispersion-based rate
adjustment. For candidate element A, we overestimate the mutation rate, and thus end up with
a conservative p-value for this element when analysing it with ncdDetect. For candidate
element B, on the other hand, we underestimate the mutation rate. In this case, ncdDetect

will produce a p-value that is too small, creating a potential false-positive call. The effect of
underestimating the mutation rate will be greater for longer candidate elements.

DOI: 10.7554/¢elife.21778.042
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Appendix 1—figure 2. QQ-plots of p-values obtained with and without the overdispersion-
based rate adjustment. (A) QQ-plots of all protein-coding genes (excluding TP53 for illustration
purposes). (B) QQ-plots of protein-coding genes shorter than 700 bp. For the shorter genes,
the p-values are not particularly inflated. The overdispersion-based rate adjustment does not
affect the distribution of p-values much. (C) QQ-plots of protein-coding genes longer than

3000 kb. For the longer genes, the p-values are inflated, and the overdispersion-based rate
adjustment effectively corrects for much of this inflation.
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DOI: 10.7554/elife.21778.043

Appendix 1—figure 2—source data 1. P-value and gene length for each protein-coding
gene. The p-values are obtained with and without the overdispersion-based rate adjustment.
This data set relates to Appendix 1—figure 2.

DOI: 10.7554/elife.21778.044

The unavoidable difference between actual and predicted mutation rates across elements
and samples will increase the unexplained variance and lead to an overdispersion of the
number of mutations per element (or other test statistics based on it). By capturing and
taking this overdispersion into account, the specificity of the method can be improved,
though not the power, which depends on reducing the unexplained variance by better
mutational null models. To correct for overdispersion, we adjust each sample- and position-
specific mutational probability by an overdispersion-based mutation rate correction factor.

The overdispersion-based rate adjustment is modelled with a beta binomial model. For a
region of length L; having X; mutations, we have

X; ~Binomial(L; - N;, p;),

~Beta(a;, 8;)-

The parameters a; and B; are constrained to satisfy that the expected mutation probability
w; =Bp] = aiE equals p;, the average mutation rate in the region predicted by the logistic
regression model. Left with one degree of freedom the overdispersion is modelled with the

SD(p) _ /B

parameter W= Elp) — aa+ﬁ'+1

We can express @ and B in terms of p and v:

_l—p—yu
v

_lop l-p—vu

B
o y?

In this alternative parameterization our model becomes
X,-~Binomial(Li . N,',pl'),
~Beta(pi,y).

The parameter v is shared across all regions, and we estimate it by numerically maximizing
the likelihood function

—p— vu = u 1—p—y*p
L ):ﬁ NL.\ B(X: + &, NL; — X; + B) ﬁ (X+ ML = X 7 )
i Xi B(a,B) l—p—y2pu 1=p 1-p—y2u ’
2 i=1 B > o )

b2 T b

where B is the beta function. To avoid that regions under positive selection affect the
estimate of vy, we filter out the top 5% and bottom 5% of regions, where the observed
number of mutations deviates the most from the expected number of mutations. For
protein-coding genes we further explicitly filter out COSMIC genes.

Inspecting the QQ-plot of the p-values for protein-coding genes shows that the
overdispersion-based rate adjustment improves the overall fit of the p-values to uniformity
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under the null and reduces the inflation of the tail of the distribution (Appendix 1—figure
2A). For short genes (<700 bp), the QQ-plots show a near perfect fit of the p-values to the
uniform expectation with known or likely cancer drivers standing out (Appendix 1—figure
2B). For long genes (>3000 bp), the fit is much improved by the rate-adjustment, though
some inflation is still present, resulting in significant calls that are likely false positives (e.g.
MUC4, PLIN4, etc.) (Appendix 1—figure 2C).

ncdDetect compared to other non-coding cancer driver
detection methods

In order to benchmark the performance of ncdDetect, we compared our results to those
obtained with two other non-coding cancer driver detection methods, ExInAtor

(Lanzds et al., 2017) and LARVA (Lochovsky et al., 2015). ExInAtor is designed for the

analysis of IncRNAs but is also applicable on protein-coding genes. We thus compared
ncdDetect and ExInAtor on protein-coding genes. At the time of writing, LARVA does not
support discontiguous element types (e.g. the joint analysis of multiple exons within a single
gene). The promoter elements analyzed in the present paper are in principle contiguous.
However, as we subtract overlapping annotations from 5’ UTRs, they can be discontiguous

in some cases. We have run LARVA on our promoter definitions, without removing any
overlapping annotations from other element types.

The benchmarking on protein-coding genes is performed using the COSMIC Cancer Gene
Census as a true-positive set (Forbes et al., 2015). The promoter benchmarking is not as
straightforward, given the lack of a true positive set for this element type. We compare the
results using previously described promoter cancer driver candidates.

Performance on protein-coding genes

Where ncdDetect has a tendency to suffer from a significant fraction of false positive
predictions, ExInAtor has a tendency to suffer from a significant fraction of false negative
predictions. The published ExInAtor results on protein-coding genes, based on the same
505 cancer samples analyzed here, contain p-values for 19,309 protein-coding genes, where
three are significant (g < 0.10). One of those three significant genes is in the COSMIC
database. For ncdDetect, 64 genes are called significant (q < 0.10), of which 15 (=23%) are
COSMIC genes. Notably, six of the top-ten ncdDetect candidates are COSMIC genes

(p =2.0- 1077, Fisher's exact test). This is the case for three of the top-ten ExInAtor
candidates (p = 3.3 - 1073, Fisher’s exact test). In general, ExInAtor predicts much fewer
candidates than ncdDetect, and thus have a lower false-positive rate. However, ncdDetect
has a higher COSMIC Census recall rate, that is, it performs better at ranking genes
compared to ExInAtor (Appendix 1—figure 3).
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Appendix 1—figure 3. COSMIC Gene Census recall plot. The fraction of COSMIC genes
recalled in the top ncdDetect and ExInAtor candidates.
DOI: 10.7554/elife.21778.045

Appendix 1—figure 3—source data 1. COSMIC Gene Census recall data. The fraction of
recalled COSMIC genes in the top ncdDetect and ExInAtor candidates. This data set relates
to Appendix 1—figure 3.

DOI: 10.7554/elLife.21778.046

Looking closer at the top-15 ncdDetect protein-coding candidates, we find that nine are
COSMIC genes (Appendix 1—table 1). Non-COSMIC genes in the list include PRSS3,
KRTAP9-1, KRTAP4-5 and BCLAF1. All these genes have some reported cancer association:
The expression of PRSS3 has been shown to be upregulated in metastatic prostate cancer
and is also associated to pancreatic and lung cancer (Jiang et al., 2010; Hockla et al., 2012;
Marsit et al., 2005). Although the Keratin-associated proteins KRTAP?-1 and KRTAP4-5
have no wide spread reported role in cancer, a recent study found that they can play a part
in malignant progression (Berens et al., 2017). Finally, BCLAF has been associated to colon
cancer (Zhou et al., 2014). The remaining two genes in the list, MUC4 and AL390778.1 have
no reported cancer driver potential. Interestingly, MUC4 continues to be significant in our
analyses, even after overdispersion-based rate adjustment.

Appendix 1—table 1. Analysis of the top 15 ncdDetect protein-coding candidates.

Rank  Gene name  q-value Size (bp) Cosmic  Conclusion

1 TP53 1.15 x 1072% 1378 True Putative cancer driver gene

2 PIK3CA 2.82 x 10°% 3207 True Putative cancer driver gene

3 KRAS 493 x 10733 708 True Putative cancer driver gene

4 PTEN 370 x 10°% 1212 True Putative cancer driver gene

5 PRSS3 6.80 x 107%° 1056 False Reported cancer association

6 MUC4 1.26 x 107 16,239 False Likely false positive due to length
7 KRTAP9-1 177 x 107" 770 False Reported cancer association

8 BRAF 3.25 x 1072 2301 True Putative cancer driver gene

9 IDH1 1.76 x 1071° 1245 True Putative cancer driver gene

10 KRTAP4-5 6.11 x 10710 546 False Reported cancer association

11 NRAS 2.20 x 1078 570 True Putative cancer driver gene

12 AL390778.1 5.95 x 1078 735 False No reported cancer driver properties

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Rank  Gene name  g-value Size (bp) Cosmic  Conclusion

13 NFE2L2 3.15 x 1077 1890 True Putative cancer driver gene
14 FBXW?7 7.35 x 1077 2618 True Putative cancer driver gene
15 BCLAF1 7.92 x 107¢ 2763 False Reported cancer association

DOI: 10.7554/eLite.21778.047

Performance on non-coding regulatory elements

The LARVA analysis of the 20,052 defined promoter elements yields 16 significant candidates
(g < 0.10). ncdDetect agrees, and calls all of these 16 promoters significant, along with an
additional 144 candidates (q < 0.10). Several of the cases detected by ncdDetect, and not
by LARVA, have previously been described to be associated with cancer. These include
PLEKHS1 and WDR74 as described in the main text. Further, promoter mutations in DPH3
and OXNAD1 have been associated to skin cancers (Denisova et al., 2015). A number of
the ncdDetect identified candidates are also identified in an earlier cancer study
(Weinhold et al., 2014), including SMUG1 (Appendix 1—figure 4). Finally, the protein-
coding genes associated to the promoters KDM5A, CNOT3 and NCOR1 are COSMIC
genes, and detected solely by ncdDetect. The promoter region of PRSS3, a case study in
the main text, is also detected by ncdDetect alone. Taken together, several of the
ncdDetect promoter candidates that are not detected by LARVA have previously reported
cancer driver potential.

A promoter elements

3" UTRs 5" UTRs

ncdDetect

ncdDetect

Weinhold et al.
Weinhold et al.

Appendix 1—figure 4. lllustration of overlap between significant elements found by ncdDe-
tect and other non-coding cancer driver screens. Highlighted elements are mentioned in the
text. (A) Overlap of promoter elements found to be significant with ncdDetect and LARVA,
as well as promoter elements previously described in a non-coding cancer driver screen
(Weinhold et al., 2014). We note that TERT and PLEKHS1 are also detected by a second
non-coding driver screen (Melton et al., 2015). (B) Overlap between 3" UTRs detected by
ncdDetect and 3' UTRs detected by a previous study (Weinhold et al., 2014). (C) Overlap
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between 5’ UTRs detected by ncdDetect and 5’ UTRs detected by a previous study
(Weinhold et al., 2014). We note, that out of the 863 whole genomes analyzed in
(Weinhold et al., 2014), 356 are sequenced by the TCGA. These samples appear to be a
subset of the 505 TCGA samples analyzed here. The data sets are thus not completely
independent.

DOI: 10.7554/elife.21778.048

Algorithmic details of ncdDetect

Assume that a candidate element has m positions and that somatic mutations are called for a
total of k samples. The sample- and position-specific probabilities of a mutation are

predicted using the null model. The four outcomes of the model are one type of transition

(TS = TS{4—c,6—a}), two types of transversions (ITV, = TV4_7_7} and

TV, = TVis_co—cy). as well as the reference class of no mutation (NM). The

corresponding probabilities for the i'th sample (i = 1,...,k) and positionj (j=1,...,m) are
(Figure 3C)

TS TV, _TV, _NM
<7Tij STy T ) (1)

Associated to each outcome is a sample- and position-specific score (Figure 3B)

. TS . V) TV, NM
(bCOI‘el-j ,5coreij 7bCOI‘eij ,5corel-j °

Let obs(i,j) indicate the observed outcome for position i and sample j (Figure 3D). Then
obs(i,j
7

the observed score for position i and sample j is score| ), the cumulated observed

sample-specific score is given by (Figure 3E)

m

; obs(i,
score?™ = E score;; &)

J=1

and the overall score is (Figure 3F)
k k m bs(i)
obs o obs __ obs(ij
scoreds = E score!” = E E score;; .
=1 =1 j=1

We now describe how to determine the null distribution for the overall score. First consider
the null distribution for the sample-specific score (Figure 3E). Let Z(i, ) be the stochastic
variable that indicates the outcome for position i and sample j. Each of the four outcomes
(TS, TV}, TV2, NM) happen with the probability determined by Equation (1). The cumulated
sample-specific score distribution is thus the distribution of the stochastic variable

A = Z Z scoref1(Z(i,j) = 2),
J=1 ze{TS,TV,,TV, NM}

where 1() is the indicator function. If we assume that scores are non-negative integers we
have the recursion from one position to the next
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P(Aij=s) :Z P(A; -1y =1¢) Z P(scoreﬁd.:s—é).
=0 2€{TS,TV,TV,,NM}

Second consider the null distribution for the overall score (Figure 3G)

Be=)_ Aim.

A similar recursion as before holds for the overall score distribution. We can include the
next sample from the recursion

S

P(By=s5s)=>» P(Bi_1=0P(Arm=s—1).
=0

The final p-value for the element of interest is

P(Bk > score”lv’jm”) =1-— P(Bk < score?” )

0 overall
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