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Abstract: Vitamin D plays a crucial role in regulation of the immune response. However, treatment of
autoimmune diseases with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] doses sufficient to be effective
is prohibitive due to its calcemic and toxic effects. We use the collagen-induced arthritis (CIA)
model to analyze the efficacy of the noncalcemic analog of vitamin D, 20S-hydroxyvitamin D3
[20S(OH)D3], as well as 1,25(OH)2D3, to attenuate arthritis and explore a potential mechanism of
action. Mice fed a diet deficient in vitamin D developed a more severe arthritis characterized by
enhanced secretion of T cell inflammatory cytokines, compared to mice fed a normal diet. The T cell
inflammatory cytokines were effectively suppressed, however, by culture of the cells with 20S(OH)D3.
Interestingly, one of the consequences of culture with 1,25(OH)2D3 or 20S(OH)D3, was upregulation
of the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-1 or
CD305). Polyclonal antibodies which activate LAIR-1 were also capable of attenuating arthritis.
Moreover, oral therapy with active forms of vitamin D suppressed arthritis in LAIR-1 sufficient DR1
mice, but were ineffective in LAIR-1−/− deficient mice. Taken together, these data show that the
effect of vitamin D on inflammation is at least, in part, mediated by LAIR-1 and that non-calcemic
20S(OH)D3 may be a promising therapeutic agent for the treatment of autoimmune diseases such as
Rheumatoid Arthritis.

Keywords: arthritis; vitamin D; 20S(OH)D3; LAIR-1; autoimmunity

1. Introduction

Human autoimmune arthritis causes significant joint damage due to dysregulated
autoimmunity. The risk and progression of Rheumatoid Arthritis (RA) have been corre-
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lated with vitamin D deficiency (low serum 25-hydroxyvitamin D [25(OH)D]). However,
attempts to treat RA with 1,25(OH)2D3 and its precursors, 25(OH)D3 have caused hypercal-
cemic toxicity when given chronically at the pharmacological doses needed to maximally
suppress arthritis and autoimmunity [1]. This side effect limits the amounts that can be
given chronically to patients with autoimmune diseases such as RA.

We have discovered a novel pathway of D3 metabolism operative in humans, initi-
ated by cytochrome P450scc (CYP11A1), and with subsequent involvement of CYP27B1,
which generates additional biologically active products [2–5]. These are at least as potent
as classical 1,25(OH)2D3 when tested in vitro and in vivo in several model systems and,
like 1,25(OH)2D3, bind to the vitamin D receptor (VDR) [6–13]. A major product of this
pathway, 20S(OH)D3, is nontoxic (i.e., noncalcemic with limited effects on the hematopoi-
etic system, liver, kidney, and heart) at doses as high as 60 µg/kg, while 25(OH)D3 or
1,25(OH)2D3 induce hypercalcemia at doses ≤2 µg/kg [14–17]. Importantly, 20S(OH)D3
has recently been found to be present in all 103 human serum samples analyzed, with a
mean concentration of 0.27 ng/mL, which is 5 times higher than the mean concentration
of 1,25(OH)2D3 in these samples [4,13,18]. Thus, 20S(OH)D3 is a natural product that has
also been detected in honey [12].

The binding of 1,25(OH)2D3 to the intracellular VDR regulates multiple genes in-
volved in many physiological processes [19]. In fact, the human genome contains over
23,000 VDR binding sites, most of which are cell-specific [20]. As such, vitamin D is now
considered essential for the maintenance of physiological homeostasis. Its deficiency has
been associated with a wide range of diseases and cardiovascular and metabolic disorders,
including cancer, hypertension, and infectious and autoimmune diseases. The wide variety
of vitamin D effects on the immune response suggests that vitamin D may hold therapeutic
promise in many autoimmune diseases. In RA patients, serum 25(OH)D3 levels correlated
negatively with disease activity [21], and each 10 ng/mL increase in serum 25(OH)D3
was associated with a 0.3-point decrease in mean DAS28 and a 25% decrease in serum
C-reactive protein [21]. Moreover, in interventional trials, higher doses of supplementation
with 1,25(OH)2D3 have been associated with decreased pain and significant declines in
C-reactive protein levels together with a trend toward clinical efficacy [22–25].

We recently reported that 20(OH)D3 markedly reduces clinical signs of arthritis and
joint damage in a mouse model of RA, by suppressing immune responses by T and B
cells [26]. These results were related to reduction in CD4+ T cells, CD19+ B cells, anti-CII
antibodies, and maintenance of CD4+CD24+FoxP3+ Tregs. In the current study, we have
used the collagen-induced arthritis (CIA) model to investigate the effects of 1,25(OH)2D3
and non-calcemic 20S(OH)D3 with results revealing a new mechanism involving LAIR-1
by which they modulate T-cell function, and ultimately, autoimmune arthritis.

2. Results
2.1. Murine Autoimmune Arthritis and Vitamin D Decificency

Although vitamin D is known to play a critical role in calcium homeostasis, it also
modulates the immune system [27]. To confirm that vitamin D plays a role in autoim-
mune arthritis, groups of DBA/1 mice were fed diets either deficient (VitD−) or sufficient
in vitamin D (VitD+) beginning on day 21 when they were weaned. When mice were
immunized with CII/CFA to induce arthritis, those fed diets deficient in vitamin D had
significantly more severe arthritis than those fed a normal diet (Figure 1). The cytokine
data in Table 1 support the arthritis data. When splenocytes from mice fed diets either
vitamin D sufficient (D+) or vitamin D deficient (D−) were cultured with the immunodom-
inant A2 peptide, cells from mice fed with the vitamin D deficient diet secreted greater T
cell cytokine responses than those from mice fed the vitamin D sufficient diet. Although
multiple CD4+ T cell lineages were affected, the inflammatory Th1 and Th17 responses
were most pronounced, creating a relative shift toward an inflammatory profile (Table 1).
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Figure 1. Disease severity in mice fed a vitamin D deficient diet. DBA/1 mice were fed either a
vitamin D deficient (Vit D−) or a vitamin D sufficient (VitD+) control diet beginning at three weeks of
age. All animals were challenged with a dose of 100 µg of CII emulsified in CFA for the induction of
disease. Mice were scored for arthritis severity (n = 6 per group). The severity scores are expressed as
means ± SEM. Treated mice fed the Vit D− diet were significantly different from controls beginning
at day 39 (p ≤ 0.05 using Mann and Whitney analysis).

Table 1. Cytokine responses in splenic T cells from mice fed a vitamin D deficient diet. Splenocytes
from DBA/1 mice fed either Vitamin D+ or Vitamin D− diet and previously immunized with
CII/CFA were cultured with A2 peptide (3 µmol/mL) or no Ag, then supernatants were analyzed
for cytokines (n = 3 for each group). Values indicated represent the mean ± SEM (pg/mL) of three
separate experiments. * p ≤ 0.001.

IFN-γ IL-17A IL-10 IL-4

Vitamin D+ No Ag 217 ± 20 158 ± 24 5 ± 2 2 ± 6

A2 Peptide 1143 ± 77 2128 ± 181 53 ± 7 5 ± 2

Vitamin D− No Ag 180 ± 17 127 ± 25 4 ± 3 2 ± 4

A2 Peptide 14,806 ± 70 * 8685 ± 220 * 2095 ± 17 * 35 ± 15 *

Cytokines pg/mL.

2.2. Cytokine Responses Using 20S(OH)D3

Since new safer noncalcemic secosteroids have been developed [28], it was important
to test their effectiveness in attenuating in vitro murine T cell inflammatory responses.
To this end, 20S(OH)D3 was selected. Splenocytes from DBAqCII24 mice were cultured
with the immunodominant peptide A2 alone or in the presence of 20S(OH)D3. The
resulting supernatants were evaluated for cytokine responses. As shown in Figure 2,
20S(OH)D3 significantly inhibited secretion of inflammatory cytokines (IFNγ and IL-
17), while it increased the IL-4 and IL-10. The net result was a relative shift towards a
Th2, non-inflammatory phenotype. The increase in Th2 cytokine responses induced by
treatment with 20(OH)D3 is similar to observations made by others following treatment
with 1,25(OH)2D3 [29], yet differs from the downregulation of all T cell cytokines noted in
Table 1 in cells from mice given vitamin D sufficient diets. Although both conditions induce
a relative shift away from an inflammatory T cell profile, diets sufficient in vitamin D
expose the entire immune system of the animal to vitamin D, modifying a large number of
T cells over several months, while treatment of normal cells with 20(OH)D3 in vitro reflects
a much shorter exposure. We believe these varying conditions, as well as differences in
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the shifting B/T cell rations that vitamin D induces explain the differing results. These
studies support our premise that 20S(OH)D3 will be an effective therapeutic alternative in
autoimmunity [16].
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Figure 2. 20S(OH)D3 modulates production of T cell cytokines. DBA/1qCII splenocytes were cultured
with the immunodominant peptide A2 either alone or in the presence of 20S(OH) D3 (10−7 M). After
72 h supernatants were analyzed by a multiplexed ELISA to determine concentrations of selected
cytokines. Concentrations of cytokines are pg/mL and represent the means of three separate analyses.
Comparing pep A2 alone to pep A2 plus D3, p ≤ 0.01 for IL-4, IL-10 and IFN-γ and p ≤ 0.001
for IL-17.

2.3. Vitamin D Can Upregulate LAIR-1

One effective way to downregulate the inflammatory immune response is to activate
inhibitory receptors. Since the expression of inhibitory receptors varies depending upon the
activation or differentiation state of the cell during autoimmunity [30], it was of interest to
determine how culture with the analog of vitamin D3 affected receptor expression. Selecting
the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-
1) for further testing, human PBMCs were cultured overnight with either 1,25(OH)2D3,
20S(OH)D3, or α1(II), the purified constituent polypeptide chain of type II collagen. When
the cultured cells were lysed and analyzed by Western blotting using an anti- LAIR-1
antibody (Figure 3), results showed that LAIR-1 expression was appreciably increased by
culture with either of the two active forms of vitamin D3, as well as α1(II), a natural ligand
of LAIR-1. In a similar fashion, surface LAIR-1 on murine CD4+ cells was upregulated by
culture with 1,25(OH)2D3 (Figure 3, lower panel). Taken together, these results demonstrate
that LAIR-1 activation could help explain the resulting suppression of inflammation by
1,25(OH)2D3 and CYP11A1-derived 20S(OH)D3.

2.4. LAIR-1 Also Suppresses Arthritis

Since polyclonal anti-LAIR-1 antibodies predominately activate LAIR-1, we used the
collagen-induced arthritis model to induce in vivo activation of LAIR-1 and examined the
resulting autoimmune arthritis. Groups of mice were immunized with CII/CFA to induce
arthritis, then were given interperitoneally either polyclonal anti-LAIR-1 antibodies or
rabbit IgG. When mice were scored for severity of arthritis (Figure 4), as hypothesized,
mice treated with α-LAIR-1 antibodies had significantly less severe arthritis than mice
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given the control IgG. These data confirm that activation of LAIR-1 can downregulate
autoimmune arthritis.
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Figure 3. Stimulation of the expression of LAIR-1 by active forms of vitamin D3. (Upper panel) Hu-
man PBMCs from normal volunteers were activated by Mock control (ethanol, 10−8 M), 1,25(OH)2D3
(10−8 M), 20S(OH)D3 (10−8 M), or αI(II) (100 µg/mL) for 12 h. Total proteins (400 µg/500 µL
reaction volume) were immunoprecipitated with protein A/G bead conjugated with anti-LAIR-1
(R&D Systems) antibody. Expression of LAIR-1 was examined by Western blot analysis using the
anti-LAIR-1 antibody. Actin was used as input control. This experiment is representative of three
separate experiments. (Lower panel) Mouse splenocytes were cultured 12 h with either vehicle
control (ethanol, 10−8 mol/L), (light grey line, mean fluorescence [MF] 388 ± 25)), or 1,25(OH)2D3
(10−8 mol/L) (black line, MF 1469 ± 42), and stained with anti-LAIR-1 for analysis by flow cytometry.
The indicated panels were gated for CD4+ cells.

2.5. Vitamin D Treatment in CIA Using LAIR-−/− and LAIR-1+/+ Mice

To confirm that the suppressive effects of 1,25(OH)2D3 and 20S(OH)D3 were mediated
by LAIR-1, both LAIR-1+/+ and LAIR-1−/− mice were immunized with CII/CFA to induce
arthritis followed by treatment orally with either vehicle control or 1,25(OH)2D3. When
the mean severity of arthritis scores for each group were calculated, the wild-type mice
that received 1,25(OH)2D3 supplementation had a significant suppression of arthritis,
having the lowest severity scores of any group (p < 0.05) compared to vehicle controls.
Importantly, the data also show that LAIR-1−/− mice had severity scores that were not
suppressed by 1,25(OH)2D3 treatment. An additional five LAIR-1−/− mice were treated
by oral gavage with 20S(OH)D3 from days 13 to 44. Although these doses suppressed
CIA in LAIR+/+ mice, the LAIR−/− mice fed 20S(OH)D3 had severity scores similar to
the LAIR−/− vehicle controls (Figure 5, lower panel). Moreover, 20S(OH)D3, given at
lower doses than 1,25(OH)2D3, decreased severity scores more potently than 1,25(OH)2D3.
Taken together these data reveal that LAIR-1 is critical for the attenuation of inflammation
induced by treatment with 1,25(OH)2D3 or 20S(OH)D3.
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Figure 4. Treatment with Polyclonal antibody to LAIR-1. DR1 mice were immunized with CII/CFA to
induce arthritis. Six mice were given intraperitoneal injections on day 0, 7, and 14 with 100 µg/dose
of α-LAIR polyclonal IgG antibodies and seven mice were given 100 µg/dose of normal rabbit IgG as
a control. Mice were scored for severity. The mice treated with antibody to LAIR-1 had significantly
less arthritis severity than mice treated with control beginning on day 42 (p ≤ 0.05).
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to induce an arthritic response and were observed for the development of arthritis. Each LAIR-1+/+
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and LAIR-1−/− mouse was treated with an oral dose of either vehicle control (propylene glycol,
0.1 mL/dose) or 1,25(OH)2D3 (23 µg/dose). The mice were scored visually for severity of disease
and the mean severity of arthritis scores for each group were calculated. (Lower Panel) Treatment
with 20S(OH)D3. 10 DR1 LAIR-1+/+ and 10 DR1 LAIR-1−/− mice, were immunized with CII/CFA
to induce arthritis. Beginning on day 13 and continuing to day 48, each LAIR-1+/+ and LAIR-1−/−

mouse was treated with an oral dose of either vehicle control (propylene glycol, 0.1 mL/dose) or
20S(OH)D3 (15 µg/kg/dose). The mice were scored visually for severity of disease and the mean
severity of arthritis scores for each group were calculated. Beginning on day 44 (p < 0.05) for LAIR-
1+/+ mice that received either 1,25(OH)2D3 or 20S(OH)D3 supplementation compared to LAIR-1+/+

mice fed PG.

3. Discussion

To understand the mechanisms by which 1,25(OH)2D3 and its non-calcemic analog
20S(OH)D3 modulate T cell function and ultimately autoimmune arthritis, pre-clinical
studies were performed using the collagen induced arthritis (CIA) model. CIA is an
autoimmune arthritis model induced in genetically susceptible mice that leads to synovitis
and both cartilage and bone erosion, similar to what is seen in human RA. Our data show
that mice fed a diet deficient in vitamin D develop a more severe arthritis. Moreover, the
mechanism for inhibiting inflammatory T cell cytokines and autoimmune arthritis with
vitamin D involves the inhibitory receptor LAIR-1. These studies suggest a new mechanism
by which active forms of vitamin D effectively modulate autoimmune arthritis.

Vitamin D is an extremely important current public health issue. In recent years,
reports of potential health benefits of vitamin D outside its well-known role in bone and
mineral metabolism, coupled with some evidence that portions of the population may be
vitamin D-deficient, have generated both interest and controversy over the proper vitamin
D target levels and how best to achieve them [31–33]. Although the most well-known
function of vitamin D is in maintaining the right balance between calcium and phosphate
serum levels, thus promoting bone health, other functions have been identified [19].

Considering that earlier studies demonstrated that 1,25(OH)2D3 inhibited arthritis in
the CIA model in mice fed a low-calcium diet to protect against development of hypercal-
cemia [34], it is possible that vitamin D supplementation may have beneficial effects for
patients with RA [35–37]. Unfortunately, supraphysiological doses of vitamin D3 would be
required to obtain therapeutic concentrations in vivo. Increasing the vitamin D intake to di-
minish the incidence and severity of diseases such as RA, type 1 diabetes, IBD, and MS, and
to obtain immunomodulating effects in vitro requires local concentrations of 1,25(OH)2D3
of about 10−10 M, which may be associated with an unacceptable level of hypercalcemia.

Several natural vitamin D analogs, including 20S(OH)D3, have been discovered
which do not induce hypercalcemia and may have great therapeutic value [16,26]. The
discovery of new secosteroidogenic pathways initiated by the action of CP11A1 led to the
characterization of 20S(OH)D3 which has potent anti-proliferative and prodifferentiation
effects. It has fewer side effects than other active vitamin D compounds because it is non-
calcemic at concentrations as high as 60 µg/kg [17]. Importantly, 20S(OH)D3 and its direct
metabolite 20S,23S(OH)2D3 act as potent inhibitors of NF-κB [9,28], RORα, and potentially
RORγt [38,39]. Furthermore, since 20S(OH)D3 is produced in vivo by mitochondria in
adrenal glands and other steroidogenic tissues [2,3], it is a natural product, even detectable
in honey [12].

Vitamin D regulates both innate and adaptive immunity. Previous studies that ex-
amined the direct effect of vitamin D3 on T cells generally found it to be inhibitory for
pro-inflammatory Th1 and Th17 cytokine production. Active forms of vitamin D primar-
ily utilize the VDR (an intracellular transcription factor) to regulate gene expression in
T cells [40]. Since CD4+ T cells from VDR−/− mice produce more IFNγ and less IL-4
and IL-5 compared to T cells from wild-type mice [41], it is believed that the addition of
1,25(OH)2D3 inhibits the Th1 and Th17 response by acting in the nucleus to inhibit RORγt
and T-bet while upregulating GATA-3 [42–44]. In cell culture experiments, 1,25(OH)2D3
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can induce Tregs in the presence of IL-2, by upregulating the transcription of Fox-P3 and
CTLA4 [45,46]. We now propose a third mechanism, the upregulation of the inhibitory
receptor LAIR-1.

Our data demonstrate a novel observation, that both 1,25(OH)2D3 and its non-calcemic
analog 20S(OH)D upregulate LAIR-1 on T cells. We propose that the ability to upregulate
LAIR-1 on lymphocytes is a critical step in its efficacy. Previous studies that examined
the direct effect of 1,25(OH)2D3 on T cells generally found it to inhibit pro-inflammatory
Th1 and Th17 cytokine production [47–49]. This effect can now be explained in part by
upregulation of the inhibitory receptor LAIR-1.

LAIR-1 belongs to a family of immune inhibitory receptors that protect against au-
toimmune dysfunction and tissue damage [50,51]. Activation of the receptor inhibits many
cellular processes that are important to properly functioning inflammatory cells [52,53].
Subsequently, loss of LAIR-1 expression from host inflammatory cell surfaces allows
immune-mediated damage of the synovium. In this study, we show that upregulating
natural inhibitory receptors presents a method for suppressing autoimmune arthritis. Their
immunoreceptor tyrosine-based inhibition motif (ITIM) acts as a negative regulator of
immune cell receptor signaling. In our previous studies, we found that LAIR-1 engagement
by alpha chains of collagen or C1q [54] led to inhibition of TCR signaling and decreased
activation levels of key components of the canonical T cell signaling pathway, including
Lck, Lyn, Zap-70, and the three MAP Kinases (ERK1/2, JNK1/2 and p38). Given the vital
role of LAIR-1 in mitigating the autoimmune destruction of host cells, it seems plausible
that upregulation of these receptors can play a major role in mitigating autoimmune in-
flammation, possibly providing a new immunotherapeutic target which downregulates
the T-cell cytokine response.

Limitations of this study: Our study highlights a potential role for 20S(OH)D3 in
the treatment of autoimmune arthritis and demonstrates the importance of LAIR-1 in its
mechanism of suppression. Our data are limited by the number of mice analyzed and
treated with 20(OH)D3. We understand that studies using murine models of arthritis do
not always reflect patient outcomes so we hope these studies will lead the way for future
clinical trials.

4. Materials and Methods
4.1. Animals

DBA/1 mice were obtained from the Jackson Laboratories (Bar Harbor, ME, USA)
and B6 mice expressing the chimeric (human/mouse) DRB1*0101 construct were obtained
from Taconic Biosciences (Hudson, NY, USA). The chimeric DRB1*0101 construct has been
previously described, as has the production of Tg mice expressing this construct [55].
Mice transgenic for a CII-specific TCR-Vα11.1/Vβ8.3 having a DBA/1 background, re-
ferred to as DBAqCII24 [56] were developed and bred in the animal core facility of the
Rheumatic Diseases Research Core Center, University of Tennessee Health Science Center
as described previously [57].

LAIR-1 KO (knockout) mice [58] were crossbred to B6.DR1 transgenic mice with a B6
background for 12 generations. Genomic DNA was obtained from blood samples and PCR
used to identify mice homozygous for either the LAIR-1−/− or LAIR+/+ and expressing
the DR1 transgene.

Mice were fed standard rodent chow (Ralston Purina Co., St. Louis, MO, USA) and
water ad libitum. Sentinel mice were routinely tested for a panel of mouse pathogens.
All animals were kept until the age of 7–10 weeks before being used for experiments. In
some experiments, DBA/1 mice were fed either a vitamin D deficient (D−) or a vitamin D
sufficient (D+) control diet (Teklad Diets, Harlan Envigo, Indianapolis, IN, USA) beginning
at three weeks of age. Animal care and housing requirements set forth by the National
Institutes of Health Committee on Care and Use of Laboratory Animals of the Institute of
Laboratory Animal Resources were followed, and animal protocols were reviewed and
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approved by the Animal Care and Use Committees of the University of Tennessee Health
Science Center (UTHSC) and the Memphis VA Medical Center.

4.2. Type I and Type II Collagen

Native type II collagen (CII) was solubilized from fetal calf articular cartilage and
native type I collagen (CI) from bovine hides by limited pepsin-digestion and purification
as described earlier [59]. The purified collagen was dissolved in cold 10 mM acetic acid
at 4 mg/mL and stored frozen at −80 ◦C until used. In some experiments type I collage
from Advanced Biomatrix (Carlsbad, CA, USA) was used. α1(II) and α1(I) represent the
constituent protein chains of bovine CII and CI respectively, isolated by carboxymethyl-
cellulose chromatography. The synthetic peptides were supplied by Biomolecules Midwest
Inc. (Waterloo, IL, USA). A peptide representing the immunodominant determinant of CII
(GIAGFKGEQGPKGEB) (IEDBID 109115), is referred to as A2 or wild type (WT).

4.3. Production and Purification of 20S(OH)D3

20S(OH)D3 was originally reported by using enzymatic hydroxylation of D3 cat-
alyzed by CYP11A1 as previously described by our group [2,15,60]. We have subsequently
developed synthetic chemistry methods for large-scale production and demonstrated
that the chemically synthesized 20S(OH)D3 is identical to the biologically generated
20S(OH)D3 [61,62]. In this study, both biochemically and chemically generated 20S(OH)D3
were used in the experiments. For biochemical production of 20S(OH)D3, 10 mmol/L
VitD3 in 45% 2-hydroxpropyl-β-cyclodextrin was prepared. A buffer was prepared contain-
ing 20 mmol/L HEPES (pH7.4), 100 mmol/L NaCl, 0.1 mmol/L dithiothreitol, 2 µmol/L
human cytochrome P450 scc, 0.1 mM EDTA, 0.3 µM adrenodoxin reductase, 10 µmol/L
adrenodoxin, 2 mmol/L glucose 6-phosphate, 2 U/mL glucose 6-phosphate dehydroge-
nase, and 50 µmol/L NADPH. Then, 12.5 mL of this buffer were mixed with 200 µL of the
VitD3 stock solution giving a final VitD3 concentration of 200 µmol/L and 0.9% concentra-
tion of 2-hydroxypropyl-β-cyclodextrin. After an 8 min pre-incubation, the reactions were
initiated by adding NADPH, after which the samples were incubated for 3 h at 37 ◦C with
slow shaking. After the 3 h incubation, 20 mL of ice cold dichloromethane were added to
stop the reactions, after which the reaction products were extracted with dichloromethane
as previously described [60,63,64]. Chemical production of 20S(OH)D3 were performed
following our well-established procedures [62]. Final purification of 20S(OH)D3 was car-
ried out using preparative thin-layer chromatography, followed by preparative reverse
phase high-performance liquid chromatography as previously described [64]. Aliquots of
the purified 20S(OH)D3 were lyophilized and stored at −80 ◦C until used.

4.4. Immunizations and Arthritis Induction

Six-to-8-wk-old mice were immunized with CII for the induction of arthritis. CII
was dissolved in 10 mM cold acetic acid and emulsified at a 1:1 (v/v) ratio with com-
plete Freund’s Adjuvant (CFA) containing 4 mg/mL of M. tuberculosis strain H37 Ra
(Difco Microbiology Products, Becton Dickinson, NJ, USA) as previously described [59].
Mice were immunized subcutaneously at the base of the tail with 100 µg of CII. In some
experiments, mice were given intraperitoneal injections on day 0, 7, and 14 with either
100 µg/dose of α-LAIR polyclonal IgG antibodies (Invitrogen, Waltham, MA, USA) or
100 µg/dose of normal rabbit IgG (Cell Signaling Technology, Inc., Beverly, MA, USA) as a
control. The ant-LAIR-1 polyclonal antibodies were developed by immunizing rabbits with
a recombinant protein corresponding to murine LAIR-1 and purifying with antigen affinity
chromatograph, Protein A. The polyclonal α-Lair-1 sera was tested on murine CD4+ T cells
to confirm upregulation of surface LAIR-1 using flow cytometry. In other experiments
mice were treated by oral gavage with either control (propylene glycol, 0.1 mL/dose) or
1,25(OH)2D3, (25 µg/dose) or 15 µg/kg/dose 20S(OH)D3. In one experiment, the oral
gavage was given three times a week, beginning the day after immunization of mice with
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CII/CFA and continuing for the duration of the experiment. In another experiment the oral
gavage was given daily beginning day 13 after immunization and continuing to day 44.

The severity of arthritis was determined by visually examining each forepaw and
hindpaw and scoring them on a scale of 0–4 as described previously [59]. Scoring was
conducted by two examiners, one of whom was unaware of the identity of the treatment
groups. Each mouse was scored thrice weekly beginning three weeks post immunization
and continuing for 8 weeks. The mean severity score (sum of the severity scores for the
group on each day /total number of animals in the group) was recorded at each time point.

Preparation of Human PBMCs

Heparinized blood was obtained and diluted 1:3 with RPMI 1640 (#61870036) contain-
ing penicillin (100 µ/mL) and streptomycin (100 µg/mL) with 10% fetal calf serum (Thermo-
Fischer Scientific, Memphis, TN, USA). The PBMC were isolated by Ficoll-Hypaque (Fischer
Scientific, Memphis, TN, USA) by gently layering the diluted serum over an equal volume
of Ficoll in a Falcon tube and centrifuging for 30–40 min at 400–500× g without a brake.
The PBMCs were set up in culture overnight with vehicle control (ethanol, 10−8 mol/L),
1,25(OH)2D3 (10−8 mol/L), 20S(OH)D3 (10−8 mol/L), or αI(II) (100 µg/mL) overnight.

This study was conducted and approved by the University of Tennessee Health Science
Center (UTHSC) at the Memphis Institutional Review Board. The Declaration of Helsinki
protocols were followed and normal healthy donors gave their written informed consent.
Adults (ages 18–70 years) were used in this study.

4.5. Cytokines

Splenocytes from DBA/1 mice which had been previously immunized with CII/CFA
were cultured with A2 peptide (3 µmol/mL) or no Ag (n = 3 for each group). In some
experiments, the cells were taken from mice that were either vitamin D sufficient or vitamin
D deficient. In other experiments culture was done in the presence of 20S(OH) D3 (10−7 M).
The experiments were run in triplicate and 72 h later supernatants were analyzed for
the presence of IL-10, IL-4, IFN-γ, and IL-17A. The fluorescence was measured with a
Bio-Plex MAGPIX Multiplex Reader (Bio-Rad, Hercules, CA, USA). Values are expressed
as picograms per ml and represent the mean values for each group taken from three
separate experiments.

4.6. Analysis of Protein Phosphorylation

Proteins in whole cell lysates were separated using SDS-PAGE gels and electrotrans-
ferred onto nitrocellulose membranes. After transfer, the membrane was blocked in tris
buffered saline (TBS)-Tween 20 containing 5% BSA for 1 h and incubated 2 h with phospho-
specific antibodies. The membrane was then incubated with a secondary antibody (Bio-
Rad) for 1 hand subjected to Enhanced Chemiluminescence detection (ECL Western Blot
Substrate, Pierce) according to the manufacturer’s protocol. To detect protein levels, the
membranes were re-stripped and reblotted with non-phospho-specific antibodies.

4.7. Flow Cytometric Assessment of Lymphoid Cells

Murine spleens or lymph node cells were collected and the phenotype was deter-
mined by multiparameter flow cytometry using an SORP BD LSRII flow cytometer (BD
Biosciences, San Jose, CA, USA). Some experiments were done following culture overnight
with 1,25(OH)2D3 (10−8 M). Cells were labeled with fluorochrome antibodies including: PE
(phycoerythrin)-conjugated anti-LAIR-1and FITC (fluorescein isothiocyanate)-conjugated
anti-CD4. All were used according to the manufacturer’s recommendations. A minimum
of 10,000 cells was analyzed from each sample and the final analysis was performed using
FlowJo software (Tree Star, Ashland, OR, USA).
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4.8. Statistical Analysis

Calculations to determine statistical significance of the tests were carried out using
the programs SAS and GraphPad Prism 4. Depending on the data, a one-way ANOVA
or student’s t test analysis was performed. Comparison of mean variable values with a
distribution significantly different from normal in two unrelated groups was performed
using the Mann–Whitney test, while in more than two unrelated groups using the Kruskal–
Wallis test. p < 0.05 was considered statistically significant and p values are indicated in the
figure legends.

5. Conclusions

We have performed pre-clinical studies using the collagen-induced arthritis (CIA)
model. These reveal a new mechanism involving upregulating the expression of the
inhibitory receptor LAIR-1 by which active forms of vitamin D effectively modulate au-
toimmune arthritis. Inflammatory cytokines from T cells as well as inflammation of autoim-
mune arthritis are attenuated by upregulation of the LAIR-1. The noncalcemic 20S(OH)D3
is as effective and less toxic than the classical form of vitamin D3 [1,25(OH)2D3]. These
data will provide the basis for further research trials using non-calcemic analogs of vitamin
D therapeutically to treat arthritis.
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