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Abstract

Objective: Arrhythmia detection and classification are challenging because of the imbalanced ratio of normal heartbeats to
arrhythmia heartbeats and the complicated combinations of arrhythmia types. Arrhythmia classification on wearable elec-
trocardiogram monitoring devices poses a further unique challenge: unlike clinically used electrocardiogram monitoring
devices, the environments in which wearable devices are deployed are drastically different from the carefully controlled clin-
ical environment, leading to significantly more noise, thus making arrhythmia classification more difficult.

Methods: We propose a novel hierarchical model based on CNN+BiLSTM with Attention to arrhythmia detection, consisting
of a binary classification module between normal and arrhythmia heartbeats and a multi-label classification module for clas-
sifying arrhythmia events across combinations of beat and rhythm arrhythmia types. We evaluate our method on our pro-
prietary dataset and compare it with various baselines, including CNN+BiGRU with Attention, ConViT, EfficientNet, and
ResNet, as well as previous state-of-the-art frameworks.

Results: Our model outperforms existing baselines on the proprietary dataset, resulting in an average accuracy, F1-score,
and AUC score of 95%, 0.838, 0.906 for binary classification, and 88%, 0.736, 0.875 for multi-label classification.

Conclusions: Our results validate the ability of our model to detect and classify real-world arrhythmia. Our framework could
revolutionize arrhythmia diagnosis by reducing the burden on cardiologists, providing more personalized treatment, and
achieving emergency intervention of patients by allowing real-time monitoring of arrhythmia occurrence.
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Introduction
With the rapid development of wearable medical devices,1–3

electrocardiogram (ECG) monitoring is accessible to patients
and doctors through wearable devices. A wearable ECGmon-
itoring device is a crucial improvement for detection and clas-
sification since arrhythmia occurs rarely and sporadically.
Due to limited time and a controlled environment, conven-
tional ECG monitoring devices may never record arrhythmia
heartbeats in a clinical setting. Thus, wearable ECG monitor-
ing enables longer monitoring time and a more natural envir-
onment for the patients, increasing the probability of detecting
arrhythmia events. However, wearable ECG monitoring
devices pose several challenges. First, since the patient
always wears the device and does different activities in
various environments, the heartbeats recorded can be very
noisy. This issue does not exist in the clinical ECGmonitoring
setting because the patient’s activities are limited, and the
environment is carefully controlled to minimize the noise.
Another challenge of wearable ECG monitoring devices is
that significantly more data is produced due to prolonged
monitoring duration. It becomes more labor-intensive for car-
diologists to identify arrhythmia. As the adaptation of wear-
able devices increases, the workload will also increase,
making arrhythmia detection and classification prohibitively
expensive.

Additionally, arrhythmias have rhythm and beat types.
Beat arrhythmias such as ventricular premature contraction
(VPC) or atrial premature complexes (APCs) are not imme-
diately life-threatening. Still, management or treatment is
required if the frequency of occurrence of these beat
arrhythmias increases significantly. In addition, observing
the frequency of beat arrhythmias after heart-related (even
if not necessarily heart-related) surgery, procedure, or treat-
ment is essential in prognosis. In particular, when the fre-
quency of beat arrhythmias such as VPC increases
significantly, the probability of rhythm arrhythmias such
as ventricular tachycardia (VT) also increases. Thus, detect-
ing beat and rhythm arrhythmia together is clinically effect-
ive and especially suitable for ECG monitoring.

Moreover, detecting rhythm or beats alone does not
capture beat arrhythmias occurring during rhythm arrhyth-
mias. During atrial rhythm arrhythmias such as atrial fibril-
lation (AF) or atrial tachycardia (AT), ventricular beat
arrhythmia such as VPC can occur. Conversely, atrial
beat arrhythmia such as APC can occur during rhythm ven-
tricular arrhythmias like VT. For clinicians, detecting all
arrhythmia types gives a more comprehensive understand-
ing of the patient’s heart condition and the characteristics
of the beats and rhythms. Using this knowledge, clinicians
can offer more personalized and effective treatment for the
patient. Therefore, a multi-labeled approach to arrhythmia
classification must enhance its practicality for clinical use.

To address the significant challenges in arrhythmia
detection and classification using ECG data while providing

more clinical usability, we explore deep-learning models
that aim to adapt to the noise and automatically detect
and classify multi-labeled arrhythmia heartbeats and
rhythms. We propose a hierarchical model consisting of a
binary classification module for detecting arrhythmia from
normal heartbeats and a multi-label classification model
for classifying arrhythmia heartbeats into various combina-
tions of different arrhythmia anomalies. An illustration of
our framework is shown in Figure 1. The binary classifica-
tion module can notify doctors of potential arrhythmia
patients, and the multi-label classification module can
then provide information on the specific arrhythmia types,
thus streamlining the decision process for the doctors and
patients. We test our models with the hierarchical architec-
ture on real-world ECG data collected by MEZOO’s wear-
able ECG monitoring device4 and demonstrate high
performances, proving the feasibility of automated arrhyth-
mia detection and classification using our proposed method.

Related works

Cardiac arrhythmia is a critical medical condition that
requires timely diagnosis and intervention. ECG signals
for arrhythmia detection have gained significant attention
due to their non-invasive nature and high diagnostic accur-
acy. Several studies have explored the application of
machine learning and deep learning techniques for classify-
ing cardiac arrhythmia.

There have been significant advances in arrhythmia
detection using deep learning over the past 7 years.5–12

Most of these were classification studies using
Physionet’s MIT-BIH dataset.5,6 Although it is a well-
organized dataset used as a benchmark by research
groups, it has limitations. It has been a very long time
since the experiment was conducted, and decades have
passed since it was published. Recent state-of-the-art
studies are reporting very high accuracy of over 99% in
binary and multiclass arrhythmia classification using
MIT-BIH dataset.7–9,13 For example, ResNet18 and
EfficientNet-V2 have achieved high accuracy on the
MIT-BIH dataset,10,11 but their performance metrics signifi-
cantly decrease on the wearable ECG data. Additionally,
MIT-BIH’s dataset only has ECG records from 47 people,
and some specific arrhythmia types do not exist enough
for the deep learning models to capture the complex rela-
tionships. These biases lead to difficulties in developing
generalized algorithms for arrhythmia detection through
deep learning.

One representative dataset other than the MIT-BIH is
PhysioNet/Computing in Cardiology Challenge 2017
(CinC2017).14,5 It provides single-lead ECG data
(AliveCor devices) from 8528 subjects with four types of
heart rhythms (AF, normal, other rhythms, and noise).
One study that achieved the highest results in the competi-
tion recorded 79% of the F1-score by using Resnet.15
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Further study introduced a 21-layer recurrent 1D CNN
called RhythmNet and achieved 82% of score.16

CinC2017 provides many ECG records but has the disad-
vantage that only AF is labeled among many types of
arrhythmia.

One similar dataset to CinC2017 is the China
Physiological Signal Challenge 2018 (CPSC2018).17 It
includes eight types of arrhythmia: AF, first-degree atrio-
ventricular block (I-AVB), left bundle branch block
(LBBB), Right bundle branch block (RBBB), premature
atrial contraction (PAC), premature ventricular contraction
(PVC), ST-segment depression (STD), and ST-segment
elevated (STE). The training set contains 6877 (female
3178; male 3699) ECG recordings, and the test set contains
2954 ECG recordings. Twelve leads ECG recordings
lasting from 6 to 60 seconds. The team that ranked first
in CPSC2018 introduced the CNN+bidirectional RNN
model and achieved an F1-score of 0.84.18 The
CPSC2018 dataset has the advantage of covering many
types of arrhythmias and including many patients.
However, it is a 12-lead ECG, which requires the patient
to visit the clinic in person, attach electrodes, and

examine it with the help of clinicians. Therefore, there are
limitations in that it can only be acquired in a limited hos-
pital environment, which is in a natural setting.

Recently, multi-class arrhythmia on wearable ECG data
has been studied.19,20 In 2019, a 0.97 AUC score was
achieved using a mobile ECG device called the Zio
monitor with a 34-layer CNN model.19 However, the
work is limited to multi-class (not multi-label) classifica-
tion, solely detecting rhythm arrhythmia types (without
incorporating beat arrhythmia types) and producing predic-
tions every 30 seconds. In comparison, our work focuses on
the setting where multi-label arrhythmia classification on
both rhythm arrhythmia and beat arrhythmia are required
for the machine learning model.

Methods and materials
The nature of this study is to propose a novel machine-
learning framework that achieves state-of-the-art perform-
ance on the proprietary dataset in a real-world setting.
The dataset is used solely to benchmark rather than
analyze the contents of the dataset.

Figure 1. (A)–(D) A flowchart of the proposed framework. (C) and (D) Proposed concepts of a hierarchical approach. (A) Multi-labeled
wireless ECG arrhythmia raw data, (B) four-beat input data after preprocessing, (C) binary classification model for normal heartbeat and
arrhythmia classification, (D) multi-class, multi-label arrhythmia classification model, (E) detailed structure of the proposed CNN+BiLSTM
with attention model. ECG: electrocardiogram; CNN: convolutional neural network; BiLSTM: bidirectional long short-term memory.

Zheng et al. 3



Clinical data

MEZOO collected human subject data under the oversight
and approval of the Institutional Review Board (IRB). The
clinical data is received from MEZOO’s local clinic and
Kosin University. MEZOO’s local clinic recruited 125
patients, 69 female and 56 male, with an average age of
51.20 and a standard deviation of 17.83. Data was obtained
with the consent of individuals and provided by MEZOO
after de-identification. Kosin University recruited 67 patients,
25 female and 42 male, with an average age of 59.09 and a
standard deviation of 15.28. The study protocol was approved
by the Ethics Committee of Kosin University Gospel Hospital
(IRB No. 2022-08-029). The written informed consent was
obtained from the participants prior to study initiation, and
data was deidentified and anonymized. There are 192 patients,
94 female and 98 male, with an average age of 53.95 and a
standard deviation of 17.36. The Rice University IRB
reviewed the data used, and this activity was determined to
be not human subjects research.

Data collection. In the first part of the data collection
process, the data acquisition phase, the following steps
were taken: (1) counseling, (2) completion of consent
forms and attachment of wearable patch-type ECG, and
(3) recording of ECG data. Physicians in private hospitals
conducted counseling, while Holter lab technicians com-
pleted consent forms and equipment attachments.
Completing the consent forms and attaching the equipment
typically took < 10 minutes, and the recording of ECG data
was averaged over 13 hours.

The experiment was conducted in 11 private hospitals
(Roh Tae-Ho Paulo Internal Medicine, Baro Internal
Medicine, etc.), and involved a total of 125 cases from 2
August 2021 to 18 October 2021. After the Hicardi+ equip-
ment was attached at each hospital, participants returned
home and recorded their ECG data during daily activities.
The measurement was completed within 24 hours, after
which the equipment was returned to the hospital.

Additionally, data were collected at Kosin University
Hospital for outpatients who received a Holter prescription
from the Department of Cardiology. This phase involved
simultaneously attaching HiCardi+ and GE SEER Holter
products to collect data over a 24-hour period, resulting
in a total of 67 cases from 8 February 2023 to 30 June 2023.

In the second part, the data interpretation phase, the fol-
lowing steps were taken: (4) confirmation of cloud file cre-
ation, (5) initial ECG data reading, and (6) final ECG data
interpretation. The Holter lab technicians confirmed cloud
file creation and conducted the initial ECG data reading.
Two cardiologists performed the final ECG data interpret-
ation through the cloud-based monitoring server.

ECG monitoring device. Hicardi (MEZOO Co., Ltd., Wonju,
Gangwon, Republic of Korea) is an 8 g, 42 × 30 × 7mm

(without disposable electrode) wearable ECG monitoring
patch device certified as a medical device by the Ministry
of Food and Drug Safety of Korea (KFDA). This wearable
device monitors and records ECG, respiration, skin surface
temperature, and activity for up to 16 hours. The ECG
signal is recorded with a 250Hz sampling frequency and
a 14-bit resolution. The data from the wearable patch is
transferred through Bluetooth Low Energy (BLE) to a
mobile gateway implemented as a smartphone application.
The mobile gateway transmits the data to a cloud-based
monitoring server. The cloud-based server, named
“Livestudio,” enables medical staff to monitor patient
data in real-time, view the transmitted ECG data files,
click on the data to view and interpret the ECG data, and
ultimately generate a final ECG report.

Pre-processing

The ECG data was received in .mat format. Each .mat file
represents a patient. Each .mat file has seven keys,
described in Table 1. Table 2 shows the detailed rhythm
labels contained in the .mat files.

In pre-processing, the ECG data, the Rpk_label, which
indicates the location of the R-peak, is first used to locate
each heartbeat. The midpoint points between R-peaks sep-
arate the heartbeats. Then, each of four consecutive heart-
beats (with no overlapping) is taken as one input. Inputs
that contains LeadOff = 1 or data lost = 1 are deleted.
Inputs that contain final flag = 97, 98, 99, 100 are also
removed since they correspond to the illegal flags of
“Artifact,” “Lead-Off,” “In-progress,” and “Unknown.”
Additionally, inputs with “NAN” values are removed. To
standardize each input without losing temporal details
within the four beats since heartbeat duration varies, we
interpolate each input to 1024 samples. The reason for
1024 is that a beat’s average length is ∼ 228 samples. To
maximize detail, minimize artificial interpolation, and
facilitate input for model construction, 256 was chosen as
the average heartbeat length, thus 1024 for four heartbeats.
Then, z-score standardization is performed on each input
individually. A label vector that represents arrhythmia
types with 27 entries accompanies every input. Figure 2
shows an example of graphical pre-processing.

Hierarchical deep learning

We propose a novel hierarchical deep-learning approach to
arrhythmia detection and classification. The first stage of
our approach is detection, which involves a model perform-
ing binary classification between normal heartbeats and
arrhythmia heartbeats. In the second stage, another model
performs multi-label arrhythmia classification between dif-
ferent arrhythmia types and combinations, where potential
arrhythmia types and combinations are generated for each
input signal.
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For binary classification, each input’s arrhythmia type
label vector is simplified to a binary label representing
arrhythmia anomaly. A total of 82% of the data is normal
heartbeats, and 18% is arrhythmia heartbeats.

For multi-label classification, since there is limited
data resulting in multi-label classification with only a
few samples, multi-label classification is a significantly
more challenging task than binary classification; we
took the top seven multi-label classes as the target
classes. The entire seven multi-label classes are sinus
tachycardia, atrial premature contraction, atrial fibrilla-
tion/flutter, bradycardia, ventricular premature contrac-
tion, ventricular premature contraction and ventricular
trigeminy, ventricular premature contraction and atrial
fibrillation/flutter. The detailed distribution is shown in
Figure 3.

Table 2. Description of the Rpk_label in each .mat file.

Rpk_label Label name
Label
abbreviation

0 Normal Normal

1 Pause Pause

2 Ventricular Fib./Tach. VFibTach.

3 Ventricular Premature
Contraction

VPC

4 Ventricular Tachycardia VTach

5 Ventricular Bigeminy Bigem

6 Ventricular Trigeminy Trigem

7 VPC Couplet Couplet

8 Bradycardia Brady

9 Atrial Tachycardia ATach

10 Supraventricular Tachycardia SVT

11 Paced Rhythm Paced

12 Atrial Fibrillation/Flutter AFib

13 Atrial Flutter AFlut

14 Atrial Premature Contraction APC

15 Run VPCs VPCs

16 Sinus Tachycardia STach

20 Block Block

21 Ventricular Ectopic Beat VEB

22 Supraventricular Ectopic Beat SEB

23 Run APCs APCs

95 Main-Rhythm Main

96 Data-loss loss

97 Artifact Artifact

98 Lead-Off LeadOff

99 In-progress Inprogress

100 Unknown Unknown

VPC: ventricular premature contraction; APC: atrial premature complex.

Table 1. Description of the content of each .mat file.

Keys Description Values

LeadOff Records if the lead is
in the correct
position

An array of 0’s and 1’s, 1
meaning the lead is off,

to receive accurate
ECG or not

0 meaning the lead is not
off

Rpk_label Labels the position of
the R-peak

An array of 0’s and 1’s, 1
meaning the R-peak,

0 meaning not the R-peak

Rthm_label Lists all the arrhythmia
types and their

A 2D-array of size 27, with
27 rhythm labels and

corresponding
number in finalflag

their corresponding
number

dECG The ECG data recorded An array recorded at 250
Hz

data_lost Records if the data is
lost or not

An array of 0’s and 1’s, 1
meaning the data is
lost,

one meaning the data is
not lost

final_flag The arrhythmia labels A 2D-array of size (x, 27),
where x is the length of
dECG

fs The recording
frequency in Hz

250 Hz

2D: two-dimensional; ECG: electrocardiogram; dECG: Diploma in ECG
Technology.
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Figure 2. Pre-processing procedure, including segmentation, resampling and standardization with example electrocardiogram (ECG)
signal.
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Proposed model

CNN+BiLSTM with attention is a model with CNN layers
in the first half, then bidirectional LSTM and attention
layers in the second half.21 The CNN component extracts
local spatial features from the ECG signal. It comprises
one or more convolutional layers, followed by pooling
layers. These layers can capture local patterns and varia-
tions in the ECG signal’s amplitude and morphology. The
BiLSTM layer is a recurrent neural network (RNN) type
that can capture temporal dependencies and sequential pat-
terns in the ECG signal. Bidirectional means it processes
the input sequence in both forward and backward direc-
tions, allowing it to capture context from past and future
time steps simultaneously. This is crucial for understanding
the temporal dynamics of ECG signals, often characterized
by complex rhythms and patterns. The attention mechanism
is integrated into the model to dynamically weigh and focus
on different parts of the input sequence. This helps the
model give more attention to relevant segments of the
ECG signal while ignoring noisy or less informative
regions. Attention mechanisms are beneficial when
dealing with long sequences like ECG data. The input

ECG signal, a time series of voltage values, is fed into
the model.

Our model is built based on the CNN+BiLSTM model
proposed by Cheng et al.22 The model includes three
CNN blocks, three BiLSTM blocks, and three feedforward
layers. Layer normalization and dropouts are added to all
blocks to improve generalization. Kernel regularizer, bias
regularizer, and activity regularizer are added to CNN
blocks and feedforward layers. The activation function for
CNN blocks and feedforward layers is Mish.23

Additionally, the attention mechanism is added to each
BiLSTM block. The learning rate is 0.0005, and the batch
size is 64.

Statistical analysis

In this study, a statistical analysis and comparative study
between patients and the control group is not applicable.
Instead, the focus was on performance comparison by the
various machine learning models and approaches on the
proprietary dataset. Demographic data of the participants,
including gender and age, are detailed in the “Methods

Figure 3. Distribution of top seven arrhythmia beat combinations.
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and Materials” section. Figure 3 presents information
regarding the types of arrhythmia data utilized.

Results

Evaluation metric

We use weighted accuracy, macro average F1-score, and
macro average area under the curve (AUC) score to evalu-
ate the performance of the five deep learning models experi-
mented with, averaging over the six distinct singular
arrhythmia types. These metrics give us an accurate
insight into the model performance in this heavily imbal-
anced classification task.

Binary classification for arrhythmia detection

The preprocessed wearable ECG data used for binary clas-
sification includes all arrhythmia types and combinations
from the data, where binary labels identifying the arrhyth-
mia heartbeats are used in the classification. We used the
CNN+BiLSTM with attention model to train the binary
classification task between normal heartbeats and arrhyth-
mia heartbeat by modifying the output layer to 1 unit. A
five-fold cross-validation train-test split on the patient
level was performed. For each split, 80% of the patient’s
data will be used for training, and the remaining 20% for
testing. The random seed for the five-fold split is set to
0, 1, 2. We used binary focal loss and class weights
similar to the multi-label classification experiments to
address the data imbalances. Additionally, due to the
large size of the dataset, the number of normal heartbeats
was randomly downsampled to 2 times the number of
arrhythmia heartbeats, resulting in the distribution of the
training dataset to be 66% normal heartbeats and 33%
arrhythmia heartbeats for each cross-validation fold.

The results of the binary classification experiment are
given in Table 3, where we demonstrate the weighted accur-
acy, macro F1-score, and macro AUC score of CNN
+BiLSTM with attention in 15 runs across three random
splits and five folds each. This method achieves an
average weighted accuracy of 95%, an average F1-score
of 0.838, and an average AUC score of 0.906.

Multi-label arrhythmia type classification

The preprocessed wearable ECG data used for multi-label
classification includes the top seven most frequent combina-
tions of arrhythmia types from the data. The input to the
models is consecutive four heartbeats of shape (1024, 1)
with no overlapping between inputs. Each input has a multi-
hot encoded label of size 6 (the number of unique arrhythmia
types). We do a five-fold cross-validation train-test split on
the patient level for each deep learning method, including
CNN+BiLSTM with attention, CNN+BiGRU with

attention, ConViT,24 EfficientNet,25 and ResNet.26

Therefore, for each split, 80% of the patient’s data will be
used for training, and the remaining 20% for testing. The
random seed for the five-fold split is set to 0, 1, 2 so that
all methods will be trained and tested on the same five
splits and repeated three times. The Adam optimizer is
used to optimize all deep learning methods. Moreover,
each method is fine-tuned on our dataset among the hyper-
parameters, including learning rate, batch size, kernel, or
filter size, regularization, dropout rate, and activation func-
tions listed in the “Method” section. To address the data
imbalances across different arrhythmia types, we used
binary focal loss for the multi-label problem, which has suc-
ceeded in many deep-learning problems.27

The results of the multi-label classification experiment
are shown in Table 4, where we demonstrate the weighted
accuracy, macro F1-score, and macro AUC score of each
model in three repetitive five-fold experiments. Overall,
CNN+BiLSTM with attention has the highest average
weighted accuracy, macro F1-score, and macro AUC
score of all the models while having a lower standard devi-
ation. CNN+BiLSTM with attention has high weighted
accuracy and macro AUC score for the task, while the
macro F1-score is not on par.

Additionally, we examined the sensitivity and specifi-
city, as well as the confusion matrix of one fold out of
the five-fold cross-validations we conducted, as shown in
Table 5 and Figure 4. As we can see, the model generally
performs well. The performance of Trigeminy is not very
high, and the model will sometimes miss classifying multi-
labeled classes by missing one class or including an add-
itional class. One major reason is that even with the focal
loss to address the imbalance issue, the data imbalances
are too significant, and as we get more data from
MEZOO, this issue can be alleviated.

Benchmark our framework on the MIT-BIH database

As the MIT-BIH database is a commonly used bench-
mark for arrhythmia classification,28–31 we trained our

Table 3. Weighted accuracy, macro F1-score, and macro AUC
results of CNN+BiLSTM with attention on binary classification.

Accuracy F1-score AUC

seed0 0.951 ± 0.02 0.859 ± 0.06 0.914 ± 0.04

seed1 0.949 ± 0.01 0.843 ± 0.05 0.912 ± 0.03

seed2 0.949 ± 0.02 0.813 ± 0.06 0.893 ± 0.04

Overall 0.95 ± 0.02 0.838 ± 0.06 0.906 ± 0.04

AUC: area under the curve; CNN: convolutional neural network; BiLSTM:
bidirectional long short-term memory.
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model on the MIT-BIH database for multiclass classifica-
tion of five classes: normal, VPC, ventricular escape, a
fusion of ventricular and normal, and unclassified heart-
beats. The preprocessing step involves the standard
wavelet denoising the ECG records and standardizing
using z-score normalization. After splitting the training
and testing sets, we resample the training set to balance
each of the five classes. A five-fold cross-validation is
conducted, and the performance is measured in accuracy,
sensitivity, specificity, and F1-score for us to compare
with previous work.

The results for benchmarking our framework on the
MIT-BIH database across five-fold cross-validation are
0.997 accuracy, 0.992 sensitivity, 0.998 specificity, and

0.993 F1-score. A per-class accuracy, sensitivity, specifi-
city, and F1-score report are shown in Table 6 for one
fold out of the five-fold cross-validation. The performance
of our framework is similar to or better than previous
state-of-the-art models,28–31 compared in Table 7.

Benchmark previous work on multi-label arrhythmia
type classification

To carefully compare the performance of our framework to
the performance of previous state-of-the-art work on
arrhythmia classification, we used the real-world multi-
label arrhythmia dataset used in the previous section.

Table 4. Experimental result of CNN+BiLSTM with attention, CNN+BiGRU with attention, ConViT, EfficientNet, and ResNet on multi-label
classification between arrhythmia types and combinations.

(a) Comparison of average weighted accuracy among the five deep learning methods across three cross-validation folds. The bolded
number represents the best value for each seed.

Accuracy CNN+BiLSTM with attention CNN+BiGRU with attention ConViT EfficientNetV2B0 ResNet

Seed0 0.875 ± 0.03 0.813 ± 0.08 0.807 ± 0.05 0.807 ± 0.05 0.863 ± 0.05

Seed1 0.872 ± 0.05 0.828 ± 0.09 0.806 ± 0.10 0.800 ± 0.15 0.836 ± 0.13

Seed2 0.893 ± 0.04 0.855 ± 0.08 0.798 ± 0.07 0.874 ± 0.10 0.906 ± 0.08

Overall 0.880 ± 0.04 0.832 ± 0.08 0.803 ± 0.07 0.827 ± 0.1 0.869 ± 0.08

(b) Comparison of macro average F1-score between the five different deep learning methods across three cross-validation folds. The
bolded number represents the best value for each fold.

F1-score CNN+BiLSTM with attention CNN+BiGRU with attention ConViT EfficientNetV2B0 ResNet

Seed0 0.748 ± 0.08 0.700 ± 0.06 0.626 ± 0.05 0.719 ± 0.07 0.696 ± 0.13

Seed1 0.733 ± 0.06 0.693 ± 0.09 0.643 ± 0.11 0.717 ± 0.1 0.729 ± 0.06

Seed2 0.727 ± 0.07 0.714 ± 0.08 0.600 ± 0.09 0.704 ± 0.07 0.703 ± 0.09

Overall 0.736 ± 0.07 0.702 ± 0.08 0.623 ± 0.09 0.713 ± 0.07 0.709 ± 0.09

(c) Comparison of macro average AUC score between the five different deep learning methods across three cross-validation folds. The
bolded number represents the best value for each fold.

AUC score CNN+BiLSTM with attention CNN+BiGRU with attention ConViT EfficientNetV2B0 ResNet

Seed0 0.883 ± 0.02 0.866 ± 0.02 0.812 ± 0.01 0.868 ± 0.01 0.859 ± 0.04

Seed1 0.856 ± 0.02 0.841 ± 0.04 0.805 ± 0.05 0.843 ± 0.04 0.848 ± 0.04

Seed2 0.887 ± 0.03 0.867 ± 0.03 0.810 ± 0.04 0.861 ± 0.03 0.875 ± 0.04

Overall 0.875 ± 0.03 0.858 ± 0.03 0.809 ± 0.04 0.857 ± 0.03 0.861 ± 0.04

AUC: area under the curve; CNN: convolutional neural network; BiLSTM: bidirectional long short-term memory; BiGRU: bidirectional gated recurrent unit.
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We examined four state-of-the-art models in the literature
and recorded their performance using accuracy, sensitiv-
ity, specificity, and F1-score across a five-fold
cross-validation.

The results for benchmarking previous work on multi-
label classification are shown in Table 8. As we can see,
the performance of previous state-of-the-art models
suffers as they encounter real-world wearable ECG

Table 5. Sensitivity and specificity result for one fold out of the
five-fold cross-validation for each arrhythmia class of our
framework on our real-world ECG dataset.

Class Sensitivity Specificity

AFib 0.97 0.95

APC 0.77 0.97

Brady 0.95 0.99

VPC 0.76 0.95

STach 0.99 1.00

Trigem 0.24 1.00

ECG: electrocardiogram; VPC: ven- tricular premature contraction; APC:
atrial premature complex.

Figure 4. Confusion matrix of one fold out of the five-fold cross-validation.

Table 6. Experimental result for one fold out of the five-fold
cross-validation for each arrhythmia class of our framework on the
MIT-BIH dataset.

Class Accuracy Sensitivity Specificity F1-score

N 0.994 0.994 0.994 0.993

S 0.999 0.999 0.999 0.998

V 0.999 0.998 0.999 0.999

F 0.996 0.984 0.997 0.983

Q 0.997 0.987 0.999 0.991

Average 0.997 0.992 0.998 0.993

Note: N means normal; S means VPC; V means ventricular escape; F means a
fusion of ventricular and normal; and Q means unclassified heartbeat.

10 DIGITAL HEALTH



signals. The noise, patient variability, and the multi-label
nature decreased performance when compared to running
on the MIT-BIH dataset. However, as we compare
Table 4, which has our CNN+BiLSTM with Attention
model, to the performance of previous state-of-the-art
models, we see that our model has an advantage in arrhyth-
mia classification.

Discussions
Our contributions include addressing real-world ECG data
from wireless portable ECG monitoring devices for arrhyth-
mia deep learning classification. We have proven this by
benchmarking our framework against previous state-of-
the-art models on our real-world ECG and MIT-BIH clinical
ECG datasets. Unlike the available public datasets collected
in a clinical setting where the environment and patient move-
ments are carefully controlled, real-world ECG data can have
significantly more variability. The reason for such variability
could be a diverse range of activities and environments
affecting the ECG signal the monitored patient can perform
in the real world. For example, suppose the patient is

doing an intensive workout, such as running, which will
make their heart beat faster. However, it can also cause the
area or pressure of the contact surface for the monitor with
the patient to change, resulting in different signals from the
actual patient’s heartbeats. Moreover, the data becomes sig-
nificantly more imbalanced due to longer monitoring dur-
ation. Therefore, real-world ECG data poses a challenge
different from clinically collected ECG data.

We address these challenges by performing a prediction
every four beats instead of every beat to address the data
imbalances between normal heartbeats and arrhythmia
heartbeats, as well as between different arrhythmia heart-
beats. Additionally, the four beats in an input do not have
equal lengths. Some beats can be faster, and others can be
slower; capturing this temporal difference allows more
details to remain in the data. Moreover, a longer input
length provides more sophisticated convolution and time
series analysis, enabling deeper models. Another reason is
that our dataset contains Bigeminy and Trigeminy classes.
Bigeminy has normal (sinus) beats and VPC beats appear-
ing alternately, and Trigeminy has two normal beats and
one abnormal one or two VPCs with one sinus beat.
Therefore, observations of at least three beats are required
to properly distinguish these classes clinically. Critically,
this allows us to perform both rhythm and beat arrhythmia
classification, which has significant clinical value.

Our hierarchical architecture, including a binary classifi-
cation of normal and arrhythmia heartbeats and a subse-
quent multi-label arrhythmia classification between
arrhythmia beats, allows a more efficient and streamlined
workflow for arrhythmia patient care. The first binary clas-
sification part can alert doctors about potential arrhythmia
patients, and then the detailed arrhythmia types can be pre-
dicted. This simplifies the decision-making process for
doctors as they can better estimate a patient’s possible
illness, compared to a more sophisticated model that pre-
dicts normal heartbeats alongside all types of arrhythmia
heartbeats. Moreover, the sophisticated model will add
computational cost and restrictions on the doctors and
medical institutions as more heartbeats need to be fed into
the model. In contrast, the predicted normal heartbeats in
the hierarchical architecture will not go into the multi-label
arrhythmia classification model with high probability.

MEZOO’s data demonstrates that arrhythmia types can
concurrently occur in certain cases. Multi-label classifica-
tion offers important clinical significance as patients with
multiple arrhythmias may need management or treatment
of all occurring arrhythmias rather than solely the main
arrhythmia type. For example, different arrhythmia condi-
tions are treated differently. Patients with VPC are treated
drastically differently from patients with Atrial Fibrillation.
With patients having both types of arrhythmia, but one is
only detected, clinicians cannot offer accurate prognoses
and formulate optimal treatment plans, resulting in serious
medical consequences.

Table 7. Performance comparison reported in related studies using
the MIT-BIH ECG data.

Methods Accuracy Sensitivity Specificity F1-score

Liang et al.*28 − 0.84 0.99 0.85

Irfan et al.29 0.994 0.984 0.996 −

Li et al.30 0.996 0.938 0.993 −

Ribeiro et al.31 − 0.985 0.998 −

Ours 0.997 0.992 0.998 0.993

Note: “−” means the work’s paper does not give the metric. * Liang et al.
used rhythmic labels instead of beat labels.

Table 8. Experimental result of previous related work compared to
our framework on our multi-labeled real-world ECG data across
five-fold cross-validation.

Methods Accuracy Sensitivity Specificity F1-score

Liang et al.28 0.876 0.838 0.954 0.722

Irfan et al.29 0.772 0.692 0.918 0.707

Li et al.30 0.629 0.629 0.887 0.568

Ribeiro et al.31 0.806 0.764 0.941 0.674

Ours 0.880 0.848 0.939 0.736
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Clinical significance and impact

By leveraging advanced neural network architectures, this
system enhances the precision and accuracy of arrhythmia
detection, which is paramount for timely and effective
patient management. The ability to continuously monitor
and analyze ECG data in real time provides cardiologists
with a powerful tool for early diagnosis and intervention,
potentially reducing the incidence of adverse cardiac
events. This approach not only supports the identification
of common arrhythmias but also facilitates the recognition
of more subtle and complex arrhythmic patterns that might
otherwise go unnoticed in conventional monitoring settings.
Notably, our results are derived from real-world data
obtained over 24-hour periods during patients’ everyday
activities rather than the brief ECG signals typically recorded
during hospital visits. Clinically, this is significant because it
captures a comprehensive view of the patient’s cardiac
health, encompassing variations and anomalies that are
more likely to occur in a naturalistic setting. Consequently,
integrating this technology into clinical practice promises
to elevate the standard of cardiac care, offering a robust solu-
tion for improving patient outcomes, personalizing treatment
plans, and optimizing healthcare resources.

Limitations

Our study also has a few limitations. First, despite the overall
robustness of our model, we observed some misclassifica-
tions, particularly in the VPC+Trigem and VPC+AFib
classes. The confusion matrix shown in Figure 4 indicates
that these classes are sometimes misclassified, but import-
antly, these misclassifications are typically between clinically
related categories, such as different types of VPC-related
conditions and AFib. However, it is known that when two
or more arrhythmias coexist,32–34 clinicians might only
label a subset of these arrhythmias or label additional
arrhythmias that are not present. This kind of misspecified
data might explain the observed overlap in our model’s clas-
sifications. More understanding of this interplay can assist
clinicians in patient monitoring and treatment planning by
leveraging our model’s multi-labeled predictions.

Second, our method is tested in the same environment as
the training stage in a data center. The deployment of our
method on wearable devices is an integral step in achieving
commercial and clinical applications, including real-time
ECGmonitoring.We leave the actual deployment of the infer-
ence stage of our method on edge ECG monitor devices as
future work.

Conclusion and future work
We propose a hierarchical machine learning model for
arrhythmia detection and classification in the real-world
wearable device setting. We compare our model with the

benchmark arrhythmia prediction models, including CNN
+BiGRU with attention, ConViT, EfficientNet, and
ResNet, as well as previous state-of-the-art work, using pro-
prietary data with wireless ECG data. Our model achieved
excellent performance on both the MIT-BIH dataset and our
proprietary data compared to the state-of-the-art arrhythmia
classification models. Our results suggest the possibility of
practical use of arrhythmia detection, including the user’s
movements, daily noise, and device artifacts.

In the future, from a clinical and practical perspective,
there is a need to develop algorithms for the classification
of arrhythmia type with infrequent data, high-risk arrhythmia
alarms, exploration of effective preprocessing methods, and
real-time clinical decision support system (CDSS).
Specifically, as we get more and more data from MEZOO,
we will expand the multi-label classification beyond the top
7 most frequent arrhythmia types/combinations and conduct
real-world deployment experiments of the hierarchical archi-
tecture. We will also improve the performance of our models
through data augmentation techniques, novel architecture,
and innovative preprocessing techniques. Edge device
deployability is also a significant area of research; we envi-
sion a framework that can train, personalize, and infer on
the ECG monitoring device locally without uploading data
to ensure the privacy of every patient.
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