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Bone and tissue degeneration are the most common skeletal disorders that

seriously affect people’s quality of life. N6-methyladenosine (m6A) is one of the

most common RNA modifications in eukaryotic cells, affecting the alternative

splicing, translation, stability and degradation of mRNA. Interestingly, increasing

number of evidences have indicated that m6Amodification couldmodulate the

expression of autophagy-related (ATG) genes and promote autophagy in the

cells. Autophagy is an important process regulating intracellular turnover and is

evolutionarily conserved in eukaryotes. Abnormal autophagy results in a variety

of diseases, including cardiomyopathy, degenerative disorders, and

inflammation. Thus, the interaction between m6A modification and

autophagy plays a prominent role in the onset and progression of bone and

tissue degeneration. In this review, we summarize the current knowledge

related to the effect of m6A modification on autophagy, and introduce the

role of the crosstalk between m6A modification and autophagy in bone and

tissue degeneration. An in-depth knowledge of the above crosstalk may help to

improve our understanding of their effects on bone and tissue degeneration

and provide novel insights for the future therapeutics.
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1 Introduction

Bone and tissue degeneration are common disorders with societal and economic

impacts. The most common skeletal degeneration includes osteoporosis, arthritis, and

lumbar muscle degeneration, and the common tissue disorders include intervertebral disc

degeneration (IVDD) and disc herniation. The above degenerative disorders are

characterized by dysfunctional bone- or tissue-derived stem or progenitor cells, and

aberrant activation of signaling pathways such as the PTEN, WNT, SIRT1 pathways, and

other related signaling pathways (Xiong et al., 2019a; Mi et al., 2020a; Zhang et al., 2023).

Currently, researchers in the field of degeneration have focused on discovering the

molecular mechanisms mediating the regeneration process and developing new
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therapeutic strategies for improving the health of patients

diagnosed with bone and tissue degeneration (Xiong et al.,

2019b; Yu et al., 2020).

N6-methyladenosine (m6A) is one of the most prominent

post-transcriptional modifications in eukaryotic mRNA (Mi

et al., 2020b; Ren et al., 2022). m6A functionally regulates the

eukaryotic transcriptome by influencing mRNA splicing, export,

subcellular localization, translation, stability, and decay. Thus,

aberrant m6A methylation modulates biological processes and

promotes human diseases (Li et al., 2022a). Numerous studies

have revealed that m6A methylation plays a crucial role in the

regulation of the degeneration process and mediates the

occurrence and progression of multiple degeneration-related

disorders (Li et al., 2022b; Peng et al., 2022). Intriguingly,

prior studies reported that epigenetic modifications including

m6A methylation played a prominent role in autophagy

regulation (Tang et al., 2022; Wilkinson et al., 2022).

Moreover, m6A modification has been reported to directly

regulate the expression of autophagy-related (ATG) genes and

modulate the cellular autophagy level, and the effects of the m6A

methylation on autophagy are dependent on the disease context

(Han et al., 2021).

In this review, we aim to summarize the current findings

related to the effect of m6A modification on autophagy, and

introduce the crosstalk between m6A modification and

autophagy with regards to bone and tissue degeneration. An

in-depth knowledge of the m6A modification-autophagy axis

may expand our understanding of their effects on bone and tissue

degeneration and provide novel insights for developing novel

therapeutic strategies in the future.

2 The current sight of m6A
modifications

m6Amodification is one of the most abundant modifications

in eukaryotic mRNA and is regulated by both m6A

methyltransferase and demethylase, which are specifically

recognized and bound by the m6A recognition protein (Chen

et al., 2022a). m6A modification is dynamically controlled by

“writers”, “erasers”, and the “readers”, which are the main

methylation-related reading proteins (Table 1) (Shen et al.,

2022a). m6A modification affects different stages of mRNA

processing including its splicing, nuclear output, stability and

translation, and plays a crucial role in gene expression (Zheng

et al., 2022). In recent years, owing to the continuous

development of methylated RNA immunoprecipitation

technology (MeRIP), methylated RNA immunoprecipitation

sequencing (MERIP-seq), liquid chromatography-tandem

mass spectrometry (LC-MS/MS) and high-throughput

sequencing, the methylation modification sites and

distribution can be thoroughly identified and analyzed (Sun

et al., 2022; Wang et al., 2022). Currently, m6A modifications

have been reported to be involved in the modulation of a variety

of chronic inflammatory conditions, pathological processes, and

metabolism-related diseases (Grenov et al., 2022; Yang et al.,

2022).

2.1 Enzymes involved in m6A
modifications

m6A “Writers”, the m6A methyltransferase complex,

catalyzes the transfer of methyl groups from S-adenosyl

methionine (SAM) to the nitrogen atom at the 6th position of

adenine (Yu et al., 2021). m6A writers includes METTL3,

METTL14, WTAP, KIAA1429 (VIRMA), RBM15, HAKAI,

ZC3H13 (KIAA0853), and METTL16 (Qi et al., 2022). The

METTL3-METTL14 methyltransferase complex has been well-

documented for its regulatory role inm6Amethylation (Liu et al.,

2014; Wang et al., 2016). An excellent piece of previous work has

suggested that METTL3 primarily functioned as the catalytic

core, while METTL14 provided the RNA-binding platform,

providing a prominent framework for the functional research

of m6A methylation (Wang et al., 2016). Furthermore, another

study revealed that METTL3 could interact with the homologous

protein METTL14, and form a heterodimer complex, and that

the METTL3/METTL14 complex co-catalyzed m6A

modification of the target RNA (Liu et al., 2014). In addition

to the METTL3-METTL14 methyltransferase complex, m6A-

METTL-associated protein complex (MAPC) was also widely

reported to be involved in the initiation of m6A modification.

The MAPC is mainly formed by the interaction of the junction

proteins including WTAP, KIAA1429, RBM15, ZC3H13 and

HAKAI (Zhang et al., 2022). Although the RNA splice factor

WTAP, has no methyltransferase activity, it acts as a connector

protein to recruit the m6A-METTL complex to localize at the

nuclear speckle, and thereby regulates the location of m6A

modification (Paramasivam et al., 2021). Increasing number of

studies have reported new m6A “writers”, such as METTL5,

METTL16, and ZCCHC4 (Oerum et al., 2021; Ruszkowska,

2021), suggesting that RNA methyltransferases may include

the reported proteins as well as other components, which

need to be identified.

m6A “erasers” are able to “elucidate” m6A modifications of

the target RNA. Up to date, the fat mass and obesity associated

protein (FTO) and ALKB homolog 5 (ALKBH5) are the main

components of the m6A demethylases (Shen et al., 2022b). FTO-

mediated m6A demethylation has been widely found in multiple

biological processes (Li et al., 2017; Wang et al., 2021; Chen et al.,

2022b). Li et al. (Li et al., 2017) demonstrated that FTO had a

prominent oncogenic role in the development of acute myeloid

leukemia (AML) in an m6A-dependent manner. Specifically,

FTO promoted leukemic cell transformation and

leukemogenesis, and suppressed all-trans-retinoic acid-

mediated AML cell differentiation, through the reduction of
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m6A levels in ASB2 and RARA mRNA transcripts (Li et al.,

2017). In bone homeostasis, it was reported that FTO was able to

markedly suppress the osteoblastic differentiation of bone

marrow derived mesenchymal stem cells (BMSCs) through the

demethylation of the m6A modification of runt related

transcription factor 2 (Runx2) mRNA (Wang et al., 2021).

Intriguingly, Chen et al. (Chen et al., 2022b) found that FTO

enhanced the osteogenic differentiation of BMSCs by reducing

the stability of PPARG mRNA in an YTHDF1-dependent

manner. These seemingly contradictory findings suggest that

the role of FTO in regulating bone formation requires further in-

depth and accurate investigation. As the second class of m6A

“erasers”, ALKBH5 is a Fe2+ and α -ketoglutarate-dependent

non-heme oxygenase, with a strong ability to demethylate m6A

methylation of mRNA (Yu et al., 2022). Up-regulation of

ALKBH5 was found to promote demethylate in osteosarcoma

cells and suppress cell proliferation and migration, which

suggested that ALKBH5 could serve as a potential therapeutic

target for treating human osteosarcoma (Yang et al., 2022).

The m6A “readers” can selectively recognize the m6A

methylation modifications in the target RNA, and participate

in various of stages of RNA metabolism (Zhang and Su, 2022).

“Readers” include proteins containing YTH domains (YTHDF1/

2/3 and YTHDC1/2), heterogeneous ribonucleoproteins

including heterogenous nuclear ribonucleoprotein (HNRNP)

C (HNRNPC), G (HNRNPG), and A2B1 (HNRNPA2B1), and

insulin-like growth factor 2 binding proteins (IGF2BPs), which

are members of a protein family closely associated with several

ageing diseases (Li et al., 2022c; Li et al., 2022d). Different

“readers” have different cellular localizations and thus perform

multiple biological functions (Li et al., 2022d). YTH domain

family protein 1 (YTHDF1) initiates RNA translation by

interacting with the translation initiation factors and

ribosomes, whereas the YTH domain family protein 2

(YTHDF2) selectively binds to m6A modified transcripts and

promotes their degradation (Li et al., 2022c). YTHDF1/2 and

YTHDF3 play synergistic roles in promoting YTHDF1-mediated

translation and suppress YTHDF2-mediated m6A modification

(Li et al., 2022d). For example, it was reported that

YTHDF2 induced an oncogenic and drug-desensitizing effects

in a m6Amodification-dependent manner, and could potentially

serve as an immune modulating target for intrahepatic

cholangiocarcinoma therapy (Huang et al., 2022).

2.2 Effect of m6A modifications on mRNA
metabolism

mRNA transcription is the process that initiates protein

synthesis, and the post-transcriptional modulation of mRNA

is controlled by a wide variety of molecular mechanisms.

Generally, m6A methylation has been demonstrated to

regulate multiple stages of mRNA metabolism (Pan et al.,

2021; Wu et al., 2021; Chen et al., 2022c). Chen et al. (Chen

et al., 2022c) performed a comprehensive analysis of the

relationship between METTL16-mediated m6A methylation

and IVDD, and showed that the elevated levels of

METTL16 impaired the balance between splicing, maturation,

and degradation of MAT2A pre-mRNA and exacerbated IVDD.

Furthermore, as the primary demethylase, ALKBH5 was found to

inhibit the m6Amodification of FOXO3 and enhance its stability

(Wu et al., 2021). Here, the anti-tumor effects of ALKBH5 were

investigated in-depth, which showed that downregulation of

ALKBH5 was associated with poor prognosis in colorectal

cancer patients, and revealed that targeting the FOXO3/miR-

21/SPRY2 signaling axis could be of therapeutic value for

colorectal cancer patients (Wu et al., 2021). Similarly, the

critical role of m6A “readers” in mRNA regulation has been

well-documented (Pan et al., 2021; Xu et al., 2022). The recent

study from Xu et al. (Xu et al., 2022) demonstrated the

relationship between YTHDF2 expression and the activation

of mTOR/AKT signaling pathway, and showed that the up-

regulation of YTHDF2 induced the expression of mTOR

mRNA and exacerbated the development of lung squamous

cell carcinoma.

2.3 Effect of m6A modifications on the
maturation of non-coding RNAs

Non-coding RNAs include rRNA, tRNA, snRNA, snoRNA,

miRNA, lncRNA, and circRNA. They have a variety of known

functions, and at the same time, some of the non-coding RNAs

have unknown functions. It was widely reported that m6A

methylation is involved in mediating cell proliferation by the

induction of miRNA maturation, and the translation and

degradation of circRNA, and by altering the stability of

lncRNAs (Lin et al., 2020a; Du et al., 2022; Liu and Jiang,

2022; Yan et al., 2022). METTL3-mediated m6A modification

has been reported to promote the maturation of miR-146a-5p,

which exacerbates the development of bladder cancer (Yan et al.,

2022). Furthermore, METTL3 was previously demonstrated to

enhance the binding ability of pri-miRNA-589–5p with DGCR8,

promoting the malignant progression of hepatoma (Liu and

Jiang, 2022). Similarly, a recent study indicated that

deoxycholic acid could suppress tumor development by

decreasing the maturation of miR-92b-3p in a m6A-

dependent manner (Lin et al., 2020a). Moreover, m6A

modification was also reported to regulate the translation and

degradation of circRNA (Du et al., 2022). circ_0095868 has been

identified as a new oncogenic non-coding RNA that was

significantly over-expressed in hepatocellular carcinoma (Du

et al., 2022). Mechanistically, the m6A “reader” IGF2BP1 was

shown to bind to circ_0095868 and promote the stability of

circ_0095868 (Du et al., 2022). The role of m6A modification in

lncRNA metabolism has also been well-documented (Dai et al.,

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Wen et al. 10.3389/fbioe.2022.978283

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.978283


2022). A recent study from Dai et al. (Dai et al., 2022) reported

that METTL16 could target the lncRNA RAB11B-AS1, and

impair its stability by elevating the level of m6A. All these

findings indicate the strong role of m6A methylation in

regulating non-coding RNAs metabolism and function.

3 Interaction between m6A and
autophagy

3.1 Overview of autophagy

Autophagosome is a double-membrane-bound structure

which is an important hallmark of the initiation of autophagy,

having the ability to bind to the target cellular components

(Affortit et al., 2022). Tthe autophagosomes deliver the

detrimental cellular components to the lysosome for

enzymolysis and degradation (Affortit et al., 2022). A wide

range of ATG genes were previously demonstrated to be

involved in this regulatory process (Zhang and Klionsky,

2022). Cellular stress states such as oxidative stress injury,

hypoxia, and severe nutritional deficiency, were reported to

suppress the activity of mTOR complex and activate the Unc-

51 like kinase 1/2 (ULK1/2) signaling (Zhang and Klionsky,

2022). The activated ULK1/2 kinase could then induce the

formation of FIP200-ATG13 complex, which further increased

the level of phosphorylated ULK protein (Zhang and Klionsky,

2022). Subsequently, FIP200-ATG13 complex and the activated

phosphorylated ULK proteins recruited more ATG proteins and

promoted the formation of double-membrane autophagosomes

(Affortit et al., 2022; Deretic and Lazarou, 2022; Zhang and

Klionsky, 2022). LC3-II, one of the members of the LC3 family,

has been well-documented to promote the formation of

autolysosomes through the fusion of the autophagosomes to

the lysosomes (Yao et al., 2022), which is a delicately-controlled

dynamic process called the autophagy flux (Figure 1). Currently,

emerging evidence has indicated that m6A methylation played a

prominent role in the modulation of autophagy, and that the

m6A-autophagy axis was dependent on the disease context.

3.2 Association between m6A and
autophagy

m6Amodification and the related factors regulate autophagy

by modulating ATG expression and autophagy-related signaling

pathways (Lin et al., 2020b; Li et al., 2020; Shen et al., 2022c). Li

et al. (Li et al., 2020) found that the demethylase ALKBH5,

suppressed the level of m6A modification of FIP200 mRNA and

induced the expression of FIP200. The FIP200-mediated

autophagy flux could subsequently reduce the apoptotic rate

of nucleus pulposus cells (NPCs), and thereby ameliorate the

development of IVDD (Li et al., 2020). Furthermore, Shen et al.

(Shen et al., 2022c) reported that the down-regulation of m6A

modification by FTO overexpression suppressed autophagy,

which further alleviated liver fibrosis by inducing ferroptosis

in hepatic stellate cells. Similarly, METTL3 has been shown to

promote the methylation of FOXO3 and induce its binding to

YTHDF1 to promote the translation of FOXO3 mRNA, which

further inhibited the expression of ATG and suppressed

autophagy (Lin et al., 2020b).

It is widely known that the dysregulation of autophagy

caused diseases, many of which were closely associated with

bone and tissue degeneration. Prior studies have revealed the

marked impairment of autophagy in degenerative tissues (Zhong

et al., 2022). Enhanced autophagy flux ameliorates oxidative

stress, alleviates the progression of degenerative alterations,

and enhances the cellular regenerative activity (Yao et al.,

2018; Zheng et al., 2021). Increasing number of studies have

indicated that m6A-mediated autophagy was involved in the

FIGURE 1
Schematic diagram of m6A methylation regulating autophagy.
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regulation of IVDD and other degenerative diseases (Yao et al.,

2018). Taken together, impaired autophagy is associated with the

development of degenerative diseases, wherein the m6A

autophagy axis plays a critical regulatory role in this process.

4 Role of m6A-autophagy axis in the
regulation of degenerative diseases

Degenerative changes in NPCs are known to aggravate

IVDD, which is the main cause of lower back pain (He et al.,

2022). It has been shown that autophagy played a beneficial role

in preventing the degeneration of NPCs and markedly

ameliorated the progression of IVDD (Li et al., 2021).

Similarly, senescence and dysregulation of MSCs are the most

prominent reasons for the onset and progression of osteoporosis.

Therefore, by enhancing autophagy, cellular senescence and

osteogenic differentiation can be significantly rejuvenated.

A recent study showed that the co-culture of MSCs andNPCs

elevated the expression of the demethylase ALKBH5, and

inhibited m6A modification, which then enhanced the

stability of FIP200 and subsequently promoted autophagy (Li

et al., 2020). Furthermore, the enhanced autophagy was found to

significantly promote the survival of NPCs and ameliorate the

development of IVDD (Li et al., 2020). Mechanistically, in the

cellular model of IVDD, m6A modification of FIP200 mRNA

occurred, and the m6A “reader” YTHDF2 bound to the modified

FIP200 transcripts and impaired their stability. However, in the

co-culture model with MSCs and NPCs, MSCs significantly

promoted the expression of AKLBH5 in the NPCs, which

subsequently demethylated the FIP200 mRNAs and prevented

their degradation. Consequently, the FIP200-mediated

autophagy activity was promoted, which enhanced the

survival of NPCs (Figure 2). In the cellular and animal

models of osteoarthritis (OA), METTL3 expression was found

to be suppressed (He et al., 2022). Furthermore, METTL3 was

found to significantly inhibit inflammation-induced apoptosis

and autophagy in chondrocytes and was beneficial for delaying

the progression of OA (He et al., 2022). Mechanistically, the

inhibition of METTL3 decreased the levels of m6A modified

BCL-2 and impaired the YTHDF1-mediated mRNA

transcription of BCL-2 (He et al., 2022). These findings

indicated that METTL3 suppressed apoptosis and autophagy

of chondrocytes under inflammatory conditions through the

regulation of the m6A-autophagy axis.

5 Future perspectives

In summary, the above studies highlight that m6A

modification is closely associated with the autophagy process.

The up-regulation or suppression of autophagy by m6A

methylation mainly depends on the level of m6A, the function

of the downstream targets, and the changes in target RNA after

methylation. Currently, a large number of studies have

demonstrated that m6A modification could regulate the

initiation and activation of autophagy by modulating the

expression of ULK1, FIP200, and ATG5, ATG7, respectively.

Although several researchers have focused on the molecular

mechanisms involved, further in-depth studies are urgently

needed to elucidate the interaction between m6A modification

and autophagy under different pathological conditions.

Currently, the majority of studies have focused on the

mediators of m6A. However, the direct regulatory

mechanisms of m6A on its downstream targets are still

unclear. For example, in hypoxia-induced cancer cells,

YTHDF1 was found to enhance autophagy in hepatoma

carcinoma cells by enhancing the translation of ATG2A and

FIGURE 2
The role of m6A-autophagy axis in the regulation of IVDD development and the underlying mechanisms. NPCs, nucleus pulposus cells; IVDD,
intervertebral disc degeneration; MSCs, mesenchymal stem cells.
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ATG14 (Li et al., 2021). Whether YTHDF1 could directly affect

the expression of ATG2A and ATG14 in an m6A-independent

manner and how the changes in m6A regulated ATG2A and

ATG14, are topics that need further in-depth research.

Additionally, the biggest challenge for revealing the interplay

between m6A and autophagy in degenerative diseases is that

there are often multiple functions of m6A in different diseases.

m6A methylation may act as a “double-edged sword”. For

example, m6A not only inhibits the occurrence of IVDD by

amelioration of apoptosis in NPCs (Li et al., 2020), but also

aggravates apoptosis by inhibiting autophagy (Wang et al., 2020;

Chen et al., 2021a; Chen et al., 2021b). The effect of m6A-

autophagy axis in various degenerative diseases and the

associated mechanisms need further investigation.

The interaction between m6A methylation and autophagy is

a attractive topic in cellular biology research; in-depth

understanding of the regulators of RNA modification expands

the knowledge of the underlying molecular mechanisms.

However, more in-depth explorations are required to develop

novel therapeutic strategies based on the interaction between

m6A methylation and autophagy.
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