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Abstract

The availability of bacterial transcriptomes has dramatically increased in recent years. This

data deluge could result in detailed inference of underlying regulatory networks, but the

diversity of experimental platforms and protocols introduces critical biases that could hinder

scalable analysis of existing data. Here, we show that the underlying structure of the E. coli

transcriptome, as determined by Independent Component Analysis (ICA), is conserved

across multiple independent datasets, including both RNA-seq and microarray datasets.

We subsequently combined five transcriptomics datasets into a large compendium contain-

ing over 800 expression profiles and discovered that its underlying ICA-based structure was

still comparable to that of the individual datasets. With this understanding, we expanded our

analysis to over 3,000 E. coli expression profiles and predicted three high-impact regulons

that respond to oxidative stress, anaerobiosis, and antibiotic treatment. ICA thus enables

deep analysis of disparate data to uncover new insights that were not visible in the individual

datasets.

Author summary

Cells adapt to diverse environments by regulating gene expression. Genome-wide mea-

surements of gene expression levels have exponentially increased in recent years, but suc-

cessful integration and analysis of these datasets are limited. Recently, we showed that

independent component analysis (ICA), a signal deconvolution algorithm, can separate a

large bacterial gene expression dataset into groups of co-regulated genes. This previous

study focused on data generated by a standardized pipeline and did not address whether

ICA extracts the same quantitative co-expression signals across expression profiling plat-

forms. In this study, we show that ICA finds similar co-regulation patterns underlying

multiple gene expression datasets and can be used as a tool to integrate and interpret

diverse datasets. Using a dataset containing over 3,000 expression profiles, we predicted
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three new regulons and characterized their activities. Since large, standardized expression

datasets only exist for a few bacterial strains, these results broaden the possible applica-

tions of this tool to better understand transcriptional regulation across a wide range of

microbes.

Introduction

Publicly available datasets, such as the NCBI Gene Expression Omnibus (GEO) [1] and Array

Express [2], contain thousands of transcriptomics datasets that are often designed and ana-

lyzed for a specific study. Historically, microarrays were the platform of choice for transcrip-

tomic interrogation, resulting in large, publicly available datasets containing thousands of

expression profiles for a variety of organisms [3,4]. Over the past decade, usage of RNA

sequencing (RNA-seq) has surpassed microarrays due to its higher sensitivity and ability to

detect new transcripts [5].

Multiple consortia have performed extensive comparisons of expression levels across differ-

ent microarray and RNA-seq platforms [6–8]. These studies showed that absolute gene expres-

sion levels cannot be accurately measured by either expression profiling technique, whereas

relative abundances are consistent across a wide range of transcriptomics platforms with

appropriate quality controls. To further complicate matters, batch effects and technical hetero-

geneity continue to present significant challenges to successful integration of omics datasets

[9].

Differential expression analysis is the most common analytical method applied to transcrip-

tomics datasets. However, differential expression analysis is limited in dimensionality,

interpretability, and reproducibility; it can only be applied to pairs of experimental conditions,

requires additional analysis to interpret large swaths of differentially expressed genes [10,11],

and is highly dependent on the quantification pipeline [12,13]. Alternatively, machine learning

methods, especially matrix factorization [14,15], have provided new tools for extracting low-

dimensional biological information from large omics data.

In particular, independent component analysis (ICA) has been shown to extract biologically

significant gene sets from many transcriptomics datasets [16–22]. ICA outperformed 42 mod-

ule detection methods in a comprehensive examination across 5 organisms [23]. Previously,

we applied ICA to a high-quality Escherichia coli gene expression dataset generated from a

standardized protocol to extract 92 independently-modulated groups of genes (called iModu-

lons) [24]. Sixty-one of these 92 iModulons represented the targets of specific transcriptional

regulators and described their activities across every condition in the dataset. An additional 25

iModulons were linked to biological functions or genetic perturbations, leaving only 6 unchar-

acterized iModulons. iModulons have provided clear physiological explanations for transcrip-

tional changes in significantly perturbed cells [25–27] and were used to characterize a novel

adenosine transporter in E. coli [28].

We have also computed iModulons for S. aureus and B. subtilis using single-source expres-

sion datasets [29,30]. In addition, ICA has been applied to human transcriptomic datasets to

identify co-regulated gene sets [18,21], but characterization of many components was hindered

due to the high fraction of unknown human genes relative to model bacteria [31,32]. A recent

study applied multiple matrix factorization methods to 14 independent cancer expression

datasets that were generated using the same microarray platform. The study found that ICA

extracted many components that were conserved across multiple expression datasets, whereas

PCA and NMF did not identify reproducible components [33].
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However, it is still unclear whether ICA extracts reproducible regulatory signals from

expression compendia compiled from diverse sources, such as between unrelated RNA-seq

and microarray datasets. In this study, we show that consistent regulatory components can be

identified in expression datasets spanning disparate experimental conditions, and that these

components are robust to dataset integration. Through analysis of five independent E. coli
transcriptomics datasets, we identify a coherent structure without requiring batch normaliza-

tion procedures. In addition, integrated analysis of the different datasets demonstrated com-

pelling evidence towards regulon discovery. These results present ICA as a promising tool to

integrate and understand the flood of omics data challenging scientists today.

Results

ICA identifies biologically-relevant “iModulons” in five transcriptomic

datasets

We compiled two RNA-seq and three microarray datasets, each using a different expression

profiling technology or generated from a different research group (Table 1 and S1–S3 Data-

sets). Each dataset was independently processed, centered, and decomposed with ICA (See

Methods). This process generated a set of independent components (ICs) for each dataset that

represent underlying signals (i.e., transcriptional regulators) in the transcriptional dataset (Fig

1A and S4 and S5 Datasets). Each IC contains a weighting for every gene; a high IC gene

weighting indicates that gene expression is strongly influenced by the underlying signal or reg-

ulator, whereas a low weighting indicates that gene expression is unaffected by the regulator.

As most transcriptional regulators only control a small set of genes, the majority of gene

weightings were near zero for a given IC.

To understand the biological role of each IC, we selected genes in each IC with significant

non-zero weightings and referred to this set of genes as an “iModulon” [24]. ICs, and their cor-

responding iModulons, represent the underlying structure of the transcriptome under any

experimental condition in the database. The condition-dependent dynamics of gene expres-

sion are captured by the activities of the ICs (also referred to as iModulon activities, S6 Data-

set). In this study, we focused on the condition-invariant structure of the transcriptome (i.e.,

ICs and their resultant iModulons), to determine if transcriptome structure is conserved across

platforms.

We categorized the resulting iModulons from each dataset into four classes, based on their

gene content: (1) Regulatory, (2) Functional, (3) Genomic, and (4) Uncharacterized (Fig 1B

and 1C and S7 Dataset). Prior work showed that iModulons are highly consistent with, but not

always identical to, known regulons. On average, these iModulons captured 80% of the known

targets of their linked transcriptional regulators and have accurately predicted new regulon

members [24]. Although iModulons often contain genes known to be regulated by a single

transcriptional regulator (e.g., transcription factor, sigma factor, or riboswitch), it has been

observed that iModulons may represent combinations of multiple regulons [18,24].

Table 1. Summary of transcriptomic datasets.

Dataset Platform(s) Source(s) # Samples # Unique Conditions # Total iModulons

RNAseq-1 (PRECISE) Illumina MiSeq, HiSeq, NextSeq & GAIIX [24] 278 163 91

RNAseq-2 Applied Biosystems 5500XL Genetic Analyzer [34] 84 28 52

MA-1 Affymetrix E. coli Antisense Genome Array [35] 260 115 103

MA-2 Affymetrix E. coli Antisense Genome Array [36–38] 124 39 58

MA-3 Affymetrix E. coli Genome 2.0 Array [36,39–43] 56 20 32

https://doi.org/10.1371/journal.pcbi.1008647.t001
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In this study, a Regulatory iModulon was defined as an iModulon that was statistically

enriched with a single regulon (Fisher’s exact test, FDR < 10−5). Regulatory iModulons were

named after the single transcriptional regulator whose targets provided the best overlap (See

Methods).

Functional iModulons contained genes with highly similar functions but lacked common

regulator(s). For example, three iModulons were identified in MA-1, MA-2, and RNAseq-1,

respectively, that share 10 genes and were enriched in the gene ontology (GO) term “lipopoly-

saccharide core region biosynthetic process” (Fig 1D). These iModulons were named based on

the GO term with the lowest enrichment p-value (FDR< .01). This category also included

Fig 1. Characterization of iModulons derived from five independent gene expression datasets. (A) Schematic illustration of the workflow applied to

each data set. (B) Descriptions of the three classes of characterized iModulons. The first column contains histograms illustrating the distribution of gene

weightings in each of three independent components (ICs) from the RNAseq-1 dataset. Genes outside of a threshold (in red) belong to an “iModulon”.

The second column illustrates the biological interpretation of the iModulon types. iModulons are characterized by comparing their genes with known

regulons, ontological annotations, and genotypes. The third column displays the ICA-computed activity levels for the selected ICs across all 278

conditions in the RNAseq-1 dataset. (C) Bar chart describing the four types of iModulons computed from each of the five gene expression datasets. (D)

Comparison of three Functional iModulons, each derived from decomposition of a different dataset. Asterisks indicate genes annotated with the GO term

“lipopolysaccharide core region biosynthetic process”.

https://doi.org/10.1371/journal.pcbi.1008647.g001
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iModulons composed of prophages with no known regulators. Functional iModulons repre-

sent a compelling opportunity for discovery of new transcriptional regulators [44].

Genomic iModulons reflect alterations in the genome, such as those resulting from engi-

neered overexpression or knock-out of one or more genes. The activities of these iModulons

represent the presence of these genomic alterations, such as large-scale duplications or dele-

tions. These iModulons can be useful to validate strain-specific mutations or deletions [24]

and successful plasmid transformations [45]. Genomic iModulons were categorized by recon-

ciling iModulon genes and activities with strain-specific genotypes.

The remaining Uncharacterized iModulons could not be interpreted, either due to a high

number of uncharacterized genes or the presence of seemingly functionally unrelated genes.

Uncharacterized iModulons may represent undiscovered regulons, noise, or other unwanted

sources of variation in the datasets.

The RNA-seq datasets produced the highest fraction of characterized iModulons; only 9% of

iModulons in RNAseq-1, and 21% of iModulons in RNAseq-2 were Uncharacterized. In contrast,

we were unable to characterize 30–50% of the iModulons derived from the microarray compen-

dia. Uncharacterized iModulons exhibit significantly higher variance between replicates than

other iModulons (Student’s t-test p-value< 10−10, S1 Fig), which indicates that the microarray

datasets contain more noise-capturing uncharacterized iModulons than the RNA-seq datasets.

In summary, application of ICA to expression datasets identifies biologically-relevant iMo-

dulons in both microarray and RNA-seq datasets. These iModulons can be categorized as Reg-

ulatory, Functional, Genomic, or Uncharacterized. Uncharacterized microarray iModulons

are more likely to represent technical noise in the dataset.

An iModulon controlled by CysB exists in all five datasets

Each of the five transcriptomic datasets were created using different technologies or generated

by different research groups, spanning fifteen years (2004–2019). In addition, each dataset

contained vastly different experimental conditions and genotypes, such as overexpressed cellu-

lar division proteins in the MA-1 dataset [35], diverse nutritional supplements in the RNAseq-

1 dataset, or strains evolved to resist antibiotics in the RNAseq-2 dataset [34]. Although the

presence of different conditions in each dataset complicated the identification of consistent

iModulons, many of the iModulons generated from the five datasets unexpectedly shared simi-

lar genes and annotations.

For example, each dataset produced an iModulon enriched in the sulfur utilization regula-

tor CysB. On average, each CysB iModulon shared 87% of its genes with the other CysB iMo-

dulons. The IC gene weightings between four of these iModulons were also highly correlated

(Pearson R> 0.5), indicating that the genes in the iModulons were modulated at similar ratios

across all five datasets regardless of expression profiling platform (Fig 2A). However, the CysB

iModulon from the MA-3 dataset was less correlated with the other iModulons. The MA-3

CysB iModulon contained many genes that were absent from any other CysB iModulon.

Many of these genes were involved in the biosynthesis of other amino acids and were present

in different iModulons in the other datasets. In fact, the MA-3 CysB iModulon could be

approximated (R2 = 0.47) by a linear combination of 10 iModulons from the RNAseq-1 dataset

related to nutrient availability (Fig 2B and S1 Table). A similar analysis revealed at least three

additional iModulons from the MA-3 dataset that were composed of a linear combination of

RNAseq-1 iModulons (S2 Fig). The MA-3 dataset contained the least number of samples and

resulted in the fewest number of iModulons.

The detailed investigation into the CysB iModulons revealed that iModulons can be found

in multiple datasets containing a set of nearly identical genes. In addition, the IC gene
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weightings for overlapping iModulons are highly correlated and often nearly equal. Finally, we

showed that iModulons generated from a small dataset (e.g., MA-3) are often linear combina-

tions of iModulons from larger datasets. This observation demonstrates how ICA may be

unable to differentiate all the underlying source signals from smaller datasets.

The iModulon structure is conserved across transcriptomic datasets

To extend our assessment of iModulons reproducibility, we compared all iModulons found in

each dataset using a Reciprocal Best Hit (RBH) graph [33] (Fig 3A and S2 Table). In the RBH

graph, each node represents an iModulon, and nodes are connected when iModulons from

two different datasets find each other as the best scoring iModulon in the other dataset [46].

iModulons were scored by the absolute correlation between the gene weightings in their

respective ICs, as shown for the CysB iModulons in the previous section. Since RBHs are not

always highly correlated, we trimmed the graph to exclude RBHs with a Pearson R< 0.3

(S3 Fig).

Of the 336 iModulons identified across all five datasets, nearly half (45%) were linked to an

iModulon in another dataset. Of these 151 reproducible iModulons, 110 (73%) were classified

as Regulatory, and the remaining were either Functional or Uncharacterized (Fig 3B). Only

one Genomic iModulon was matched to an iModulon from another dataset (S4 Fig).

Fig 2. Comparison of IC gene weightings for iModulons enriched with genes in the CysB regulon. (A) Scatter plot

between IC gene weightings for CysB-linked iModulons across all five datasets. Genes in the published CysB regulon

are colored in red. For comparisons in the first column involving the MA-3 dataset, genes regulated by any of the

following regulators are colored in blue: MetJ, TrpR, GlpR, ArgR, Lrp, CysB, leu-tRNA-mediated transcriptional

attenuation, or thiamine riboswitch. All other genes are black. Dashed lines indicate iModulon thresholds. Gray solid

lines indicate the 45-degree line of equal gene weightings. (B) Scatter plot between IC gene weightings for the CysB

iModulon in MA-3 compared to a linear combination of 10 ICs from RNAseq-1 (see S1 Table). Color scheme is

identical to panel (A).

https://doi.org/10.1371/journal.pcbi.1008647.g002
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Most edges in Fig 3A connected two Regulatory iModulons enriched in the same regulator

(Fig 3C). Across all five datasets, Regulatory iModulons were the most reproducible category,

whereas Genomic iModulons were the least reproducible (Fig 3D). The lowest fraction of

reproducible Regulatory iModulons was observed in the RNAseq-1 dataset, likely due to niche

transcription factors that are active under specific environmental conditions.

Many iModulons in the RBH graph were separated into well-defined clusters, each linking

at most one iModulon from each dataset. iModulons in a cluster were often linked to the same

regulator, as labelled below each cluster. Five clusters were highly-reproducible, each contain-

ing one iModulon from each of the five datasets. Three of these clusters were enriched with

genes from a single regulon, whereas the other two clusters contained iModulons enriched

with genes regulated by closely-related transcriptional regulators.

An additional nine iModulons were found in three or four datasets, forming moderately-

reproducible clusters. The missing iModulons could either be explained by low variation of

iModulon genes in the missing dataset, or by many-to-one linkages between iModulons that

could not be captured by the RBH method, as demonstrated with the MA-3 iModulon (Figs

2B and S2).

A few clusters exhibited complex connectivity, the largest of which contained iModulons

linked to either of the nitrate response regulators Fnr and NarL. Cellular respiration is regu-

lated by a combination of highly-interconnected transcription factors [36], indicating that

Fig 3. The iModulon structure is conserved across five datasets. (A) Reciprocal best hit (RBH) graph indicating iModulons as nodes and RBHs

as edges. Node color indicates the source dataset for the iModulon, as denoted for the CysB iModulon. Node shape indicates the iModulon

category. Edge thickness and darkness indicate the gene weighting similarity. Clusters are labelled with the regulator(s) that are linked to the

iModulons in the cluster, if available, and grouped by level of iModulon reproducibility. (B) Pie chart describing the categories of all iModulons

shown in the RBH graph. (C) Pie chart describing the types of edges in the RBH graph. (D) Heatmap indicating how many iModulons from each

dataset and category were in the RBH graph.

https://doi.org/10.1371/journal.pcbi.1008647.g003

PLOS COMPUTATIONAL BIOLOGY Expression signals are conserved across disparate datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008647 February 2, 2021 7 / 23

https://doi.org/10.1371/journal.pcbi.1008647.g003
https://doi.org/10.1371/journal.pcbi.1008647


these iModulons represent combined effects of regulators (S5 Fig). These examples highlight a

limitation of the RBH method, as it is unable to detect whether an iModulon from one dataset

is a linear combination of iModulons from another dataset.

The analysis presented in this section shows that ICA recovers many consistent, technol-

ogy-independent signals across multiple gene expression datasets. This property is unique to

ICA as other dimensionality reduction methods, such as principal component analysis, do not

identify consistent components across datasets [33] (S6 Fig).

iModulon structure is consistent across genetically diverse strains

Even though all five expression datasets have been previously analyzed and published, iModu-

lons can uncover hidden information that was obscured in traditional differential expression

analysis. Here, we will demonstrate how iModulons enable deep understanding of mutations

acquired in laboratory evolutions.

The RNAseq-2 dataset contains 24 strains of E. coli that were evolved in the laboratory to

tolerate 12 different antibiotics [47]. The evolved strains were re-sequenced [48], and expres-

sion profiled under identical environmental backgrounds [34]. Using the condition-specific

iModulon activities, we could clearly connect mutations to distinct changes in gene

expression.

For example, the MarA/Rob iModulon was highly active in all strains with a mutation in

marR, rob, or acrR (Fig 4A). MarA and Rob are repressed by AcrR and MarR, indicating that

the mutations disrupted these transcription factors to de-repress MarA and Rob. On the other

hand, the Rob R156H mutation appears to increase the effectiveness of the activator. MarR,

MarA, Rob, AcrR, SoxR, and SoxS are all involved in a complex network regulating genes

related to antibiotic resistance and oxidative stress response (Fig 4B).

The SoxS iModulon also shows a clear pattern of activation that is correlated with the pres-

ence of soxR mutations (Fig 4C). SoxR activates SoxS, which upregulates genes related to oxi-

dative stress. Even though the mutations in SoxR seem disruptive, including a truncation

(L139�), the mutations appear to constitutively activate the protein. Similar mutations have

been shown to constitutively activate SoxR and confer multiple antibiotic resistance in clinical

isolates [49]. Although MarA, Rob, and SoxS share over 50% of their known gene targets, we

found distinct iModulons for SoxS and MarA/Rob that shared 10 genes (Fig 4D). The iModu-

lon activities for the SoxS and MarA/Rob iModulons show the strongest responses to muta-

tions in SoxR and MarR, respectively.

Larger genomic rearrangements can also affect the structure of the transcriptome. As

described previously, large deletions or duplications can result in Genomic iModulons that are

active for single strains. In this dataset, strains exhibiting high RcsAB iModulon activity also

harbored insertion sequence (IS)-mediated inversions that decrease the expression of the Lon

protease [50] (Fig 4E and 4F). Although Lon degrades RcsA, SoxS, and MarA, the effects were

clearest in the RcsAB iModulon. iModulons are a powerful tool to analyze new transcriptomic

data or extract new knowledge from previously published datasets. iModulons are especially

useful in connecting mutations to clear transcriptomic shifts, bridging the gap between geno-

type and phenotype.

Data integration increases the resolution of iModulons

iModulons represent the underlying structure of transcriptomics datasets. Since elements of

this structure were highly consistent across the five transcriptomics datasets, we combined the

datasets together to explore whether ICA would identify a similar structure in the combined

compendium, which contained 802 expression profiles (Fig 5A).
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We extracted 181 iModulons from the combined compendium and characterized them as

described previously (Fig 5B). The majority of iModulons from this combined compendium

(60%) were enriched with targets of a known transcriptional regulator. To understand the

effects of dataset integration, we compared the new iModulons to the iModulons from the

independent datasets.

First, we asked whether the iModulons identified in the original datasets were retained

upon data integration. From the RBH graph, 75% of the 181 iModulons in the combined com-

pendium could be directly linked back to at least one iModulon derived from an individual

dataset, many of which were linked to iModulons from two or more datasets (Fig 5C and S3

Table). The two datasets with the largest number of unique conditions, (RNAseq-1 and MA-1)

contained the most uniquely mapped iModulons, as these datasets were more likely to activate

niche transcriptional regulators.

We next asked why some iModulons were missing after data integration. Nearly all of the

92 missing iModulons were categorized as either Genomic or Uncharacterized (Fig 5D). Miss-

ing iModulons were weaker signals, each of which accounted for a significantly lower fraction

of expression variance than retained iModulons (Mann-Whitney-U Test p-value< 10−5,

S7A Fig).

Fig 4. iModulon activities capture the effects of mutations from adaptive evolution to multiple antibiotics. (A) Bar chart of activities for

the MarA/Rob iModulon. Individual points represent biological replicates. The heatmap below the bar chart shows the presence of mutations

in the specified gene for the specified strain. Strain names are described in Lazar et al [34]. (B) Regulatory network for antibiotic resistance in

E. coli. Black arrows indicate activation, and red arrows represent repression. Auto-regulation is not shown. (C) Bar chart of activities for the

SoxS iModulon, similar to panel (A). Heatmap shows the presence of mutations in soxR. (D) Venn diagram showing the overlap of genes in

the MarA/Rob iModulon and the SoxS iModulon. (E) Bar chart of activities for the RcsAB iModulon, similar to panel (A). Heatmap shows

the presence of a genomic inversion. (F) Schematic illustration of the genomic inversion upstream of lon. The inversion decreases lon
expression, resulting in longer residency times for MarA, SoxS, and RcsA.

https://doi.org/10.1371/journal.pcbi.1008647.g004
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On the other hand, we found 44 new iModulons in the combined compendium that could

not be traced back to the iModulons from the individual datasets. Of these new 44 iModulons,

21 represented the effects of transcriptional regulators that could not be discriminated in any

of the individual datasets alone, and 12 were dominated by a single gene (S7B and S7C Fig). A

previous study showed that over-decomposition of a transcriptomic dataset results in smaller

groups of genes found in each iModulon but does not affect the biological relevance of other

iModulons [51].

Next, we investigated whether dataset integration could change the quality of the Regula-

tory iModulons. Since a Regulatory iModulon consists of genes in a known regulon, the qual-

ity of a Regulatory iModulon can be assessed using the F1-score, which is the harmonic mean

of precision and recall of the iModulon compared to the regulon (S7D Fig). We inspected all

Fig 5. Decomposition of combined compendium results in increased resolution (A) Schematic illustration of data

integration. (B) Pie chart showing the categories of the 181 iModulons from the combined dataset. (C) Heatmap illustrating

which iModulons from the combined compendium were matched to iModulons in individual datasets in the RBH graph. The

total number of matches for each iModulon is shown in blue. Category of each iModulon is shown below. (D) Heatmap

illustrating how many iModulons from each category and dataset were not matched to an iModulon in the full compendium in

the RBH graph. (E) Pie chart illustrating the fraction of expression difference resulting from ppGpp-RNAP binding explained

by each iModulon. The norfloxacin-related iModulon is described in S7E Fig. (F) Boxplot of the Central Dogma iModulon

activities for expression profiles in the RNAseq-1 dataset. (G) Principal component loadings of the combined compendium

expression levels without batch correction. (H) Principal component loadings of the iModulon activities from the combined

compendium.

https://doi.org/10.1371/journal.pcbi.1008647.g005
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Regulatory iModulons that were found in both an individual dataset and the combined com-

pendium and found that the average F1-score increased from 0.53 to 0.58 (Wilcoxon Rank

Sum p-value = 10−4) (S7E Fig). This result showed that on average, Regulatory iModulons

from the combined compendium were more similar to defined regulons than the Regulatory

iModulons from individual datasets.

In summary, we found that many iModulons computed from a large multi-source dataset

reflected the iModulons identified in the individual datasets. In addition, data integration led

to (a) more iModulons that represent transcriptional regulation, and (b) higher quality iModu-

lons that reflect known regulation.

An iModulon is responsive to ppGpp

Eleven Uncharacterized iModulons in the combined compendium were connected to at least

two iModulons in the individual decompositions, and likely represent true biological signals.

For example, one Uncharacterized iModulon in the combined compendium was linked back

to four of the five individual datasets. These four iModulons created the only uncharacterized

moderately-reproducible cluster in Fig 3A. Although this iModulon was not enriched in any

GO term, it contained many genes encoding functions related to the central dogma of molecu-

lar biology, such as rRNA and tRNA modification, RNases, and helicases (S7F Fig). Therefore,

we named it the “Central Dogma” iModulon. Over half of the genes in this iModulon are not

known to be regulated by any transcription factor, and the remaining genes are not enriched

in any common regulator.

A recent study found that binding of ppGpp, the stringent response alarmone [52], to RNA

polymerase (RNAP) directly down-regulated 428 genes [53], including 48 of the 54 genes in

Central Dogma iModulon. The Central Dogma iModulon explained 26% of the expression

variation between strains affected by ppGpp-RNAP binding and the wild-type strain (Figs 5E

and S7G). Additionally, an RNAP mutant strain exhibits the highest Central Dogma activity in

the RNAseq-1 dataset (Fig 5F), providing evidence that the point mutation affects ppGpp

binding to RNAP [54]. We therefore propose that this iModulon represents the direct tran-

scriptomic effect of ppGpp-RNAP binding.

This example shows that conserved uncharacterized iModulons may represent new tran-

scription factors or other less-characterized forms of transcriptional regulation.

iModulon activities cannot be compared across disparate datasets

Finally, we checked whether the iModulon activities were affected by dataset integration.

When we apply ICA to an expression profiling dataset, we obtain the M matrix, encoding

the iModulon structure, and an A matrix, which contains activity levels for each iModulon

across every expression profile (Figs 1A and 5A). We have focused our analysis thus far on

the invariant properties of the M matrix, and briefly discuss the effects of data integration

on the A matrix. iModulon activities reflect the overall change in expression of the iModu-

lon genes and serve as a proxy for transcription factor activities [26]. Therefore, it is impor-

tant to ensure that the relative iModulon activities are unchanged upon dataset integration.

The absolute Pearson R correlation weighting between the iModulon activities of linked

components showed that most iModulon activities are unaffected by dataset integration

(S7H Fig).

Previously, principal component analysis (PCA) of integrated expression datasets revealed

that the source of each dataset was the dominant discriminator [55,56]. This result is recapitu-

lated in our combined compendium (Fig 5G). However, since the iModulon structure of each

dataset (encoded in M) is consistent across datasets, we see that technical heterogeneity is
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stored in the activity matrix (A) (Fig 5H). Therefore, iModulon activities cannot be compared

across datasets, but can still reliably be compared within the same dataset.

Predicting new regulons using big data

Since ICA could accurately identify iModulons from a combined dataset containing

multiple expression profiling platforms, we applied our iModulon analytical pipeline to the

COLOMBOS microarray dataset containing over 3,000 E. coli expression profiles [3]. The

COLOMBOS dataset reports all microarray datasets centered with respect to dataset-specific

reference conditions, as we have done in the RNA-seq and microarray datasets discussed thus

far.

We identified 243 iModulons in the COLOMBOS dataset, of which 119 were enriched with

a transcriptional regulator (Fig 6A). Due to the large number of datasets, we did not annotate

Genomic iModulons, resulting in 103 Uncharacterized iModulons. Using the RBH approach,

over half of the iModulons extracted from the COLOMBOS dataset were linked to iModulons

found in the combined compendium described in the previous section (Fig 6B). Most of the

Regulatory iModulons shared between the compendia displayed near-perfect overlap (Fig 6C).

An additional eight of shared iModulons were uncharacterized in both datasets, indicating

that they may represent true biological signals rather than expression noise. We propose bio-

logical or regulatory roles for three of these iModulons.

The first Uncharacterized iModulon contained 4 genes in the COLOMBOS iModulon, and

6 genes in the combined compendium (Fig 6D). Five of these genes (hiuH, msrP, msrQ, hprR,

hprS) are in close genomic proximity (Fig 6E) and have an upstream binding site for the two-

component system response regulator HprR [57]. Additionally, expression of msrP and msrQ
was found to be dependent on a functional HprRS system [58]. Although only hiuH has been

validated as a member of the HprR regulon [57], we propose that this iModulon is regulated

by HprR. iModulon activities provide additional support for this claim. The HprRS two-com-

ponent system responds to hydrogen peroxide [57]. COLOMBOS contains a dataset treated

with hydrogen peroxide, which exhibits high HprR iModulon activity (Fig 6F).

The second Uncharacterized iModulon contains 11 shared genes in four operons: ynjXY-
ZABCD, yedEF, yjiLM, and ynjE (Fig 6G). Of these eleven genes, the only characterized gene is

ynjE, a molybdopterin sulfurtransferase. Two additional genes have putative functions: yedE is

a putative selenium transporter and yedF is a putative sulfurtransferase. This iModulon is

more active in anaerobic conditions than aerobic conditions (Fig 6H), but the iModulon’s

activity is lower in Fnr and ArcA mutant strains than the wild-type strain under nitrate respi-

ration (Fig 6I). Anaerobic and nitrate respiration require the use of molybdoenzymes, such as

nitrate reductase and selenocysteine-containing formate dehydrogenases[59]. Altogether, we

propose that this iModulon is related to molybdenum and selenium usage and is likely integral

to the proper functioning of molybdoenzymes under fermentative conditions. Although it is

not clear which regulator controls this iModulon, the regulator is likely activated by Fnr and

potentially repressed by ArcA, based on the activity levels of the mutant strains.

The final Uncharacterized iModulon contains 15 shared genes, many of which are located

on the inner membrane or in the periplasm (Fig 6J). Notably, the iModulon contains a peri-

plasmic chaperone (ivy), an outer membrane metalloprotease (loiP), and a heat shock-induced

lipoprotein (hslJ). Many genes in this iModulon have been associated with the envelope stress

Rcs-phosphorelay [60]. This iModulon is specifically active when treated with cell envelope

damaging antimicrobial agents, such as polymyxin B, colicin, and a combination therapy of

cefsulodin and mecillinam (Fig 6K, 6L, and 6M). Polymyxin B destabilizes the cell membrane

and is often used as a last-resort antibiotic for multi-drug resistant E. coli infections [61]. Even
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Fig 6. Predicting regulons using big data. (A) Pie chart displaying the number of Regulatory, Functional and

Uncharacterized iModulons extracted from the COLOMBOS E. coli compendium. (B) Venn diagram illustrating the

number of iModulons shared between the COLOMBOS compendium and the combined dataset discussed in Fig 5. (C)

Histogram of the overlap coefficients between the 131 shared iModulons between COLOMBOS and the combined

dataset. (D) Scatter plot of the iModulon gene weights for the putative HprR iModulon. Purple genes are in both the

iModulon from COLOMBOS and the iModulon from the combined dataset iModulon. Red genes are only in the

iModulon from COLOMBOS, and blue genes are only in the iModulon from the combined dataset. The dashed lines

indicate iModulon thresholds, and the gray diagonal line is the 45-degree line. (E) Schematic representation of the genes

near hprR. (F) Bar chart of the putative HprR iModulon activities from GEO dataset GSE35371. (G) Scatter plot of the

iModulon gene weights for an uncharacterized iModulon. Colors are identical to panel (d). (H and I) Relative iModulon

activities of the iModulon from panel (G) from GEO datasets GSE21839 and GSE55365, respectively. Each dataset is

centered to its own reference condition, so relative activities cannot be compared across bar charts. (J) Scatter plot of the

iModulon gene weights for the antibiotic-responsive uncharacterized iModulon. (K and L and M) Bar chart of the

antibiotic-responsive iModulon activities from GEO datasets GSE31140, GSE37026, and GSE10158.

https://doi.org/10.1371/journal.pcbi.1008647.g006
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though there is insufficient evidence to identify which regulator controls this iModulon, it is

clear from the iModulon activities that these genes warrant further investigation.

In this section, we showed that ICA is scalable to thousands of expression profiles. Although

the COLOMBOS dataset contains multiple E. coli strains, the overall iModulon structure was

consistent with the iModulon structure identified from our combined microarray and RNA-

seq compendium. In addition, we highlighted three iModulons with clear co-regulation evi-

dence that are activated by hydrogen peroxide, anaerobic respiration, and antimicrobial

agents, respectively. The myriad of uncharacterized genes in these iModulons are promising

targets for in-depth functional characterization.

Discussion

Matrix decomposition is a powerful approach to extract knowledge from large transcriptomics

datasets. In particular, we have shown that ICA identifies highly similar structures between

dissimilar datasets for the model bacteria E. coli. In addition, a combined compendium pro-

duced many identical iModulons as the individual datasets and could distinguish further sig-

nals that could not be identified in the separate datasets. The iModulons derived from the

compendium can be applied to interpret new datasets, accelerating discovery and providing a

standard framework that could be used to investigate any transcriptional regulator.

Throughout this study, we observed various properties of the iModulon decompositions: (1)

iModulons co-occurring in multiple datasets tend to represent the effects of transcriptional regula-

tors, (2) iModulon detection from a data set is dependent on the experimental conditions used to

generate it, (3) ICA can be applied to cross-platform transcriptomic compendia without the need

for normalization, (4) integration of data sets reveals iModulons not found in individual data sets,

and (5) iModulons found in multiple independent datasets represent targets for regulon discovery.

In all five transcriptomic E. coli datasets, most iModulons could be characterized as repre-

senting the effects of a transcriptional regulator or a gene knock-out (i.e., Regulatory or Geno-

mic). However, when extending to less-characterized organisms, it could be difficult to

determine whether the remaining iModulons are technical artifacts or contain true biological

insight, as demonstrated by the Central Dogma iModulon. This example demonstrates that if

an iModulon is identified in multiple datasets, or if an iModulon persists upon addition of

new datasets, then it could represent a true transcriptional signal.

Another important note is that the iModulons extracted from each dataset are sensitive to

the experimental conditions that are represented in the dataset; ICA cannot extract an iModu-

lon for a transcription factor whose activity never changes. Additionally, the CysB iModulons

demonstrated that iModulons may represent the effects of multiple regulators, when the activi-

ties of the regulators are highly correlated across the measured conditions. However, adding

new data or increasing the dimensionality of the decomposition can decouple the regulators,

splitting the iModulon into its biological parts [24,51].

In contrast to the condition-invariant iModulon structure, iModulon activities represent

the condition-dependent dynamics of expression profiles. In this study, we do not apply any

normalization techniques to the data and clearly observe batch effects in the activity matrix of

the combined compendium. Further work comparing identical experimental conditions from

separate protocols is required to enable iModulon activity comparisons across datasets.

We have shown that the E. coli transcriptome contains a conserved, underlying structure that

is found across multiple independent datasets. Previously, we also showed that this structure also

exists across strains within a species [24]. This powerful observation enables unprecedented re-

analyses of thousands of previously published datasets for a wide range of microbial organisms

and demonstrates how data science can unlock hidden potential in complex biological datasets.
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Methods

Rna-seq and microarray data processing

The full, log-transformed transcripts-per-million (log-TPM) for the RNAseq-1 dataset [24]

was obtained from https://github.com/SBRG/precise-db. Raw data comprising the RNAseq-2

compendium were obtained from NCBI SRA under the bioproject accession number

PRJNA379428 [34]. Raw data was processed using a similar process as described in Sastry et al.

[24]. Raw sequencing reads were mapped to the reference genome (NC_000913.3) using bow-

tie (v1.1.2)[62] with the following options “-X 1000 -n 2–3 3”. Transcript abundance was quan-

tified using summarizeOverlaps from the R GenomicAlignments package (v1.18.0), with the

following options “mode = “IntersectionStrict”, singleEnd = FALSE, ignore.strand = FALSE,

preprocess.reads = invertStrand”[63]. Transcripts per million (TPM) were calculated by

DESeq2 (v1.22.1)[64]. The final expression dataset was log-transformed log2 (TPM + 1) before

analysis, referred to as log-TPM.

CEL files were obtained for the three microarray datasets from NCBI GEO [1] (see S1 Data-

set for accession numbers). In order to build large enough datasets for analysis, datasets MA-2

and MA-3 included all public data available from our research group that used the same

expression platform. Each microarray dataset was normalized using robust multichip average

(RMA) with default arguments from the R package affy [65].
As the probes in microarrays may vary across platforms, only genes that were measured in

all 5 datasets (3880 genes) were included in the analysis. Low quality expression profiles that

clustered separately from the rest of the dataset were removed from the MA-1 and MA-2 data-

sets (See S1 Dataset). Each dataset was individually centered by subtracting the average expres-

sion profile across the replicates of a dataset-specific reference condition (see S1 Dataset). To

create the combined compendium, the centered datasets were concatenated, without any addi-

tional normalization.

Only genes measured in all five datasets were retained, resulting in 3880 genes per dataset.

Gene names, b-numbers, operons, and descriptions were obtained from Ecocyc [66]. Clusters

of orthologous groups (COG) annotations were obtained from eggNOG 4.5.1 [67]. Additional

annotations were obtained from Gene Ontology [68]. The transcriptional regulatory network

(TRN) for transcription factors, small RNAs, and sigma factors was obtained from RegulonDB

v10.0 [69] and supplemented with newly identified regulons from recent publications [24,44].

Riboswitches, tRNA-mediated attenuation, and dksA binding sites were obtained from Ecocyc

[66] and UTP/CTP-dependent attenuation and reiterative transcription were obtained from

Turnbough and Switzer [70]. All annotations for the 3880 genes are reported in S8 Dataset.

The COLOMBOS dataset was downloaded from http://colombos.net/ and all reference

conditions were removed. Microarray profiles with over 300 empty values were discarded, and

genes with any empty values in the remaining profiles were excluded. Replicate profiles with a

Pearson correlation below 0.2 were also discarded, resulting in 3,016 final expression profiles.

Independent component analysis

ICA decomposes a matrix (X) into two matrices: S contains the independent signals, or struc-

ture, of the dataset, and A contains the condition-dependent activities of the signals:

X ¼ S:A ð1Þ

ICA was applied to each individual dataset and the combined compendium, as described in

Sastry et al.[24]. Briefly, we executed FastICA 100 times with random seeds and a convergence

tolerance of 10−6 for microarray and RNA-seq data, and a convergence tolerance of 10−3 for
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COLOMBOS data. We constrained the number of independent components (ICs) in each iter-

ation to the number of components that reconstruct 99% of the variance as calculated by prin-

cipal component analysis. For the COLOMBOS dataset, we used the number of components

that reconstructed 95% of the variance to reduce computation time. The resulting ICs were

clustered using DBSCAN to identify robust ICs, with parameters with epsilon of 0.1, and mini-

mum cluster seed size of 50. This process was repeated 10 times, and only ICs that consistently

occurred in all runs were kept.

As described in Sastry et al.[24], iModulons were extracted from ICs by iteratively removing

genes with the largest absolute value and computing the D’agostino K2 test statistic of the

resulting distribution. Once the test statistic fell below a cutoff, we designated the removed

genes as the “iModulon”.

To identify this cutoff for each individual dataset, we performed a sensitivity analysis on the

concordance between significant genes in each IC and all known regulons. First, we isolated the 20

genes from each IC with the highest absolute gene weightings. We then compared each gene set

against all known regulons using the one-sided Fisher’s Exact Test (FDR< 10−5). For each compo-

nent with at least one significant enrichment, we selected the regulator with the lowest p-value.

Next, we varied the D’Agostino K2 test statistic from 200 through 1000 in increments of 50.

Using the protocol defined above, iModulons were extracted from ICs at each test statistic

value, and the F1-score (harmonic average between precision and recall) was computed

between the significant genes and its linked regulator. The test statistic with the maximum

F1-score was used as the test statistic cutoff for the respective dataset.

Characterizing iModulons

We compared the set of significant genes in each iModulon to each regulon (defined as the set

of genes regulated by any given regulator) using the one-sided Fisher’s Exact Test (FDR < 10−-

5). We then compared the significant genes in each iModulon to the genes in each Gene Ontol-

ogy (GO) term using the one-sided Fisher’s Exact Test (FDR < .01). We added prophage

information from Ecocyc to our GO database to capture iModulons representing prophages.

In general, the final annotation was selected by the enrichment with the lowest q-value. Some

iModulon annotations were manually curated, as denoted in S5 Dataset. Genomic iModulons

were also manually curated by (1) comparing iModulon genes to known genetic alterations

(e.g., knock-outs or overexpression), and (2) validating that the iModulon activities were

affected in the appropriate direction for the corresponding strain.

Comparing iModulon structures

To compare the complete structure of the transcriptomic datasets, we constructed the recipro-

cal best hit (RBH) graphs using the full IC gene weightings, rather than just the iModulon

genes. We generated the RBH graph as described in Cantini et al. 2019 [33], using the follow-

ing distance metric to compare ICs:

dx;y ¼ 1 � jrx;yj

where ρx,y is the Pearson correlation between components x and y.
The Pearson correlation between two iModulons serves as a lower bound of the Szymkie-

wicz-Simpson overlap coefficient, which measures the level of overlap between two differ-

ently-sized sets (S8 Fig). We pruned all RBHs to remove links between ICs with similarities

below 0.3, since the highest similarity between iModulons from the same dataset was 0.27. The

full graph is shown in S1 Fig. The RBH graph was plotted using GraphViz [71].
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Linear regression of iModulons

Regression of the MA-3 CysB iModulon was performed using the LinearRegression function

from Scikit-learn [72]. The ten ICs from the RNAseq-1 dataset with the highest absolute IC

gene correlations with each of the CysB iModulon (See Table S1).

Inference of iModulon activities

Raw reads for the ppGpp-RNAP dataset were downloaded from NCBI SRA (PRJNA504613)

and processed as described above into log-TPM expression values. Two experimental condi-

tions were selected for comparison, both using the wild-type strain with active relA, at 0 and 5

minutes after IPTG induction. Log-TPM expression values were averaged across triplicates.

To infer iModulon activities and calculate the amount of variance that iModulons explain

between the two datasets, we first centered the two averaged expression profiles, then com-

puted the gene-wise difference. The change in iModulon activity was calculated by multiplying

the expression difference (ΔX) by the pseudo-inverse of the S matrix from the full compen-

dium:

DA ¼ pinvðSÞ � DX

Where pinv is the pseudoinverse function.

Explained variance

Explained variance between two conditions was calculated as follows:

Explained Variancek ¼
P
ðDXÞ2 �

P
ðDX � SkDAkÞ

2

P
ðDXÞ2

Where k is the iModulon of interest.

Supporting information

S1 Fig. Relative standard deviation (STD) of iModulon activities between replicates for

each iModulon in (a) RNA-seq datasets, and (b) microarray datasets.

(TIF)

S2 Fig. iModulons in MA-3 that are linear combinations of iModulons in RNAseq-1. Top

scatter plot shows the MA-3 iModulon gene weights compared against the best hit iModulon

in the RNAseq-1 dataset. Bottom scatter plot shows the linear combination of RNAseq-1 iMo-

dulons listed on the x-axis label.

(TIF)

S3 Fig. Reciprocal best hit (RBH) graph containing all edges from the five datasets. Edges

with an IC Gene Weighting similarity score below 0.3 were pruned from Fig 2.

(TIF)

S4 Fig. Characteristics of the only Genomic iModulon found in more than one dataset. (a)

Activities of the iModulon in the RNAseq-1 dataset separate E. coli strains evolved for growth

on the non-native carbon source D-lyxose from the other strains in the compendium [1]. (b)

Activities of the uncharacterized iModulon in MA-1 that was linked to the iModulon

described in panel (a). Seven strains were evolved in parallel for growth on D-lactate [38], but

only two endpoint strains (named Lac2 and Lac3) exhibited high iModulon activities. These

strains were not re-sequenced, so the adaptive mutations could not be confirmed. (c) Scatter
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plot showing the IC gene weightings corresponding to the iModulons described in panel (a)

(in black) and panel (b) (in red). Thresholds determining iModulon composition are indicated

by dashed lines. The genomic duplication from the D-lyxose-evolved strains is highlighted in

gray, indicating that all strains with high activities likely acquired an identical duplication

along their evolutionary trajectory. Two transcription units outside of the duplicated region

were captured in both iModulons, the galETK transcription unit, and the galP gene. These

genes are responsible for D-galactose catabolism.

(TIF)

S5 Fig. Investigation of a complex iModulon cluster. Each dataset contains a different set of

conditions, which can activate different groups of respiration-related genes leading to different

co-expression patterns between datasets. (a) The complex iModulon cluster shows that two

iModulons from the RNAseq-1 dataset are indirectly connected. (b) Scatterplots of the IC gene

weights for the iModulons highlighted in (a). The Pearson R correlation of the IC gene weights

is shown below. The two RNAseq-1 iModulons show no correlation, but still contain a few

genes in common, indicating that the expression of these shared genes are controlled by two

distinct underlying sources.

(TIF)

S6 Fig. Reciprocal best hit (RBH) graph of Principal Components from all 5 transcrip-

tomic datasets. Edges with a gene weighting similarity score below 0.3 were pruned from this

figure. Few iModulons have a reciprocal best hit, and no conserved clusters exist when analyz-

ing Principal Components.

(TIF)

S7 Fig. Effects of data integration on iModulon structure and activity. (a) Histogram of the

percent of total expression explained by each independent component in the individual data-

sets. Components that are maintained (i.e., identify an RBH hit with the full compendium

decomposition) are colored in pink, whereas components that are lost upon data integration

are colored in blue. (b) Pie chart illustrating the classes of the new iModulons extracted from

the combined datasets. (c) Histogram of the IC gene coefficients of a Single Gene component.

Dashed lines indicate the iModulon threshold. (d) Schematic illustration of precision, recall,

and F1-score. (e) Boxplots of the F1-scores between iModulons and their associated regulators

for Regulatory iModulons. Only Regulatory iModulons in the individual dataset that found an

RBH in the full compendium are shown in the left boxplot, and the RBH of these iModulons

in the full dataset are shown in the right boxplot. (f) Schematic illustration of the various pro-

cesses encoded by the genes in the Central Dogma iModulon. (g) Time-course treatment of

DNA-damage inducing norfloxacin activates an iModulon that shows reduced activity when

RNAP is bound by ppGpp. (h) Histogram of absolute Spearman correlations between iModu-

lon activities in components that are RBHs in the full dataset compared to the individual data-

sets.
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S8 Fig. Comparison of Szymkiewicz-Simpson overlap coefficient and Pearson R correla-

tion coefficient for linked iModulons.

(TIF)

S1 Table. Reciprocal best hits between the iModulons from the five transcriptomic data-
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8. ‘t Hoen PAC, Friedländer MR, Almlöf J, Sammeth M, Pulyakhina I, Anvar SY, et al. Reproducibility of

high-throughput mRNA and small RNA sequencing across laboratories. Nat Biotechnol. 2013; 31:

1015–1022. https://doi.org/10.1038/nbt.2702 PMID: 24037425

9. Goh WWB, Wang W, Wong L. Why Batch Effects Matter in Omics Data, and How to Avoid Them.

Trends Biotechnol. 2017; 35: 498–507. https://doi.org/10.1016/j.tibtech.2017.02.012 PMID: 28351613

10. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehen-

sive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37: 1–13. https://doi.org/10.1093/

nar/gkn923 PMID: 19033363

11. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehen-

sive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016; 44: W90–7.

https://doi.org/10.1093/nar/gkw377 PMID: 27141961

12. Teng M, Love MI, Davis CA, Djebali S, Dobin A, Graveley BR, et al. A benchmark for RNA-seq quantifi-

cation pipelines. Genome Biol. 2016; 17: 74. https://doi.org/10.1186/s13059-016-0940-1 PMID:

27107712

13. Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq

data. BMC Bioinformatics. 2013; 14: 91. https://doi.org/10.1186/1471-2105-14-91 PMID: 23497356

14. Stein-O’Brien GL, Arora R, Culhane AC, Favorov AV, Garmire LX, Greene CS, et al. Enter the Matrix:

Factorization Uncovers Knowledge from Omics. Trends Genet. 2018; 34: 790–805. https://doi.org/10.

1016/j.tig.2018.07.003 PMID: 30143323

15. Way GP, Greene CS. Discovering Pathway and Cell Type Signatures in Transcriptomic Compendia

with Machine Learning. Annu Rev Biomed Data Sci. 2019; 2: 1–17.

16. Sompairac N, Nazarov PV, Czerwinska U, Cantini L, Biton A, Molkenov A, et al. Independent Compo-

nent Analysis for Unraveling the Complexity of Cancer Omics Datasets. Int J Mol Sci. 2019; 20. https://

doi.org/10.3390/ijms20184414 PMID: 31500324

17. Kong W, Vanderburg CR, Gunshin H, Rogers JT, Huang X. A review of independent component analy-

sis application to microarray gene expression data. Biotechniques. 2008; 45: 501–520. https://doi.org/

10.2144/000112950 PMID: 19007336

18. Karczewski KJ, Snyder M, Altman RB, Tatonetti NP. Coherent functional modules improve transcription

factor target identification, cooperativity prediction, and disease association. PLoS Genet. 2014; 10:

e1004122. https://doi.org/10.1371/journal.pgen.1004122 PMID: 24516403

19. Engreitz JM, Daigle BJ Jr, Marshall JJ, Altman RB. Independent component analysis: mining microarray

data for fundamental human gene expression modules. J Biomed Inform. 2010; 43: 932–944. https://

doi.org/10.1016/j.jbi.2010.07.001 PMID: 20619355

PLOS COMPUTATIONAL BIOLOGY Expression signals are conserved across disparate datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008647 February 2, 2021 20 / 23

https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gks1193
http://www.ncbi.nlm.nih.gov/pubmed/23193258
https://doi.org/10.1093/nar/gky964
http://www.ncbi.nlm.nih.gov/pubmed/30357387
https://doi.org/10.1093/nar/gkv1251
http://www.ncbi.nlm.nih.gov/pubmed/26586805
https://doi.org/10.1016/j.cell.2014.06.049
http://www.ncbi.nlm.nih.gov/pubmed/25109877
https://doi.org/10.1371/journal.pone.0078644
https://doi.org/10.1371/journal.pone.0078644
http://www.ncbi.nlm.nih.gov/pubmed/24454679
https://doi.org/10.1038/nbt1239
http://www.ncbi.nlm.nih.gov/pubmed/16964229
https://doi.org/10.1038/nbt.2957
http://www.ncbi.nlm.nih.gov/pubmed/25150838
https://doi.org/10.1038/nbt.2702
http://www.ncbi.nlm.nih.gov/pubmed/24037425
https://doi.org/10.1016/j.tibtech.2017.02.012
http://www.ncbi.nlm.nih.gov/pubmed/28351613
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1093/nar/gkn923
http://www.ncbi.nlm.nih.gov/pubmed/19033363
https://doi.org/10.1093/nar/gkw377
http://www.ncbi.nlm.nih.gov/pubmed/27141961
https://doi.org/10.1186/s13059-016-0940-1
http://www.ncbi.nlm.nih.gov/pubmed/27107712
https://doi.org/10.1186/1471-2105-14-91
http://www.ncbi.nlm.nih.gov/pubmed/23497356
https://doi.org/10.1016/j.tig.2018.07.003
https://doi.org/10.1016/j.tig.2018.07.003
http://www.ncbi.nlm.nih.gov/pubmed/30143323
https://doi.org/10.3390/ijms20184414
https://doi.org/10.3390/ijms20184414
http://www.ncbi.nlm.nih.gov/pubmed/31500324
https://doi.org/10.2144/000112950
https://doi.org/10.2144/000112950
http://www.ncbi.nlm.nih.gov/pubmed/19007336
https://doi.org/10.1371/journal.pgen.1004122
http://www.ncbi.nlm.nih.gov/pubmed/24516403
https://doi.org/10.1016/j.jbi.2010.07.001
https://doi.org/10.1016/j.jbi.2010.07.001
http://www.ncbi.nlm.nih.gov/pubmed/20619355
https://doi.org/10.1371/journal.pcbi.1008647


20. Teschendorff AE, Journée M, Absil PA, Sepulchre R, Caldas C. Elucidating the altered transcriptional

programs in breast cancer using independent component analysis. PLoS Comput Biol. 2007; 3: e161.

https://doi.org/10.1371/journal.pcbi.0030161 PMID: 17708679

21. Biton A, Bernard-Pierrot I, Lou Y, Krucker C, Chapeaublanc E, Rubio-Pérez C, et al. Independent com-
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uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Res. 2018.

https://doi.org/10.1093/nar/gky752 PMID: 30137486

45. Tan WKJ. Multi-omic characterization of E. coli for the purpose of microbial-based production. UC San

Diego. 2019. Available: https://escholarship.org/uc/item/9qp92367

46. Ward N, Moreno-Hagelsieb G. Quickly finding orthologs as reciprocal best hits with BLAT, LAST, and

UBLAST: how much do we miss? PLoS One. 2014; 9: e101850. https://doi.org/10.1371/journal.pone.

0101850 PMID: 25013894
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