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Abstract

Mathematical models have become very influential, especially during the COVID-19 pan-

demic. Data and code sharing are indispensable for reproducing them, protocol registration

may be useful sometimes, and declarations of conflicts of interest (COIs) and of funding are

quintessential for transparency. Here, we evaluated these features in publications of infec-

tious disease-related models and assessed whether there were differences before and dur-

ing the COVID-19 pandemic and for COVID-19 models versus models for other diseases.

We analysed all PubMed Central open access publications of infectious disease models

published in 2019 and 2021 using previously validated text mining algorithms of transpar-

ency indicators. We evaluated 1338 articles: 216 from 2019 and 1122 from 2021 (of which

818 were on COVID-19); almost a six-fold increase in publications within the field. 511

(39.2%) were compartmental models, 337 (25.2%) were time series, 279 (20.9%) were spa-

tiotemporal, 186 (13.9%) were agent-based and 25 (1.9%) contained multiple model types.

288 (21.5%) articles shared code, 332 (24.8%) shared data, 6 (0.4%) were registered, and

1197 (89.5%) and 1109 (82.9%) contained COI and funding statements, respectively. There

was no major changes in transparency indicators between 2019 and 2021. COVID-19 arti-

cles were less likely to have funding statements and more likely to share code. Further vali-

dation was performed by manual assessment of 10% of the articles identified by text mining

as fulfilling transparency indicators and of 10% of the articles lacking them. Correcting esti-

mates for validation performance, 26.0% of papers shared code and 41.1% shared data. On

manual assessment, 5/6 articles identified as registered had indeed been registered. Of arti-

cles containing COI and funding statements, 95.8% disclosed no conflict and 11.7%

reported no funding. Transparency in infectious disease modelling is relatively low, espe-

cially for data and code sharing. This is concerning, considering the nature of this research

and the heightened influence it has acquired.
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Introduction

A large number of infectious disease-related models are published in the scientific literature

and their production and influence has rapidly increased during the COVID-19 pandemic.

Such models can inform and shape policy, and have also been the subject of much debate [1–

4], surrounding a range of issues, including their questionable predictive accuracy and their

transparency [5–7].

Sharing of data and of code is totally indispensable for these models to be properly evalu-

ated, used, reused, updated, integrated, or compared with other efforts. Without being able to

rerun a model, it resembles a black box where blind trust is requested on its function and cred-

ibility. Moreover, other features of transparency, such as declaration of funding and of poten-

tial conflicts of interest (COI) are also important to have since many of these models may be

very influential on deciding policy with major repercussions. Another feature of transparency

that may aid reproducibility and trust in these models sometimes is the registration of their

protocols, ideally in advance of their conduct. Registration is concept that receives increasing

attention in many scientific fields [8–10] as a safeguard of trust. Registration may not be easy

or relevant to have for many mathematical models, especially those that are exploratory and

iterative [5]. However, it may be feasible and desirable to register protocols about models in

some circumstances [5].

There have previously been empirical evaluations of research practices, including docu-

mentation and transparency in subfields of mathematical modeling [11–13] that have shown

that data and code/algorithm sharing has improved somewhat over time but that it still

remains suboptimal. Yet, to our knowledge, in the field of infectious disease modelling there

has been no comprehensive, large-scale analysis of such transparency and reproducibility indi-

cators. It would be of interest to explore the state of transparency in this highly popular field,

especially in the context of the rapid and massive adoption of mathematical models during the

COVID-19 pandemic. Therefore, we decided to evaluate infectious disease modeling studies

using large-scale algorithmic extraction of information on several transparency and reproduc-

ibility indicators (code sharing, data sharing, registration, funding, conflicts of interest). We

compared these features in articles published before and during the pandemic (in 2019 and

2021, respectively) and in articles on COVID-19-related models and models related to other

infectious diseases.

Materials and methods

This study is a meta-epidemiological survey of transparency indicators present in four com-

mon types of infectious disease models (compartmental, spatiotemporal, agent-based/individ-

ual based and time-series) indexed in the PubMed Central Open Access (PMC OA) Subset of

PubMed. The study is reported using the STROBE guidelines [14]. The code needed for the

analysis of our data used R [15] and Python [16].

Search and screening

We developed a search strategy to identify papers published from 2019 and 2021 in English in

PMC OA subset that included models of infectious diseases: model�[tiab] OR forecast�[tiab]

OR predict�[tiab]) AND (SIR-models[tiab] OR SIR[tiab] OR SIRS[tiab] OR SEIR[tiab] OR

SEIR-model[tiab] OR SIRS-model[tiab] OR agent-based[tiab] OR spatiotemporal[tiab] OR

nowcast[tiab] OR backprojection[tiab] OR "traveling waves"[tiab] OR (time series[tiab] OR

time-series[tiab])) NOT (rat model�[ti] OR murine model�[ti] OR animal model�[ti] OR

mouse model�[ti] OR primate model�[ti]) AND (infect� OR transmi� OR epidem�. The model
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types that were included were compartmental models, spatiotemporal models, agent-based/

individual-based models and time series models. They were defined as follows:

(i) Compartmental models assign subsets of the population to different classes according to

their infection status (e.g., susceptible exposed, recovered etc.) and models the population

parameters of the disease according to assumed transmission rates between these subsets

[17].

(ii) Spatiotemporal models explore and predict the temporal and geographical spread of infec-

tious diseases (usually using geographic time series data).

(iii) Agent-based/ individual based models are computer simulations of the interaction of

agents with unique attributes regarding spatial location, physiological traits and/or social

behavior [18, 19]. Finally,

(iv) Time-series models other than spatiotemporal were also included that use trends in num-

ber of infected or deaths or any other parameter of interest to predict future trends and

numbers of spread [20].

We excluded clinical predictive, prognostic, and diagnostic models and included only mod-

els of infectious agents that can infect humans (i.e. both zoonotic diseases as well as diseases

exclusive to humans). All screening and analysis was conducted by EAZ in two eligibility

assessment rounds. In the first round, eligibility was assessed based on the title and abstract; in

the second where the model type and disease type was extracted, eligibility was also assessed by

perusing the article in more depth. After this round, in unclear cases EAZ consulted JPAI and

these cases were settled with discussion.

Data extraction

For each eligible study, we extracted information on the model type and disease type manually.

For model type, whenever cases came up that were not clear-cut EAZ and JPAI conferred as to

what category was sensible. Some phylogenetic models were included and classified as spatio-

temporal if they had spatiotemporal aspects. When there were multiple model types in a single

paper it was classified as ‘Multiple’. For disease, we used categories defined based on the infec-

tious agent of interest that was studied. The “Unspecified” category included studies not men-

tioning a specific infectious agent but a clinical syndrome (i.e. urinary tract infection or

pneumonia etc.), the “General (theoretical models)” category included studies that didn’t

model a specific disease (i.e. a theoretic pandemic). Finally, where multiple diseases were men-

tioned, the papers were categorised in a separate category as ‘Multiple different agents’ (i.e.

HIV and tuberculosis). Where vectors of diseases such as mosquitos were modelled to predict

spread of multiple diseases, we classified the disease as ‘Vector’.

For each eligible article we used PubMed to extract information on metadata that included

PMID, PMCID, publication year, journal name and the R package rtransparent [21] to extract

the following transparency indicators: (i) code sharing (ii) data sharing (iii) (pre-)registration,

(iv) COI and (v) funding statements.

rtransparent searches through the full text of the papers for specific words or phrases that

strongly suggest that the aforementioned transparency indicators are present in that particular

paper. The program uses regular expressions to adjust for variations in expressions. For example,

to identify code sharing, rtransparent looks for “code” and “available” as well as the repository

“GitHub” and its variations, and in a paper selected [22] from our dataset it finds the following:

“the model and code for reproducing all figures in this manuscript from model output are pub-

licly available online (https://github.com/bdi-pathogens/openabm-covid19-model-paper)”
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The approach has been previously validated and tested in Serghiou et al. [21] across the

entire biomedical literature and has a positive predictive value (PPV) of 88.2% (81.7%-93.8%)

and negative predictive value (NPV) of 98.6% (96.2–99.9%) for code sharing; 93.0% (88.0%-

97.0%) and 94.4% (89.1%-97.0%) for data sharing, 92.1% (88.3–98.6%) and 99.8% (99.7%-

99.9%) for registration, 99.9% (99.7%-100.0%) and 96.8% (94.4%-99.1%) for COI disclosure

and 99.7% (99.3%-99.9%) and 98.1% (96.2%-99.5%) for funding disclosures.

To further validate the performance of the algorithms in detecting code sharing and data

sharing reliably, a random sample of 10% of publications that the algorithm identified as shar-

ing code and 10% of those that the algorithm identified as sharing data were manually assessed

looking into whether the statements indeed represented true sharing. All papers that were

identified by the algorithm to have registration were assessed manually to verify whether regis-

tration had been performed. After a suggestion by a reviewer, we also examined manually ran-

dom samples of 10% of the publications that were found by the algorithm to have not satisfied

each indicator. The corrected proportion C(i) of publications satisfying an indicator i was

obtained by U(i) × TP + (1 − U(i)) × FN, where U(i) is the uncorrected proportion detected by

the automated algorithm, TP is the proportion of true positives (proportion of those manually

verified to satisfy the indicator among those identified by the algorithm as satisfying the indi-

cator, and FN is the proportion of false negatives (proportion of those manually found to sat-

isfy the indicator among those categorized by the algorithm not to satisfy the indicator).

Moreover, random sample of 10% of papers that were found to contain a COI statement and

10% of those found to include a funding statement were assessed manually to see not only

whether such statements were indeed present, but also to assess how many of them contain

actual disclosures of specific conflicts or funding sources, respectively, and not just a statement

that there are no COIs/funding, e.g. ‘There is no conflict of interest’, No funding was received’

or ‘Funding disclosure is not applicable’. Finally, a random sample of 10% of the negatives for

COI and funding were also manually assessed.

Statistical analysis

The primary outcome studied was the percentage of papers that include each of the transpar-

ency indicators. We considered three primary comparisons that were conducted using Fisher’s

exact tests.

• All publications in 2019 to all in 2021 (to assess if there is improvement over time)

• All non-COVID-19 publications in 2019 to the non-COVID-19 publications in 2021 (to

assess if there is improvement over time for non-COVID-19 publications)

• 2021 COVID-19 publications to 2021 non-COVID-19 ones (to assess if COVID-19 papers

differ in transparency indicators versus non-COVID-19 papers).

Subsequently we also explored whether other factors may have correlated with the transpar-

ency indicators using Fisher’s exact tests to see whether there was any statistically significant

association (significance level set at 0.005 [23]) when comparing model types, year, disease

modelled, as well as journal separately. We had pre-specified that whenever any statistically

significant results were found, we would conduct multivariable logistic regressions as well

using the transparency indicators as the dependent variable. This was to see if any of the covar-

iates, which for the regression to be able to converge had to be larger groups, were alone associ-

ated with our outcome variables. The covariates used were therefore year and disease

combined (2019 (baseline), 2021 non-COVID-19, 2021 COVID-19), Journal (PLoS One, Sci-

entific Reports, International Journal of Environmental Research and Public Health, Other
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(baseline)) and the type of model (with the compartmental models used as a baseline). Statisti-

cal significance was claimed for p<0.005 and p-values between 0.005 and 0.05 are considered

suggestive, as previously proposed [23].

Deviations from the protocol

We deviated from the protocol in that we didn’t perform chi-square tests due to too low counts

in some variables rendering it unreliable, therefore we decided to conduct these analyses using

Fisher’s exact tests instead of chi-square tests. The 10% manual assessment of a random sample

of articles with COI and funding statements was added post hoc, when we realized that many

articles could have such statements, but they might simply state that there was no COI and/or

no funding.

Results

Study sample

We screened 2903 records in their titles and abstracts according to the eligibility criteria. 1340

papers were excluded due to ineligibility in the primary survey leaving 1563 records for further

scrutiny. 58 were excluded during the second round of screening, i.e., during retrieval of infor-

mation on model type and disease and 167 were excluded for not being part of the PMC OA

subset (Fig 1).

Characteristics of eligible papers. Of the 1338 eligible papers (Table 1), 216 had been

published in 2019 and 1122 in 2021. 818 (61.1%) were COVID-19 papers and the second larg-

est group contained 130 (9.7%) publications and was the group of General (theoretical mod-

els). More than 70 different diseases had altogether been modelled in the eligible publications.

The model types were more evenly distributed with the most common model type being com-

partmental models (N = 511, 39.2%) and time series models (N = 337, 25.2%).

Transparency indicators

Table 2 shows the transparency indicators overall and in the three main categories based on

year and COVID-19 focus. We found that based on the text mining algorithms 288 (21.5%)

Fig 1. Flow chart for study selection.

https://doi.org/10.1371/journal.pone.0275380.g001
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articles shared code, 332 (24.8%) shared data, 6 (0.4%) used registration, and 1197 (89.5%) and

1109 (82.9%) contained a COI and funding statement, respectively. 919 (68.7%) of publications

shared neither data nor code, while 199 (14.9%) of all papers shared both data and code.

We found no differences between years and between COVID-19 and non-COVID-19

papers in terms of probability of sharing data, registration, or mentioning of COIs.

Table 1. Characteristics of eligible studies.

2019 2021 non-COVID-19 2021 COVID-19 All publications

N (%) N (%) N (%) N (%)

216 articles 304 articles 818 articles 1338 articles

Type of model

Compartmental 26 (12.0) 91 (29.9) 394 (48.0) 511 (39.2)

Time series 80 (37.0) 82 (27.0) 175 (21.4) 337 (25.2)

Spatiotemporal 78 (36.1) 90 (29.6) 111 (13.6) 279 (20.9)

Agent-based 31 (14.4) 37 (12.2) 118 (14.4) 186 (13.9)

Multiple 1 (0.5) 4 (1.3) 20 (2.4) 25 (1.9)

Type of disease

COVID-19 0 (0) 0 (0) 818 (100) 818 (61.1)

General 33 (15.3) 97 (31.9) 0 (0) 130 (9.7)

Influenza illnesses 20 (9.3) 20 (6.6) 0 (0) 40 (3.0)

Malaria 15 (6.9) 22 (7.2) 0 (0) 37 (2.8)

Dengue 15 (6.9) 20 (6.6) 0 (0) 35 (2.6)

Others 133 (61.6) 145 (48) 0 (0) 278 (20.8)

Journal

PLoS One 26 (12.0) 27 (8.9) 62 (7.6) 115 (8.6)

Sci Rep 20 (9.3) 19 (6.3) 52 (6.4) 91 (6.8)

Int J Environ Res Public Health 15 (6.9) 21 (6.9) 27 (3.3) 63 (4.7)

BMC Infect Dis 16 (7.4) 12 (3.9) 10 (1.2) 38 (2.8)

PLoS Negl Trop Dis 11 (5.1) 22 (7.2) 0 (0) 33 (2.5)

PLoS Comput Biol 10 (4.6) 10 (3.3) 9 (1.1) 29 (2.2)

BMC Public Health 6 (2.8) 9 (3.0) 13 (1.6) 28 (2.1)

Chaos Solitons Fractals 0 (0) 5 (1.6) 20 (2.4) 25 (1.9)

Others 112 (52.0) 179 (58.9) 625 (76.4) 916 (68.5)

https://doi.org/10.1371/journal.pone.0275380.t001

Table 2. Key transparency indicators overall and per year/COVID-19 focus.

N = 1338 Code sharing Data sharing Registration COI Funding

N (%) N (%) N (%) N (%) N (%)

Overall 288 (21.5) 332 (24.8) 6 (0.4) 1197 (89.5) 1109 (82.9)

2019 38 (17.6) 59 (27.3) 3 (1.4) 197 (91.2) 202 (93.5)

2021 250 (22.3) 273 (24.3) 3 (0.3) 1000 (89.2) 907 (80.8)

COVID-19 207 (25.3) 199 (24.3) 0 730 (89.2) 635 (77.6)

non-COVID-19 43 (14.1) 74 (24.3) 3 (1) 270 (88.8) 272 (89.5)

Fisher’s exact test (p-values)

2019 vs 2021 0.15 0.35 0.06 0.45 1.0 × 10−6

2019 vs 2021 non-COVID-19 0.33 0.48 0.70 0.46 0.12

2021 non-COVID-19 vs. COVID-19 5.1 × 10−5 1 0.02 0.83 3.5 × 10−5

COI: conflicts of interest

https://doi.org/10.1371/journal.pone.0275380.t002
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COVID-19 papers were more likely to share their code openly than the non-COVID-19

publications from the same year (14.1% v. 25.3%, p = 5.1 × 10−5), and they were less likely to

report on funding compared with non-COVID-19 papers in the same year (p = 3.5 × 10−5).

This led to an overall lower percentage of papers reporting on funding in 2021 compared

with 2019 (p = 1.0 × 10−6).

Other correlates of transparency indicators

As shown in Table 3, data sharing varied significantly across journals, e.g. it was 54.8% in PLoS

One, but 12.7% in International Journal of Environmental Research and Public Health. Code

sharing varied significantly across diseases, e.g. it was most common for dengue and least com-

mon for malaria (34.3% v 5.4%); and it varied significantly among types of models, (highest in

agent-based models with 33.9% of publications sharing code). Registration was uncommon in

all subgroups. COI disclosures were most common in dengue and least common in general

models and they also varied by type of model (least common in compartmental models).

Funding information was most commonly disclosed in dengue models and least commonly

disclosed in general models; it also varied by type of model (being lowest in compartmental

models); and by journal.

Multivariable regressions (not shown) showed similar results. Code sharing was more com-

mon in COVID-19 models (OR 1.69 (1.13, 2.55) compared to the 2019 baseline) and in agent-

based models (OR 2.15 (1.47, 3.14) using compartmental models as the baseline). Data sharing

was more common in spatiotemporal (OR 1.90 (1.33, 2.73) and agent-based models (OR 1.80

Table 3. Key transparency indicators per disease type, model type, and journal.

Code sharing Data sharing Registration COI Funding

N (%) N (%) N (%) N (%) N (%)

Disease modelled

p (Fisher’s exact test) 7.4 × 10−6 0.47 0.001 0.01 2.8 × 10−10

COVID-19 207 (25.3) 199 (24.3) 0 (0) 730 (89.2) 635 (77.6)

General (theoretical model) 31 (23.8) 34 (26.2) 0 (0) 94 (72.3) 108 (83.1)

Influenza illnesses 6 (15) 10 (25) 0 (0) 38 (95) 39 (97.5)

Malaria 2 (5.4) 7 (18.9) 2 (5.4) 37 (100) 35 (94.6)

Dengue 12 (34.3) 13 (37.1) 0 (0) 35 (100) 35 (100)

Other diseases 30 (10.8) 69 (24.8) 4 (1.4) 263 (94.6) 257 (92.4)

Type of model

p (Fisher’s exact test) 0.001 0.006 0.15 <1 × 10−7 0.008

Compartmental 104 (20.4) 103 (20.2) 0 (0) 419 (82) 405 (79.3)

Time Series 65 (19.3) 81 (24) 2 (0.6) 319 (94.7) 276 (81.9)

Spatiotemporal 52 (18.6) 84 (30.1) 3 (1.1) 263 (94.3) 247 (88.5)

Agent-based 63 (33.9) 58 (31.2) 1 (0.5) 173 (93) 161 (86.6)

Multiple 4 (16) 6 (24) 0 (0) 23 (92) 20 (80)

Journal

p (Fisher exact) 0.15 1.7 × 10−12 0.11 2.5 × 10−12 3.4 × 10−14

PLoS One 30 (26.1) 63 (54.8) 1 (0.9) 115 (100) 115 (100)

Sci Rep 23 (25.3) 21 (23.1) 1 (1.1) 91 (100) 70 (76.9)

Int J Environ Res Public Health 8 (12.7) 7 (11.1) 1 (1.6) 63 (100) 63 (100)

Other journals 227 (21.2) 241 (22.5) 3 (0.3) 928 (86.8) 861 (80.5)

COI: conflicts of interest

https://doi.org/10.1371/journal.pone.0275380.t003
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(1.21, 2.66)) compared to the baseline and also depended substantially on the journal (with

PLoS One having OR 4.22 (2.84, 6.32) compared to the baseline of all journals but the top 3).

We did not perform multivariable regressions for the presence of COI and funding statements,

since these depended almost entirely on the journal (several journals had 100% frequency of

having a placeholder for such statements). Registration was too uncommon to subject to mul-

tivariable analysis.

Manual validation

We also checked a random sample of 29 (10%) of papers that were found to be sharing code,

33 (10%) of those sharing data, and all 6 that were registered. Of these, 24/29 (82.8%) actually

shared code, 29/33 (87.9%) actually shared data and 5/6 (83.3%) were indeed registered. The

papers that used registration were two malaria models [24, 25], one vector model [26] (which

focused on malaria vectors) one polio (Sabin 2 virus [27]) model and one rotavirus model

[28]. The majority were from 2021 [24, 26, 27] and were also malaria models (two malaria and

one vector that was essentially malaria [24–26]). A majority was also classified as spatiotempo-

ral [24–26]. We also checked a random sample of 10% of the negatives i.e. the ones that were

classified as non-transparent and found that 133/133 (100%) weren’t registered, 95/106

(89.6%) didn’t share code and 75/101 (74.3%) didn’t share data. Therefore, the corrected esti-

mates of the proportions of publications sharing code and sharing data were (0.215 × 0.828) +

(0.785 × 0.104) = 26.0% and (0.248 × 0.879) + (0.752 × 0.257) = 41.1%, respectively. The mod-

est number of false-negatives for detecting data sharing through the text mining algorithms

reflected mostly situations where it was mentioned that the data can be downloaded through a

link, or the reference was in a figure, or the phrasing was interwined and difficult to separate

effectively by the text mining algorithm.

Finally, of the 120 articles (10%) that text mining found that they contained a COI state-

ment, there was indeed a placeholder for this statement in all articles, but the vast majority of

the statements (115 (95.8%)) disclosed no conflict at all. Of the 111 (10%) articles where text

mining found that they contained a funding statement, all of them had indeed such a state-

ment, but 13 (11.7%) stated that they had no funding. Examining a random sample of 10% of

the negatives regarding COI and funding disclosures we found that 19/23 (82.6%) of funding

disclosures and 14/14 (100%) of COI disclosures were true negatives.

Discussion

Analysing 1338 recent articles from the field of infectious disease modelling we found that

based on previously validated text mining algorithm less than a quarter of these publications

shared code or data, and only 14% shared both. Adding further validation through manual

evaluation suggested that data sharing may be modestly more common, but still the majority

of these publications did not share their data. This is concerning since it does not allow other

scientists to check the models in any depth and it also limits their further uses. Moreover, reg-

istration was almost nonexistent. On a positive note, the large majority of models did provide

some information on funding and COIs. However, the vast majority of COI statements simply

said that there was no conflict. Furthermore, we saw no major differences between 2019 and

2021. COVID-19 and non-COVID-19 papers showed largely similar patterns for these trans-

parency indicators, although the former were modestly more likely to share code and modestly

less likely to report on funding. There were some differences for some of the transparency

indicators across journals, model types and diseases.

Jalali et al. [11] analysed 29 articles on COVID-19 models in 2020 and found that 48%

shared code, in 60% data was shared, whilst 80% contained a funding and COI disclosure
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respectively. Our findings show much lower rates of code sharing and data sharing. The Jalali

et al. sample was apparently highly selective as it focused on the most referenced models

among a compilation of models by the US Centers for Disease Control [29]. In another empiri-

cal assessment of the reproducibility of 100 papers in simulation modelling in public health

and health policy published over half a century (until 2016) and covering all applications (not

just infectious diseases), code was available for only 2% of publications [30]. Finally, in an

empirical evaluation in decision modelling by Emerson et al. [13], when the team tried to get

authors of papers to share their code 7.3% of simulation modelling researchers responded and

in the end only 1.6% agreed to share their code. This suggests that infectious disease models

are not doing worse than other mathematical models, and may be doing even substantially bet-

ter, but there is still plenty of room for improvement in sharing practices.

There have been many initiatives for improving sharing code and better documentation in

the modelling community [31–34] as well, repositories for COVID-19 models [35, 36]. The

modelling community including COVID-19 [37] modelling has had multiple calls for trans-

parency and the debate of reproducibility has been ongoing for decades [38–40]. Several jour-

nals have tried to take steps in enhancing reproducibility. For example, Science changed their

policy for code and data sharing to make both essentially mandatory [41]. However, Stodden

et al. [42] found no clear improvement after such interventions. Models are published in a vast

array of journals and sharing rate as well as reporting and documentation requirements tend

to be highly journal specific.

The frequency of code and data sharing in our sample was higher than what was docu-

mented for the general biomedical literature that was assessed in Serghiou et al. [21] using the

same algorithm. COI and funding disclosures were almost equally common. On the other

hand, we observed a ten-fold lower registration rate in our sample compared with the overall

biomedical literature, which may reflect the difficulty of registering models and the lack of suf-

ficient sensitization of the field to this possibility [5]. We found that essentially 5 of our studies

were registered (after validating the initial 6 that we found). Realising that registration may be

difficult and even impossible for a large portion of models (exploratory models for instance)

[5], it would still be advisable to register confirmatory studies of models that are destined to be

used for policy to reduce the “vibration of effects” (the range of possible results obtained with

multiple analytical choices) [43, 44]. Otherwise, promising output or excellent fit may in reality

be due to bias alone. When the stakes are high and wrong decisions may have grave implica-

tions, more rigor is needed.

The rates of COI and funding disclosures are satisfactory on face value, considering they

both are above 80% both in our sample and across other empirical assessments [11, 21, 45].

This may also be due to the fact that both these types of disclosures have been introduced into

many journal’s routinely published items and there is a standard placeholder for them. Typi-

cally journals mandate a COI and funding statement. However, the fidelity and completeness

of these statements is difficult to probe. We cannot exclude that undisclosed COIs may exist.

Our random sample validation found that the COI disclosures almost never mentioned any

conflict. Given the policy implications of many models, especially in the COVID-19 era, this

pattern may represent under-reporting of conflicts. Funding disclosures were more informa-

tive with only 12% stating no funding, but even then unstated sources of funding cannot be

excluded.

Limitations

There are limitations in our evaluation. Our sample focused on the PubMed Central Open

Access subset and not all PubMed-indexed papers. It is unclear if non-open access papers may
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be less likely to adopt sharing practices. If so, the proportion of sharing in the total infectious

disease modeling literature may be over-estimated. Moreover, much of the COVID-19 litera-

ture was not published in the indexed peer-reviewed or indexed literature and therefore may

have evaded our evaluation (even though some preprints are indexed in PubMed). If anything,

this evading literature may have even less transparency.

Second, we used a text-mining approach which has been extensively validated across the

entire biomedical literature, but the algorithms may have different performance specifically in

the infectious disease modeling field. Nevertheless, in-depth evaluation of random samples of

papers suggests that identification of these indicators is quite accurate and false positives are

uncommon and well balanced by an almost equal number of false negatives for code sharing.

For data sharing, the manual validation found a modest number of publications that had

shared data but were not picked as sharing by the algorithm. Therefore, data sharing may

occur modestly more frequently than suggested by the automated algorithm, but even then the

majority of the publications in this field do not share their data.

Third, the presence of a data sharing or code sharing statement doesn’t promise full func-

tionality and the ability to fully reuse the data and code. This can only be decided after spend-

ing substantial effort to bring a paper to life based on the shared information. For COI and

funding statements, we also only established their existence, but did not appraise in depth the

content of these statements, let alone their veracity. Evaluations in other fields suggests that

many COIs are undisclosed and funding information is often incomplete [46–48].

Fourth, using only one main reviewer for screening for eligibility may have introduced

some errors in the selection of specific studies that were included or not in our analysis. How-

ever, identification of eligible studies is quite straightforward given our eligibility criteria and

any ambiguous cases were also discussed with the second author. There were a few studies that

did not fit squarely in our pre-determined categories, but their number is too small to affect

the overall results.

Finally, we only assessed a sample that is drawn from two calendar years that are not very

far apart, thus major changes might not have been anticipated at least for non-COVID-19

models. Nevertheless, 2021 was a unique year with a pandemic which of course affected the

field not merely through inflation of publications [49] but also through specific funder and

governmental initiatives and incentives. Therefore, only time will tell if any of the COVID-19

impact on the scientific literature will be long-lasting and if it may also affect the landscape of

mathematical modeling in general after the pandemic phases out.

Conclusions

We found that in the highly influential field of infectious disease modeling that relies as much

on its assumptions and underlying code and data, transparency and reproducibility have large

potential for improvement. Yet, there is a growing literature of recommendations and tutorials

for researchers and other stakeholders [50–53], plus the EPIFORGE guidelines [54] which are

guidelines for the reporting of epidemic forecasting and prediction research. They all explicitly

urge for code sharing, and data sharing and transparency in general. The current lack of trans-

parency may cause problems in the use, reuse, interpretation, and adoption of these models

for scientific or policy activities. It also hinders evidence synthesis and attempts to build on

previous research to facilitate progress within the field. Improved transparency and reproduc-

ibility may help reinforce the legacy of this important field. It can be argued that a mathemati-

cal model should not be taken seriously, especially for influential inferences and decisions,

without the underlying code and data sources made public. This includes models published by

academic journals or unpublished ones that are being used nevertheless to guide health
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policies or other decisions. One might even suggest banning the publication of models that do

not share their data and code. Pre-registration also is highly desirable, when pertinent, and for

some targeted uses of models, e.g. making claims for future predictions, it should become a

normal expectation.
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