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Abstract: Due to the advantages of high specific strength, specific stiffness, and excellent fatigue
resistance, carbon fiber reinforced braided composites have been widely applied in engineering.
Since the molding process of braided composites is complex and immature, substantial variability
of the internal geometry exists in composites, in which the yarn path with uncertainty is a main
factor, so it is necessary to establish an uncertainty model to study the influence of randomness
of the yarn path on mechanical properties, which is significantly related to the fatigue resistance
properties of composite. An uncertain mesoscopic model with uniform distribution of yarn paths is
proposed. Assuming the yarn path is spatially varying in interval range, the variability of yarn path
is represented geometrically in the unit cell of composite. The three-dimensional coordinates of the
yarn trajectory are calculated, the meso-uncertainty models of 2-D and 2.5-D braided composites are
established. The equivalent elastic parameters and the thermal expansion coefficients are obtained
by applying homogenization method and temperature field boundary conditions to the mesoscopic
model. The effect of yarn path uncertainty on the statistical characteristics of elastic and thermal
parameters of braided composites was studied by using Monte-Carlo simulation. A simulation
method for modeling yarn path uncertainty of braided composites is provided in this paper for
predicting the statistical characteristics of the equivalent elastic and thermal parameters.

Keywords: braided composite; equivalent elastic parameter; thermal expansion coefficient; uncertainty
modeling; Monte-Carlo simulation

1. Introduction

Braided composites have been widely used in aerospace due to their excellent proper-
ties, such as high stiffness, high strength to weight ratio, and good fatigue strength [1–3].
They can reduce the use of high alloy on the aircraft, save on structural costs, and have
a great advantage in weight reduction and efficiency. The research on composite ma-
terials is usually based on the elastic stage, and then further study on the mechanical
properties of materials in the plastic stage, impact, strength, fatigue, and other load condi-
tions. To make more efficient use of braided composites, we need to further study their
mechanical properties.

Obtaining the elastic constants of braided composites is one of the important topics in
research. Based on the homogenization theory, 3D composite materials are equivalent to
orthotropic materials with 9 independent parameters. Accurate parameters are the basis
for studying the mechanical properties of composites [4,5]. However, the yarn path is
uncertain due to the complexity of the braided composite forming process. To improve the
reliability of numerical analysis of braided composite structures, it is necessary to study the
effect of randomness on mechanical properties of composites [6–9].

In geometric modeling of braided composites, yarn paths are usually represented
by specific function curves, which makes modeling difficult [10–12]. Tsai K H [13] used
one-dimensional spring units to simulate yarn predicts elastic properties. However, the
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actual yarn material parameters are three-dimensional, so the simulation is not accurate
enough. In whole mesoscopic modeling, the cubic B-spline curve fits the position points of
the sand carrier to obtain a more real yarn path. Kai [14] uses cubic B-spline curves to fit
the relatively real position of the yarn path. Kai’s conclusion is that the full-size model can
produce more accurate equivalent results than the mesoscopic model, but the mesoscopic
model has faster calculation time and higher efficiency.

In addition, obtain the equivalent elastic parameters is an essential step to establish
the model. The prediction of equivalent elastic modulus and thermal expansion of braided
composites has been widely studied [15,16]. Although some uncertain parameters of
composite materials can be measured by experimental tests [17–19], these methods are
often expensive, time-consuming and inefficient. Hill [20] first proved that the strain
energy of homogenized macro continuum is equal to that of microscale unit cell from the
strain energy perspective. The regular and representative volume elements of braided
composites are analyzed, and the unit cell model reflecting the parameters of composites
such as component information and braided form is extracted. The elastic parameters
can also be obtained using the homogenization method. Therefore, specific periodic
displacement boundary conditions or traction conditions can be applied to obtain the stress
distribution [21], and then the equivalent stiffness can be obtained through the average
stress and strain in the constitutive equation. Xia [22] applied displacement boundary
conditions to the unit cells with parallel opposite edges, which could satisfy the continuous
displacement and stress of the periodic structure. Hiroshi [23] derived two equations
based on homogeneous method of boundary conditions and weighted residual theory,
and obtained equivalent parameters. After predicting stiffness with periodic boundary
conditions, Chen [24] uses the dynamic characteristic error between the refined model and
the homogeneous model to illustrate the accuracy of prediction. The stiffness obtained
from the multi-scale model above is based on statics, so the model can be further used
as the basis for strength analysis in terms of stress analysis [25]. Most studies verify the
accuracy of strength prediction of the multi-scale model combined with tests [26,27].

Common multi-scale modeling software includes Digimat [28], WiseTex [29], and
TexGen [30]. Among them, TexGen is an open source software developed by the composite
Materials Research Group of the University of Nottingham for geometric modeling of
textile structures [31], connected with ABAQUS finite element analysis software. This
software is the basis for studying the mechanical properties of braided composites [32].

In this study, an uncertain mesoscopic model of braided composite yarn paths is
proposed, which follows an interval uniform distribution. Using the combination of
simulation software and finite element analysis software, the meso-uncertainty model can
be established quickly, and the mechanical properties of composites can be studied more
efficiently. The outline of the work is as follows: Section 2 describes the main research
methods and processes of this paper. In Section 3.1, modeling of 2d braided composites and
the effect of yarn path uncertainty on thermoelastic parameters were studied by equivalent
method. In Section 3.2, a mesoscopic model of 2.5D braided composites was established,
and the effect of yarn path uncertainty on equivalent thermoelastic parameters of braided
composites was studied by means of 1000 equivalence.

2. Methodology

Based on the research literature, a mesoscopic model with uncertain yarn path is
proposed. Si/C matrix and Toray T300-1K fiber bundle are used in this model. It is an
orthotropic material with nine independent parameters. Assuming the yarn path is spatially
varying in an interval range, the variability of yarn path is represented geometrically in
the unit cell of composite. First, load boundary conditions are applied to the model to
obtain equivalent parameters. Then, the yarn path uncertainty is equivalent and the
interval uniform distribution is assumed. Finally, the influence of yarn path change on
elastic parameters and thermal expansion coefficient was obtained using finite element
analysis software.
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Conventional finite element modeling software generally has tetrahedron and hexahe-
dron meshes. In addition, Voxel, DST, MFEM, and XFEM meshes can be used to quickly
establish finite element models. The Voxel method is used in Texgen to discretely establish
the meso model of braided composites. It has two main algorithms to avoid intrusions
between yarns. The first method is to determine whether the points on the yarn’s surface
are contained in any other yarn, but this method does not work if there are not enough
points. The second is to judge whether the envelope of each yarn surface intersects.

It is assumed that the macroscopic mechanical properties of braided composites are
orthogonal anisotropy and have three orthogonal symmetry planes. The left and right,
back and front, and upper and lower planes are labeled as planes A, B, C, D, E and F. The
constitutive relation of orthotropic composites can be expressed in Figure 1.
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Figure 1. Schematic diagram of boundary conditions of the unit cell model. 
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Figure 1. Schematic diagram of boundary conditions of the unit cell model.

Taking the displacement boundary conditions in the x direction as an example, plane
A is subjected to A fixed constraint (0, 0, 0), and plane B is subjected to A displacement in
the x direction (x1, 0, 0). The freedom of other planes in the x direction is released, and the
constraints in the y and z directions are (_, 0, 0). The strain component in the constitutive
equation is [ε1

m = 1, 0, 0, 0, 0]. Then the first column elements of the stiffness matrix are
obtained by means of the stress average method. The other aspects are shown in Table 1.

Table 1. Periodic displacement boundary conditions.

Stiffness Coefficient
The Boundary of a Hexahedral Cell

A B C D E F

The first column [ε1
m, 0, 0, 0, 0, 0] (0, 0, 0) (x1, 0, 0) (_, 0, 0) (_, 0, 0) (_, 0, 0) (_, 0, 0)

The second column [0, ε2
m, 0, 0, 0, 0] (0, _, 0) (0, _, 0) (0, 0, 0) (0, y2, 0) (0, _, 0) (0, _, 0)

The third column [0, 0, ε3
m, 0, 0, 0] (0, 0, _) (0, 0, _) (0, 0, _) (0, 0, _) (0, 0, z3) (0, 0, 0)

The fourth column [0, 0, 0, γ12
m, 0, 0] (_, 0, 0) (_, 0, 0) (_, 0, 0) (_, 0, 0) (y2, 0, 0) (0, 0, 0)

The fifth column [0, 0, 0, 0, γ23
m, 0] (0, _, 0) (0, _, 0) (0, 0, 0) (0, z3, 0) (0, _, 0) (0, _, 0)

The sixth column [0, 0, 0, 0, 0, γ13
m] (0, 0, 0) (0, 0, x1) (0, 0, _) (0, 0, _) (0, 0, _) (0, 0, _)

The main implementation steps of the method are as follows:
TexGen textile material simulation software was used to efficiently study the effect of

yarn path uncertainty on the mechanical properties of mesoscopic structures. Due to the
need to establish a mesoscopic model of uncertainty [33], according to the help document,
Python script language was used to establish 2D and 2.5D mesoscopic uncertainty models
of braided composite materials, and equivalent elastic parameters could be obtained based
on the homogenization theory.



Materials 2022, 15, 5332 4 of 18

(1) The three-dimensional coordinates of the yarn paths are numerically calculated,
and the coordinate values are obtained by cubic B-spline curve interpolation to obtain
smooth curve coordinates.

(2) The equivalent stiffness is obtained according to the homogenization theory, and
the uncertainty model is established without considering the special probability distribution
of the characteristic quantity.

(3) The equivalent elastic parameters and thermal expansion coefficient are obtained
by applying the boundary conditions of concentrated force and temperature field load to
the model. Monte Carlo equivalent method was used to obtain the effect of uncertainty on
the thermoelastic parameters of braided composites.

Obtaining Equivalent Parameters by Loading Boundary Conditions

Composite material is composed of multiple components, and the non-uniform con-
tinuum is represented by M, as shown in Figure 2. According to the knowledge of solid
mechanics, this heterogeneous continuum satisfies the equilibrium equation and the motion
equation in the R domain:

σij,j + f i = ρ · ..
ui in R

σij = Cijkl · εkl
(1)

σij and εkl are stress and strain tensors, f is the strength received in the R domain,
ρ is the volume density, and Cijkl is the elastic tensor of the constitutive equation. On the
boundary Sσ and Su, the continuum satisfies the following equation under the basic and
natural boundary conditions:

ti = σijnj = ti on Sσ

ui = ui on Su
(2)

In Figure 3, nj is the unit vector perpendicular to the Sσ boundary, ti is the traction. The
key to realize the homogenization is to obtain the equivalent stiffness of the composite.
For the periodic continuum structure, the uniform displacement boundary conditions can
ensure that the displacement of the whole structure is continuous, and the distribution of
traction force at the relative parallel boundary is the same. Therefore, combined with the
above formula, the problem of obtaining macroscopic global elastic parameters of reactive
periodic structures from the unit cell model can be solved by applying specific displacement
boundary conditions and concentrating forces.

Hill [19] pointed out from the strain energy perspective that when given the boundary
condition u, σij,j = 0 in the volume of a unit cell. The average strain energy in the region can
be obtained from the average stress and strain. Similarly, it can be proved that the average
strain energy can be obtained when the boundary is subjected to a traction which produces
non-uniform internal stress in the material.

σm · εm =
1
|V|

∫
V

σ · εdV (3)

Formula (3) is Hill energy averaging theorem, which proves that the strain energy
of homogenized macro continuum is equal to that of microscale unit cell. σm and εm are
macroscopic stress and strain tensors. σ and ε are the stress and strain tensors of unit
cell, respectively.

When a force is applied in each direction of a unit cell, the following relation can
be obtained:

σm
1 = F1/V, σm

2 = F2/V, σm
3 = F3/V,

τm
23 = F23/V, τm

31 = F31/V, τm
12 = F12/V.

(4)

V is the volume of a unit cell. The macroscopic stress can be expressed by the force ap-
plied to the unit cell model and the equivalent material parameters can easily be expressed
by the unit cell strain degree of freedom ε1

m, ε2
m, ε3

m, γm
23, γm

31, γm
12, and the loads are
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represented by F1, F2, F3, F23, F31, F12, ∆T. The coefficient of thermal expansion can be
obtained by applying a specific temperature load to the mesoscopic model. The equation
for the relationship between orthogonal anisotropy parameters and loads is listed below.
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E1, E2, E3 meets the following conditions:

Em
1 = σm

1 /εm
1 = F1/Vεm

1

When F1 6= 0, F2 = F3 = F23 = F31 = F12 = 0;

Em
2 = σm

2 /εm
2 = F2/Vεm

2

When F2 6= 0, F1 = F3 = F23 = F31 = F12 = 0;

Em
3 = σm

3 /εm
3 = F3/Vεm

3

When F3 6= 0, F1 = F2 = F23 = F31 = F12 = 0;

(5)

G23, G31, G12 meets the following conditions:
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Gm
23 = τm

23/γm
23 = F23/Vγm

23

When F23 6= 0, F1 = F2 = F3 = F31 = F12 = 0;

Gm
31 = τm

31/γm
31 = F31/Vγm

31

When F31 6= 0, F1 = F2 = F3 = F23 = F12 = 0;

Gm
12 = τm

12/γm
12 = F12/Vγm

12

When F12 6= 0, F1 = F2 = F3 = F23 = F31 = 0;

(6)

v12, v23, v31 meets the following conditions:

νm
12 = −εm

2 /εm
1

When F1 6= 0, F2 = F3 = F23 = F31 = F12 = 0;

νm
23 = −εm

3 /εm
2

When F2 6= 0, F1 = F3 = F23 = F31 = F12 = 0;

νm
31 = −εm

1 /εm
3

When F3 6= 0, F1 = F2 = F23 = F31 = F12 = 0;

(7)

α1, α2, α3 meets the following conditions:

αm
1 = εm

1 /∆T

When F1 = F2 = F3 = F31 = F23 = F12 = 0;

αm
2 = εm

2 /∆T

When F1 = F2 = F3 = F31 = F23 = F12 = 0;

αm
3 = εm

3 /∆T

When F1 = F2 = F3 = F31 = F23 = F12 = 0;

(8)

When obtaining each of these attributes, the corresponding load conditions must be
satisfied. It can be observed that if the composites are orthotropic, the above properties are
sufficient to describe them in most cases. However, the orthogonal anisotropy equivalent
parameters mentioned above will not be enough if irregular geometry or local microcracks
are involved in the composite cells, i.e., the uncoupled parts of the cell produce shear
stress and strain components, resulting in the general anisotropy of the material. For such
materials, more material properties are needed to describe their mechanical properties.

3. Case Study
3.1. Mesoscopic Uncertainty Modeling of 2D Braided Composites
3.1.1. Meso-Geometric Model of Plain Weave Composites

To further characterize the uncertainty of plain weave composite yarn amplitude, the
number of warp and weft yarns is also taken as parameterized input, and the modeling
idea is as follows: First, several weft yarns, which are uncertain in the z direction, are
generated according to the number of warp yarns and weft yarns. Since warp and weft
yarns fit each other, it is easier to obtain the corresponding coordinates of warp yarns and
generate uncertainty modeling of plain weave composite materials. Figure 4 shows the
established parameterized mesoscopic uncertainty parameterized model of plain weave
composite material. Yellow is weft yarn, red is warp yarn, and each yarn fluctuates within
a certain range.
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Parameter Design Specification Value 

JL Length of warp cross section 0.4 

WL Length of weft cross section 0.4 

GL Distance between warp and weft [0.1,0.3] 

JH, WH Cross section thickness 0.056 

Hr1, Hr2 Weft height changes [0.082,0.111] 

Hm Outer matrix height 0.04 

Figure 4. The parametric model of weave composite. (a) 3 × 3 × 2 geometric model, (b) 6 × 6 × 3
geometric model.

There was serious matrix intrusion between yarns during modeling. Therefore, in this
example, the yarn path follows uniform distribution changes in a certain range without
considering the special probability distribution in the geometric model. In fact, there is a
very small amount of matrix filling between weft and warp. Ideally, the unit cell model of
plain weave composite is assumed to be the trig function of the weft path, and the warp
cross section fits the contour of the trig function, but this problem is relatively complicated.
In this section, the analysis model is simplified as shown in Figure 5, and the meso-uncertain
geometric model of plain braided composite material is further established. To simplify the
problem, the established model makes the following assumptions: (i) The yarn section is
simplified to a rectangle; (ii) The yarn path is assumed to be a broken line; (iii) There is no
matrix filling between yarns; (iv) It is only considered that the yarn amplitude in the plane
follows uniform distribution, yarn torsion, deformation in other directions and defects are
not considered.
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Figure 5. The uncertain geometry of weave composite.

According to Ref. [34], the geometric parameter design description of the uncertainty
model of plain braided composite material and the values of the model in this paper are
shown in Table 2. The geometric characteristics of the yarn are parameterized as input.
Where JL, Jh, WL and Wh are the length and width of the rectangular warp and weft sections
respectively. GL is the distance between two adjacent yarns. The height of yarn is uniformly
distributed within the interval [0,0.028]. The distance between yarn and outer matrix is
constant value 0.04.

Table 2. Geometric design parameters of uncertainty model.

Parameter Design Specification Value

JL Length of warp cross section 0.4
WL Length of weft cross section 0.4
GL Distance between warp and weft [0.1,0.3]

JH, WH Cross section thickness 0.056
Hr1, Hr2 Weft height changes [0.082,0.111]

Hm Outer matrix height 0.04
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3.1.2. Equivalent Results

The fiber bundle used in the calculation example is Toray T300-1K with a density of
1.76 g/cm3. The matrix of composite material is Si/C material, and the elastic parameters
of each component of braided composite material are shown in Tables 3 and 4:

Table 3. The material parameters of components.

Elastic Modulus
(E/Gpa) Poisson’s Ratio Shear Modulus

(G/Gpa)

E11 E22 ν12 ν23 G12 G23

Carbon fiber 220 138 0.2 0.25 9 4.8
Matrix 350 0.3 140

Table 4. The thermal expansion coefficients of components.

Thermal Expansion
(10−6 k−1) α11 α22 α33

Carbon fiber −2 × 10−7 3 × 10−6 3 × 10−6

Matrix 6.5 × 10−6

The finite element model of braided composite material established by Voxel tech-
nology is shown in Figure 6. The element divided by this method is C3R8, which is a
regular grid of regular hexahedron element, and appropriate local mechanical properties
and material direction are defined at the center of the element. The yarn simulated by this
element is serrated, so the mesh density needs to be increased to describe the yarn path
more accurately and reduce the influence of mesh shape on the equivalent result. The
number of yarns was reduced to reduce the influence of independent variables on elastic
parameter response, the numerical was 2 × 2. Although the parametric geometric model is
established, the influence of the number of derived meshes on the computational efficiency
still needs to be considered. The number of grids established after the above consideration
is 104,400, and the number of nodes is 117,660. The volume fraction of carbon fiber in warp
and weft yarn was 0.82%, the yarn accounted for 64.46% of the total volume, and the carbon
fiber content in the model was about 50%.
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By applying load boundary conditions according to Equation (4), strain distributions
of elements under six working conditions can be obtained as shown in Figure 7. According
to the relationship between load and elastic parameters between degrees of freedom in
Equations (5)–(8), equivalent parameters can be obtained.
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According to the constitutive equation of stress-strain relationship, the equivalent
stiffness matrix C can be obtained as follows:

C =



5.422× 10−12 −1.094× 10−13 −1.341× 10−12 0 0 0
−1.094× 10−13 5.388× 10−12 −1.365× 10−12 0 0 0
−1.341× 10−12 −1.365× 10−12 2.504× 10−11 0 0 0

0 0 0 7.696× 10−11 0 0
0 0 0 0 8.276× 10−11 0
0 0 0 0 0 2.091× 10−11

 (9)

The flexibility matrix can be obtained by inverting the equivalent elastic matrix. Ac-
cording to the relationship between flexibility matrix and elastic parameters, the equivalent
elastic parameters can be obtained. It can be seen from Table 5 that the arrangement of
in-plane yarns in two directions is similar due to the structure of orthogonal plain weave
composite material. Therefore, the equivalent elastic parameter E11 is close to E22.

Table 5. Equivalent thermoelastic parameters.

E11
(Gpa)

E22
(Gpa)

E33
(Gpa) ν12 ν23 ν31

G12
(Gpa)

G23
(Gpa)

G31
(Gpa)

α11
(10−6)

α22
(10−6)

α33
(10−6)

196.4 195.3 44.2 0.2 0.2 0.1 52.9 14.5 12.9 4.93 × 10−6 4.99 × 10−6 5.62 × 10−6

3.1.3. Equivalent Results of Yarn Path Uncertainty

It can be seen from Table 2 that the height difference between warp and weft yarns is
between [0,0.028], and the distance between adjacent yarns is between [0,0.02]. The process
of obtaining equivalent elastic parameters based on TexGen software and the equivalent
results of elastic parameters E11, E22, E33, G12, ν12 and thermal expansion coefficient α11
were calculated by Abaqus software for 1000 s, as shown in Figure 8. As can be seen from
the distribution of scattered points, the equivalent parameters will be affected to varying
degrees as the yarn path changes within the interval. The total distance R of the elastic
moduli of E11, E22 and E33 were 49.65 Gpa, 46.95 Gpa and 27.42 Gpa, respectively. The
polar distance of Poisson’s ratio ν12 is 0.0368. The shear modulus G12 mainly varies in the
range of 20.597 Gpa. R is the difference value between the maximum and minimum of the
equivalent parameter.
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The mean value only reflects the midpoint value of a set of data, while the mean
square error can reflect the dispersion degree of a set of data. In this paper, the influence
degree of yarn path on elastic parameters can be reflected side by side. According to the
data in Tables 6 and 7, it can be concluded that the influences on the elastic moduli E11
and E22 are relatively large. The standard deviation of E33 and G12 was 5.440 and 3.704,
respectively. For the elastic parameters ν12, ν23, ν31, G23, G31 have relatively little effect.
The pole distances of shear moduli G23 and G31 are relatively small around 103 Mpa. In
addition, the expansion coefficient of carbon fiber itself is small, so it has little influence on
the thermal expansion coefficient. It can be concluded that the elastic parameters E11, E22,
E33, and G12 are greatly affected when the yarn path of plain weave composite is changed.
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Table 6. Statistics of equivalent elastic parameters of 2D braided composites.

Statistic E11
(E/Gpa)

E22
(E/Gpa)

E33
(E/Gpa) ν12 ν23 ν31

G12
(G/Gpa)

G23
(G/Gpa)

G31
(G/Gpa)

Mean value 191.113 189.543 40.703 0.208 0.253 0.054 50.380 13.566 12.465
Standard deviation 8.498 8.367 5.440 0.007 0.006 0.005 3.704 1.031 0.982

Table 7. The statistics of thermal expansion coefficient of 2D materials.

Statistic α11 (10−6) α22 (10−6) α33 (10−6)

Mean value 4.823 × 10−6 4.885 × 10−6 5.456 × 10−6

Standard deviation 1.924 × 10−7 1.912 × 10−7 2.370 × 10−7

For further analysis, the influence of yarn trend amplitude on elastic parameters. In
this paper, the correlation coefficient between elastic parameters and fiber amplitude is
solved, and the correlation coefficient between elastic parameters is given to study the
quantitative variation relationship between elastic parameters. According Table 8, the
correlation coefficients of elastic modulus, shear modulus and Poisson’s ratio of ν12 are all
positive. The correlation coefficients of E33, ν12 and ν23 are all greater than 0.652, which
indicates that these parameters are highly correlated. It shows that the above equivalent
parameters increase or decrease together with the change in yarn path. Only Poisson’s
ratio ν23, ν31 and other parameters appear negative correlation, and the correlation appears
below 0.5.

Table 8. The correlation coefficients between equivalent parameters of 2D braided composites.

Coefficient E11 E22 E33 ν12 ν23 ν31 G12 G23 G31

E11 1 0.864 0.715 0.924 0.309 0.539 0.952 0.865 0.893
E22 1 0.717 0.742 0.194 0.651 0.952 0.884 0.874
E33 1 0.467 −0.274 0.954 0.652 0.818 0.833
ν12 1 0.443 0.251 0.908 0.684 0.734
ν23 sym 1 −0.469 0.328 −0.018 0.237
ν31 1 0.515 0.765 0.706
G12 1 0.859 0.874
G23 1 0.806
G31 1

3.2. Meso-Uncertainty Modeling of 2.5D Braided Composites
3.2.1. 2.5D Meso-Geometric Model of Braided Composite Materials

Compared with plain weave, 2.5D braided composite has a more complex structure
and mechanical mechanism, so further research is needed. To facilitate calculation, the
uniform distribution of the weft in the z direction. When the warp yarn changes in the
direction of height, the cross section also changes constantly. To ensure the fit of warp yarn,
we determine the contour of the weft yarn according to the changing height of warp yarn.

In this paper, according to the number of weft yarns in x and z directions and warp
yarns in y direction, a relatively simple mesoscopic parametric model of 2.5D braided
composites was established to study the effects of yarn height fluctuation in z direction and
transverse yarn distance on elastic parameters of 2.5D braided composites. Figure 9 shows
the 2.5D weaving meso model, in which yellow is warp yarn and red is weft yarn.
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Figure 9. The micromodel of 2.5D braided composites.

This part is more difficult to achieve, is the use of MATLAB numerical calculation to
ensure. In addition, the height of two adjacent warp yarns in the y direction is different,
so the cross section of the weft yarns is certain. Parametric modeling is carried out in the
y direction according to the number of warp yarns. After the above two steps of modeling,
according to the number of z direction weft yarn, the lateral fluctuation of weft yarn is
not considered. The warp yarn and weft yarn contact each other, layer upon layer of
each other. To sum up, when the yarn position in x direction is determined, parametric
modeling in the other two directions is equivalent to translating the yarn in each direction
by a certain distance.

For the 2.5D braided composite with layer and shallow layer crossbending connection,
the model is established as shown in Figure 10. The path is assumed to be a broken line to
avoid the difficulty of modeling yarn as a curve. To simplify the modeling problem, the
following assumptions are made: (i) the warp section is simplified as rectangle and the weft
section as flat hexagon. (ii) the warp path is a broken line, the weft path is a straight line.
(iii) Fit between yarns without matrix filling. (iv) Consider only the uniform distribution
of the warps in the topper vertical direction, excluding the transversal fluctuations of the
weft, deformations in other directions, and substrate defects. The yarns fit together without
matrix filling which means that when the warp changes in height, the height of the filling
changes with it. In addition, when the warp height of rectangular section changes, the
inclination angle of the four edges of the filling hexagon should also change. Since the
warp is a broken line, the slope can be found from the distance between its height and
the warp. In addition, a weft is attached to two spatially intersecting warp yarns. P1–P6
are the intersections of the warps. Therefore, the dip Angle of the side edge of the weft
section needs to consider the effect of the uncertainty of the two weft paths. When the
transverse distance of the weft is constant, the slope of the four edges can be obtained
according to the height of two warp yarns crossed in space. After a series of numerical
operations to obtain the weft section of the profile and assigned to the yarn, this model
can avoid overlapping area between warp and weft yarns and the uncontrollable shape of
weft section. Finally, the uncertainty modeling of path height and spacing of 2.5D braided
composite yarn was realized.
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yarns. P1–P6 are the intersections of the warps. Therefore, the dip Angle of the side edge 

of the weft section needs to consider the effect of the uncertainty of the two weft paths. 

When the transverse distance of the weft is constant, the slope of the four edges can be 

obtained according to the height of two warp yarns crossed in space. After a series of 

numerical operations to obtain the weft section of the profile and assigned to the yarn, 

this model can avoid overlapping area between warp and weft yarns and the uncontrol-

lable shape of weft section. Finally, the uncertainty modeling of path height and spacing 

of 2.5D braided composite yarn was realized. 
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Description of geometric parameter design of 2.5D braided uncertainty model. Pa-
rameter values are shown in Table 9. The geometric features in the model are also taken as



Materials 2022, 15, 5332 13 of 18

parameterized inputs to achieve uncertainty modeling. Where JL and Jh are the length and
width of the rectangular warp and the filling section, WL and Wh are the length and height
of the short side of the flat hexagon, respectively, and GL is the distance between the filling
axes. The same height changes in uniform distribution between the interval [0,0.028]. The
distance between the highest and lowest position of yarn and the outer matrix is constant
value 0.04.

Table 9. The geometric design parameters of uncertainty model.

Parameter Design Specification Value

JH Height of warp section 0.169
JL Total length of warp section 1.015

WH Height of weft cross section 0.169
WL Length of weft cross section 0.6
GL Distance between warp yarns [1.535,1.835]

H1, H2 Weft height changes [0.516,0.836]
Hm Outer matrix height 0.04

3.2.2. Equivalent Results

The time factor and the calculation efficiency of the finite element model still need to
be considered. Figure 11 shows the finite element model of 2.5D braided composite. The
composite material is the toray T300-3K fiber bundle. Its linear density is 198 g/km, and its
density is 1.76 g/cm3. The material parameters of each component are the same as those in
Table 3. The number of voxel grids in x, y and z directions is [150, 75, 75], the number of
grids is 843,750, and the number of nodes is 872,176. The volume fraction of warp fiber is
69%, weft fiber is 82%, and the volume fraction of yarn of the whole model is 43.18%.
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Figure 11. The finite element mesh for microstructure of 2.5D.

The specific x, y and z axial tensile and xy, yz, zx axial shear loads were applied to the
2.5D braided composite meso model, and the statics analysis was carried out. Figure 12
shows the stress results under the boundary conditions of six loads.

The stress vectors in the constitutive equation are 1, respectively, by applying specific
loading boundary conditions, i.e., the equation Fi/V = 1. The equivalent stiffness matrix C
in the constitutive equation is easily represented by elements in the strain component.

C =



3.809× 10−12 −9.406× 10−13 −1.086× 10−12 0 0 0
−9.406× 10−13 3.821× 10−12 −1.360× 10−12 0 0 0
−1.086× 10−12 −1.360× 10−12 1.337× 10−11 0 0 0

0 0 0 2.883× 10−11 0 0
0 0 0 0 2.253× 10−11 0
0 0 0 0 0 1.189× 10−11

 (10)
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When specific loading boundary conditions are applied to the mesoscopic model
in finite element, the strain component can be expressed by the displacement calculated
statically. According to Formulas (5)–(8), when all the elements in the stress component
are 1, the equivalent elastic parameter is equal to 1/εi, where ε = [ε1

m, ε2
m, ε3

m, γm
23, γm

31,
γm

12]. Table 10 shows the values of equivalent thermoelastic parameters.

Table 10. The equivalent thermoelastic parameters.

E11
(Gpa)

E22
(Gpa)

E33
(Gpa) ν12 ν23 ν31

G12
(Gpa)

G23
(Gpa)

G31
(Gpa)

α11
(10−6)

α22
(10−6)

α33
(10−6)

261.1 255.1 66.5 0.25 0.37 0.07 80.6 30.8 41.3 5.74 × 10−6 5.80 × 10−6 6.27 × 10−6

3.2.3. Equivalent Results of Yarn Path Uncertainty

The center lines of two adjacent weft yarns of the 2.5D braided composite mesoscopic
model change at [0,0.16], and the height difference between the weft yarns changes be-
tween [0,0.3]. Combined with the extreme values of the sample data and the mid-scale
measurement in Table 11, it can be concluded that the yarn path uncertainty of 2.5D braided
composite mainly has a relatively large impact on the elastic parameters E11, E22, E33, G23
and G12. Scatter diagrams of elastic parameters E11, E22, E33, G12, G23 and G31 with large
standard deviations in Table 11 are shown in Figure 13.

Table 11. Statistics of equivalent elastic parameters of 2.5D braided composites.

Statistic E11
(E/Gpa)

E22
(E/Gpa)

E33
(E/Gpa) ν12 ν23 ν31

G12
(G/Gpa)

G23
(G/Gpa)

G31
(G/Gpa)

Mean value 260.083 258.625 72.725 0.244 0.360 0.079 82.194 32.677 43.121
Standard deviation 3.864 3.223 2.238 0.003 0.003 0.002 1.860 2.015 1.229
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According to the distribution of scattered points, the total distance R of the sample
points of the above elastic parameters are 25.01 Gpa, 15.45 Gpa, 11.51 Gpa, 9.736 Gpa,
12.023 Gpa, and 6.695 Gpa, respectively.

Combined with the extreme values of sample data and the middle measurement
in Tables 11 and 12, it can be concluded that the yarn path uncertainty of 2.5D braided
composite mainly has a relatively large impact on the elastic parameters E11, E22, E33, G23
and G12.

Table 12. The 2.5D material thermal expansion coefficient statistics.

Statistic α11 (10−6 k−1) α22 (10−6 k−1) α33 (10−6 k−1)

Mean value 5.734 × 10−6 5.804 × 10−6 6.265 × 10−6

Standard deviation 4.118 × 10−8 3.797 × 10−8 1.326 × 10−8
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The correlation between elastic constant samples can be obtained from the data in
Table 13. By analyzing the data in the table, it can be concluded that the main direction
elastic modulus E11 is only relatively correlated with the parameters ν12 and G12 samples.
At the same time, the correlation between E22, E33, G12, G23 and G31 and the sample of
parameter ν12 is small. The negative correlation between ν23, ν31 and other equivalent
parameter sample data are consistent with the plain weave simulation example. The
correlation between special ν23 and other equivalent parameter samples is negative, and
the correlation between E11, ν12 parameter samples is less than 0.018.

Table 13. The correlation coefficients between equivalent parameters of 2.5D braided composites.

Coefficient E11 E22 E33 ν12 ν23 ν31 G12 G23 G31

E11 1 0.126 0.113 0.994 −0.018 −0.179 0.438 0.038 0.096
E22 1 0.958 0.126 −0.949 0.887 0.934 0.931 0.945
E33 1 0.093 −0.910 0.937 0.893 0.968 0.997
ν12 1 −0.020 −0.204 0.435 0.015 0.074
ν23 sym 1 −0.863 −0.839 −0.902 −0.897
ν31 1 0.734 0.959 0.948
G12 1 0.860 0.877
G23 1 0.975
G31 1

4. Conclusions

An uncertainty modeling method is proposed in this paper for investigating the influ-
ence of randomness of the yarn path on mechanical properties, the statistical characteristics
of the equivalent elastic and thermal parameters can be predicted. Assuming the yarn path
is spatially varying in interval range, the variability of yarn path is represented geometri-
cally in the unit cell of composite, and the Monte-Carlo simulation is adopted to obtain the
variability of equivalent parameters. From the collection of the simulation data, it can be
concluded that slight uncertainties of the yarn path of braided composite have a relatively
impact on the elastic parameters and the thermal expansion coefficients, and the statistical
correlation of elastic parameters is also obtained.
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