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Abstract: Quantitative bias analyses allow researchers to adjust for 
uncontrolled confounding, given specification of certain bias parameters. 
When researchers are concerned about unknown confounders, plausible 
values for these bias parameters will be difficult to specify. Ding and 
VanderWeele developed bounding factor and E-value approaches that 
require the user to specify only some of the bias parameters. We describe 
the mathematical meaning of bounding factors and E-values and the plau-
sibility of these methods in an applied context. We encourage researchers 
to pay particular attention to the assumption made, when using E-values, 
that the prevalence of the uncontrolled confounder among the exposed is 
100% (or, equivalently, the prevalence of the exposure among those with-
out the confounder is 0%). We contrast methods that attempt to bound 
biases or effects and alternative approaches such as quantitative bias anal-
ysis. We provide an example where failure to make this distinction led to 
erroneous statements. If the primary concern in an analysis is with known 
but unmeasured potential confounders, then E-values are not needed and 
may be misleading. In cases where the concern is with unknown con-
founders, the E-value assumption of an extreme possible prevalence of 
the confounder limits its practical utility.

Keywords: E-value; Quantitative bias analysis; Uncontrolled con-
founding; Unmeasured confounding

(Epidemiology 2021;32: 617–624)

Although epidemiologic data may be affected by many types 
of bias, uncontrolled confounding is almost always a central 

concern in observational studies.1 Methods for quantitative bias 
analysis have been available since at least the 1950s and allow 
researchers to adjust effect-measure estimates for uncontrolled 
confounding.2–12 Such methods typically require the researcher to 
specify three parameters: the strength of the association between 
an uncontrolled confounder and the disease conditional on expo-
sure, the strength of the association between the confounder 
and the exposure, and the distribution of the confounder given 
exposure. A researcher interested in adjusting for uncontrolled 
confounding needs to specify values for each of these three 
parameters and substitute them into the requisite formula.13,14 
When a researcher can name a potential confounder that was left 
uncontrolled by the conventional analysis, it may be feasible to 
provide plausible estimates or prior probability distributions for 
these bias parameters based on background literature. However, 
when there is concern about yet unknown or unsuspected con-
founders, plausible values for these parameters may be difficult 
to specify based on credible contextual information.

Ding and VanderWeele15 proposed an approach that 
attempts to fill this gap.16 They developed a bounding factor that 
requires the user to specify only the strength of the confounder–
exposure and confounder–disease associations. They show how, 
given these associations, one can calculate bounds on what the 
exposure-effect estimate would be. These bounds are attained 
when the confounder prevalence among the exposed (or equiva-
lently the exposure prevalence among those without the con-
founder) is at the value that generates maximum bias.

The E-value inverts this approach by asking: If the 
confounder–exposure and confounder–disease associations 
are equal, what is the smallest size this association must have 
for control of the confounder to “explain away” the observed 
exposure–disease association, given the confounder preva-
lence among the exposed is at the value that generates max-
imum bias? That is, the E-value is the smallest confounder 
association with exposure, and confounder association with 
disease given exposure, needed for confounding to create 
the observed exposure–disease association entirely, when no 
exposure effect truly exists, under an extreme-case scenario in 
which all exposed people have the confounder.

As with all methods, the proposed bounding factors and 
E-values are only as valid as their assumptions.17–20 It is thus 
crucial that their underlying assumptions are understood cor-
rectly, both in their mathematical meaning and their plausibil-
ity in an applied context, and that is our focus here. We also 
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delineate the critical distinction between methods (such as the 
E-value) that attempt to place bounds on possible biases or 
effects, and alternative approaches (such as quantitative bias 
analysis) that attempt to directly account for uncontrolled 
biases via adjustments to point and interval estimates. For 
further debate on the problems of E-values, see the recent 
exchange in the International Journal of Epidemiology.19,21–24

METHODS

Bias and Bounding Factors
Ding and VanderWeele15 introduce their bounding 

factor and derive the E-value under a general specification, 
which does not require an assumption that the confounder is 
binary. To simplify the exposition, we will derive the neces-
sary results using the approach of Schlesselman5, which Ding 
and VanderWeele15 also show in their Appendix. We assume 
the estimation target is the risk ratio for the effect of a binary 
exposure, E, on a binary outcome, D, and we have observed an 
unadjusted estimate of this ratio ( RRED

Unadj ). We imagine that 
there is a binary covariate, U, that may confound this estimate, 
and that multiplies outcome risk by RRUD, regardless of expo-
sure (that is, there is no multiplicative interaction between U 
and E). We denote the prevalence of U among the unexposed 
by p0, the prevalence of U among the exposed by p1, and the 
ratio relating E to U by RREU = p1/p0.

For simplification, we will ignore random error and 
assume that RREU and RRUD are both greater than 1 (as Ding 
and VanderWeele15 assumed), so the uncontrolled confound-
ing by U is upward. Our assumption that the ratio effect of U, 
RRUD, is constant across exposure levels implies that the risk 
ratio relating exposure to disease is constant across levels of 
U, which we call the adjusted association, RRED

adj . Under these 
assumptions, the bias factor BFs ,

BF = RR /RR s ED
Unadj

ED
adj

 
(1)

can be written5,15

BF = 
RR + RR 1 RR p
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Citing concerns over subjectivity in specifying values to 
assign to the bias parameters, Ding and VanderWeele15 noted 
that the bias factor, BFs, is monotonically increasing over 
the range of p1, so to derive an upper bound on how extreme 
the bias could be, they assumed the prevalence of the con-
founder among the exposed is 100% (p1 = 1). This assumption 
is equivalent to assuming that the prevalence of the exposure 
among those without the confounder is 0%. Replacing p1 with 
1 in BFs produces the bias bounding factor

BF =
RR RR

RR +RR 1dvw
UD EU

EU UD –  
(3)

When p1 = 1, RREU is well-defined, but there is no 
one who is exposed and without the confounder; thus, RRUD 
would suffer from a positivity violation in the exposed stratum 
and thus is numerically undefined (in the sense of dividing by 
zero). Nonetheless, this imposes no constraint on RRUD in the 
exposed stratum, and as p1 approaches 1, RRUD in the exposed 
stratum remains constant at the value seen in the unexposed 
stratum (which remains defined when p1 = 1). The relations 
we describe hold mathematically as p1 approaches 1, and 
make sense conceptually insofar as the limit shows the effect 
U had on D among the exposed, which is real even if all the 
exposed had U (p1 = 1) and thus all experienced this U effect. 
Nonetheless, a major point of E-value critiques, including 
ours, is that this limit can be far from what would be seen as 
plausible in light of background and data information.

Consider a hypothetical situation in which the RRUD = 
RREU = 2. As shown in Figure 1, BFs is less than or equal to 
BFdvw at every possible confounder prevalence, which is why 
Ding and VanderWeele15 refer to BFdvw as a sharp bounding 
factor. The two bias formulas give the same answer only when 
the prevalence of the confounder in the exposed is 1. The 
two formulas are maximally different when the prevalence of 
the confounder among the exposed is 0, since in this case, 
there can be no upward confounding by U. In this situation,  
BFs = 1, while BFdvw still indicates that the bias is less than or 
equal to 1.33. These two statements are compatible; however, 
BFdvw could mislead if its status as an upper bound is not kept 
in mind.

The Schlesselman bias factor can be used to adjust an 
observed RR for uncontrolled confounding; values for RRUD, 
RREU, and p1 are first used in equation (2) to estimate BFs, 
which is then used in equation (1) to adjust the observed RR

RR RR BFED
adj

ED
Unadj

s= /

FIGURE 1. Bias factors for the extent of confounding when 
RREU = RRUD = 2 and RRobs > 1 over the range of possible val-
ues of the prevalence of the confounder in the exposed. Solid 
line is the Schlesselman bias factor, BFs, and dashed line is the 
bounding factor of Ding and VanderWeele,15 BFdvw.
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Ding and VanderWeele15 propose to use BFdvw in the 
same way: After specifying values for RRUD and RREU, BFdvw 
is calculated from equation (3) and then substituted into 
equation (1). However, because the Ding and VanderWeele15 
approach assumes a value of p1 that maximizes the bias factor, 
the bias-adjusted estimate produced by their approach is only 
a lower bound on the adjusted estimate and may be substan-
tially lower than the bias-adjusted estimate obtained by the 
Schlesselman approach.

Example 1
VanderWeele and Ding16 illustrate their bounding fac-

tor in a case–control study examining the association between 
formula feeding (relative to breastfeeding) and respiratory 
infections among infants. Victora et al25 found a substantial 
association (RR = 3.9) between formula use (breastfeeding 
was the reference category) and respiratory infections; how-
ever, they did not ascertain whether women smoked, so were 
unable to control for this potential confounder. VanderWeele 
and Ding16 assumed the association between smoking and 
respiratory disease was RRUD = 4 and the association between 
formula use (vs. breastfeeding) and smoking was RREU = 2. 
Using these values in equation (3), they found BFdvw = 1.6; 
that is, the most that smoking could bias the observed effect 
would be by a factor of 1.6, if specified associations were cor-
rect. This result is only an upper bound on the actual bias, 
however, and equals that bias only if the prevalence of smok-
ing among women in the formula group is 100%—an exceed-
ingly unlikely scenario. If the prevalence among the exposed 
is under 100%, BFdvw = 1.60 simply implies that the actual 
bias due to this uncontrolled confounder is less than 1.60.

We illustrate the difference between BFdvw and BFs, 
which incorporates information on the prevalence of the con-
founder. To estimate p1, the prevalence of smoking among 
Brazilian women who used exclusively formula during this 
time period, required three sources of information. First, we 
estimated the overall prevalence of smoking, pc, from a study 
by Barros et al30 (their Table 2), which reported pc = 35.6%. 
Second, we estimated the prevalence of formula feeding, pe, as 
119/(119 + 281) = 29.8% using data from the control series in 
Victora et al25 (their Table 1). Third, we assumed RREU = 2.0, 
as in VanderWeele and Ding.16 From these three assumptions, 

we calculated p1 as 
p
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Schlesselman’s bias factor under this prevalence is BFs = 1.45; 
that is, failure to adjust for smoking would be expected to bias 
the observed estimate of association by a factor of 1.45.

Both BFdvw and BFs can be used in equation (1) to gen-
erate a confounding-adjusted effect estimate, yielding values 
of RR = 2.4 and RR = 2.7, respectively. The value RR = 2.4 
obtained by using BFdvw is a bound on the bias-adjusted RR: 
it is the smallest possible confounding-adjusted RR that could 
be obtained using RREU = 2 and RRUD = 4. The value RR = 2.7 

is the bias-adjusted RR that would be obtained had we been 
able to adjust for smoking using the same values for RREU 
and RRUD along with p1 = 55% and is, indeed, greater than the 
Ding and VanderWeele15 bound of 2.4.

Bounding Factors Versus Probabilistic Bias 
Analysis

In settings for which there is context-specific concern 
about a specified but unmeasured potential confounder (as 
in the example), bounding methods can provide misleading 
impressions of the magnitude of bias since they are calcu-
lated under the most extreme prevalence. Nonetheless, the 
available contextual information is usually uncertain. Rather 
than assuming the prevalence p1 is a specific value, we can 
produce estimates of bias factors and bias-adjusted effects 
using probabilistic bias analysis.13,14,26–28 Indeed, incorporat-
ing parameter uncertainty in the final estimate of effect is a 
crucial component of probabilistic bias analysis. VanderWeele 
and colleagues20 have argued that researchers may sometimes 
want to move past bounds (such as E-values) to probabilis-
tic bias analyses;29 however, it is unclear how often that has 
happened.21

To illustrate, Barros et al30 provide estimates of mater-
nal smoking among pregnant women, overall and by family 
income, in Brazil, 1982–1984. To specify a prior distribu-
tion for p1, we took p1 = 0.55 computed above as the mode. 
We then applied the formula for p1 in the previous section 
to data in Barros et al30 Table 2 to specify a possible range 
for the smoking prevalence among women who formula fed: 
31% and 67%. To implement a probabilistic bias analysis, we 
specified that the prevalence of smoking among women whose 
infants use formula follows a triangular distribution with a 
minimum of 0.255, a maximum of 0.717, and a mode of 0.55. 
These parameters imply that our best guess at the prevalence 
is 55%, and we have 95% certainty that p1 is between 31% and 
67% and that we are 100% certain it is not less than 25.5% or 
greater than 71.7%. The mode is the overall smoking preva-
lence as computed above. The lower 95% limit matches the 
estimated prevalence of smoking among women who breast-
feed in the family income stratum with the lowest overall 
prevalence of smoking in Barros et al.30 The upper 95% limit 
is the estimated prevalence in the family income stratum with 
the highest prevalence of smoking in Barros et al.30

We note that the mode of this distribution is closer to the 
upper limit than to the upper limit, reflecting the skew of the 
smoking data in Barros et al,30 where strata with low preva-
lences of smoking contained fewer women. We drew 106 sam-
ples from this distribution and repeatedly inserted the sampled 
values into equation (2), along with RRUD = 4 and RREU = 2, 
to produce 106 bias factors. In turn, we used these bias factors 
to compute 106 confounding-adjusted RRs using equation (1). 
Accounting for the possible uncertainty in the prevalence of 
maternal smoking, we estimated a median bias factor of 1.44 
(95% simulation limits: 1.32, 1.50).
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Figure  2 shows the distribution of the resulting 
Schlesselman bias factors in relation to the bounding factor 
BFdvw from Ding and VanderWeele.15 The entire distribution 
of BFs is substantially lower than BFdvw, implying that even 
if we assume substantial uncertainty in prevalence, BFdvw 
is a poor estimate of the extent of plausible bias, given the 
other bias modeling assumptions. Using the sampled values 
of BFs in equation (1) to compute a confounding-adjusted RR 
produced a median RR = 2.72 and 95% simulation limits of 
2.60, 2.96. To more directly compare with the result provided 
by BFs, we have not included random error in these limits, 
only uncertainty in the prevalence. Thus, even accounting for 
our relatively large uncertainty around the actual prevalence 
of maternal smoking, the lower 95% simulation limit is still 
substantially larger than the Ding and VanderWeele15 bound 
of RR = 2.4. Only if our uncertainty in the prevalence of the 
confounder placed substantial probability near a prevalence 
of 100% would the Ding and VanderWeele15 bound provide a 
bound compatible with the lower limit from our probabilistic 
bias analysis.

Additionally, we incorporated random error into our 
estimate by randomly resampling from a normal distribution 
with mean equal to the log of the adjusted RR and variance 
equal to the variance estimate for the observed (unadjusted) 
RR. This procedure was repeated for each of the 106 con-
founding-adjusted RRs and resulted in 95% simulation limits 
of 1.24, 6.02.

The E-Value
In some settings, researchers might be hesitant to spec-

ify values for RRUD and RREU, and here VanderWeele and 
Ding16 proposed the E-value, which inverts the bounding fac-
tor in (3). First, one assumes that RRUD = RREU and substitutes 
this quantity into equation (3). Next, if one wants to determine 

the smallest common value of RRUD = RREU > 1 that could 
possibly produce enough bias to completely reduce RRobs to 
the null, we set BFdvw = RRobs. Making these substitutions to 
equation (3) and solving for E-value gives:

E-value RR RR RRobs obs obs= + −( )1  
(4)

The E-value is the minimum value for RRUD = RREU > 
1 that would make the bounding factor BFdvw = RRobs and thus 
make the lower bound on the adjusted association equal to 1. It 
is important to note that the E-value function takes RRobs as an 
input; unfortunately, using confidence limits in such a bound-
ing function does not produce valid confidence limits for the 
target risk ratio RRED

adj .31 Because the E-value is derived from 
the bounding factor, BFdvw, it also assumes the most bias-
inducing scenario, that p1 = 100%. Because confounding is 
determined by RRUD and RREU in addition to p1, if we assume 
p1 is as deleterious as possible, then to explain away an effect, 
the shared value of RRUD and RREU does not need to be as 
large as it would if p1 were less extreme. Said another way, if 
the prevalence among the exposed is not 100%, a substantially 
larger shared value of RRUD and RREU would be required to 
reduce an observed effect to the null.

The E-value assumes RRUD and RREU are equal, which 
is another implausible assumption with substantial implica-
tions. To see this, note that one of RRUD and RREU could be 
arbitrarily large and yet U would produce little confounding if 
the other was nearly 1. For example, using RREU = 1.01 and 
RRUD = 1,000 in the original Ding and VanderWeele15 bound, 
we get BFdvw = 1.01, or only 1% maximum bias from a variable 
U that has a stronger effect on disease than anything we see 
in epidemiology. Using instead RREU = 1.10 and RRUD = 10  
we get BFdvw = 1.09, or only 9% maximum bias (given RRobs 
> 1 and assuming RRadj = 1) from a variable U with an effect 
comparable to that of smoking on lung cancer. Thus, the 
E-value can be unlimited in how misleading it becomes, for 
it assumes an extreme-case scenario: confounder prevalence 
(p1) of 100%, and equality of the associations of U with D and 
E on the risk-ratio scale. Neither assumption has any basis in 
real examples we are familiar with, and this has led to rejec-
tion of the E-value by several authors.17,18

To see the impact on the E-value of its assumption about 
p1, we compute a bias factor using Schlesselman’s formula in 
(2) assuming that RRUD = RREU and that the observed RR is 
completely explained away by U, RRobs = BFs, but we leave 
p1 unspecified. Substituting parameters and solving for the 
strength of the confounder effects leads to an alternative for-
mula, which we call the generalized E-value and denote by 
G-value(p1), which is given by:

G-value p

RR p RR p
p RR RR p

RR
obs obs

obs obs

ob( )1

1 1
1 1

2

1
1

4
=

+ + − +
− − −( )

− ssp

p
1
2

12

FIGURE 2. Distribution of the Schlesselman bias factor BFs if 
prevalence is assumed to follow a triangular distribution with 
minimum = 0.255, maximum = 0.717, and mode = 0.55. Dark 
vertical line is the limit from the bounding factor, BFDVW.
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Like the E-value, the G-value(p1) is defined for RRobs > 1. 
Reverse coding can be used to accommodate observed effects 
less than 1. Because we specify a value for p1, G-value(p1) is 
not a bound on the magnitude of the confounder associations; 
it is the exact size that RRUD = RREU > 1 would need to have 
to reduce RRobs to the null, for a given p1. We note that it is 
possible to derive a G-value formula under the more general 
conditions (such as a nonbinary confounder) used in Ding and 
VanderWeele.15

Figure 3 shows the relationship between prevalence and 
G-value(p1) across a range of prevalences. When p1 = 100%, 
the E-value and G-value(p1) are identical. However, for all 
other prevalences, the E-value is less than G-value(p1), illus-
trating that the E-value has underestimated the required size 
of the confounder relations needed to nullify the conventional 
result when p1 is more realistically specified. As the preva-
lence diminishes, the discrepancy increases dramatically, with 
G-value(p1) increasing over the E-value by orders of magni-
tude. As seen with BFdvw, a lower prevalence of the confounder 
among the exposed implies less confounding, so that to reduce 
a given value or RRobs to the null, the magnitude of RRUD and 
RREU must increase as p1 decreases. The G-value(p1) also 
gives an alternative way of conceiving of the E-value: by set-
ting p1 = 100%, we minimize the value of RREU = RRUD > 1 
that yields a confounding bias equal to RRobs.

Example 2
Trinquart et al used E-values to estimate the robustness 

of effects that were published in the nutritional epidemiology 
and air pollution epidemiology literature.32–34 The authors 
abstracted estimates from 100 air pollution studies and 100 
nutrition studies that found statistically significant estimates. 

The focus on statistically significant estimates by Trinquart et 
al33 was because “P values drive the nature of published esti-
mates in [these] literature[s].” We note that focusing only on sta-
tistically significance is a source of publication bias that results 
in overestimation when RR > 1 (and underestimation when RR 
< 1) and that aggregating heterogenous studies that have differ-
ent health outcomes makes it difficult to draw conclusions.35

Hamra32 raised further criticisms of Trinquart et al.33 
Our focus here is solely on the latter authors’ use of E-values. 
In the nutritional epidemiology literature, they estimate a 
median effect estimate across studies of RR = 1.33 and in the 
air pollution literature, they found a median effect estimate of 
RR = 1.16, with E-values of 2.00 and 1.59, respectively. The 
authors state, with regard to the result for the nutrition litera-
ture, that it would take “…a relative effect of 2.00 […] to turn 
the estimate into a null estimate.” This assertion will only be 
true if the prevalence of the uncontrolled confounder among 
the exposed is 100% and the prevalence of the exposure is 
zero in the reference level of the confounder; if the prevalence 
of the uncontrolled confounder is less, RRUD = RREU = 2.0 
will reduce the observed effect, but not all the way to the null.

Trinquart et al33 never identify any uncontrolled con-
founder likely to be operating across these literatures. If the 
concern in these literatures is with confounders that have 
a prevalence far lower than 100%, as we suspect it is, their 
inference could change dramatically. For example, if the 
shared confounder in the nutrition literature had a prevalence 
among the exposed of p1 = 10%, RRUD = RREU = 5.4 would 
be required to reduce the observed association RRobs = 1.33 
to the null (Table). These results would make the existing lit-
erature appear more robust to uncontrolled confounding than 
Trinquart et al33 implied based on E-values.

DISCUSSION
Evaluating the potential direction and magnitude of 

uncontrolled confounding requires careful consideration 
of the nature of the uncontrolled confounders. Whenever 
possible, those confounders should be explicitly named so 
that reasonable values for bias parameters can be specified. 
Understanding the content area well enough to specify a name 
for the uncontrolled confounder and to assign values to the 
parameters of the bias model is an essential part of the infer-
ential process. Unfortunately, this process has been short-
circuited by the explosion in popularity of E-values in the 
medical literature and their documented misinterpretations as 
bias factors instead of as extreme bounds.

We thus worry that the calculation of E-values for 
unknown and unsuspected confounders is an exercise in 
unwarranted paranoia, given the lack of history of plausible 
associations in epidemiology being completely refuted by 
the belated discovery of previously unsuspected confound-
ers. The calculation of E-values for known but unmeasured 
confounders is irresponsible, as it makes no use of the infor-
mation on those covariates that make them plausible to view 

FIGURE 3. G-value(p1) for the strength required for equal con-
founder-exposure and confounder-disease associations RREU = 
RRUD to reduce an observed RR = 2 to the null. The E-value of 
Ding and VanderWeele15 is obtained at G-value(1) = 3.41.
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as confounders. A desire for sensitivity analyses without 
assumptions is a desire to do inference in basic ignorance of 
background context.

We have focused on an aspect of bounding factors and 
E-values that has gotten little attention: that they are derived 
by making the prevalence of the confounder in the exposed 
100% (or, equivalently, by making the prevalence of the expo-
sure among those without the confounder 0%); the E-value 
goes further by setting the confounder relations to the expo-
sure and disease equal.19 In practical terms, these assumptions 
mean E-values are extreme bounds on confounding, likely far 
removed from the reality of their applications. While these 
methods produce correct sharp bounds under their assump-
tions, we have stressed two substantial issues with these 
bounds in practice. First, the bound may be far from any bias 
factor to which a researcher should give any credibility. We 
suspect that in most settings, researchers would find it implau-
sible that everyone exposed has the confounder or that no one 
without the confounder is exposed. In those settings, adjust-
ments using the bound will be misleading, as they will be far 
from any plausible estimate of a bias-adjusted RR.

Incorporating contextual information into a formal 
quantitative bias analysis can provide more scientifically 
meaningful results. VanderWeele et al20 state that when the 
prevalence of the uncontrolled confounder is low, the E-value 
“is perhaps of less use, and is perhaps to be avoided.” This 
suggestion may not go far enough because the E-value can 
still produce very misleading bounds in settings where the 
prevalence is not low, as in the Trinquart et al33 example; there, 
a confounder prevalence of 30% could still lead to a different 
conclusion than drawn from the E-value.

The second issue in using the Ding and VanderWeele15 
bounding factors and E-values is the propensity of researchers 
to misuse methods to suit their needs. E-values were presented 
as bounds, but there is evidence that many researchers will 
forget that limitation (as in Trinquart et al33) and discuss the 

E-value as if it were a plausible strength for a confounder to 
explain away a result. This means that it is a mistake to claim 
that a small estimated effect “could easily be pure confound-
ing” simply because of a small E-value. More generally, it is 
a mistake to claim that a confounder could explain away a 
relatively small observed effect without accounting for the 
adjustments that were done. Unless the confounder prevalence 
among the exposed is 100% at all levels of the adjustment 
variables, it would need to have a much larger effect to explain 
away an observed result than indicated by the E-value, and 
that effect would have to remain undiminished after adjust-
ments for measured confounders.17

A quantitative bias analysis can provide information of 
greater scientific interest and public health importance than 
E-values. Concern regarding uncontrolled confounding will 
often focus on a specific set of uncontrolled confounders. 
It is useful to explicitly name these uncontrolled confound-
ers (such as maternal smoking in the formula-feeding and 
infant mortality example) because doing so will allow for 
specification of values for bias parameters based on the exist-
ing literature. Sensitivity analyses that do not name poten-
tial uncontrolled confounders (such as Trinquart et al33) are 
inherently less informative and potentially quite misleading: 
Again, the E-value unrealistically assumes that p1 = 100% and  
RREU = RRUD, a situation unlikely to occur in practice. As 
shown above, if these assumptions fail (as we expect them to), 
the E-value can be far from the actual bias.

If researchers are unable to provide plausible values for 
some subset of bias parameters, there are various alternative 
solutions. A quantitative bias analysis could be conducted at 
a set of values for the unknown parameter. Alternatively, the 
methods of Flanders and Khoury4 can bound the bias due 
to confounding based on whichever parameters can be well 
informed. These bounds do not have to assume that the con-
founder prevalence is extreme or the effect of the confounder 
is the same on the exposure and outcome, and thus can 

TABLE. The Magnitude of RREU = RRUD Required to Reduce the Observed Air Pollution and Nutritional Associations to the Null, 
G-Value(p1), by Prevalence of the Uncontrolled Confounder Among the Exposed

True Prevalence 
Among the Exposed

Air Pollution Epidemiology (Observed association = 1.16) Nutritional Epidemiology (Observed Association = 1.33)

G-Value(p1)
Implied Prevalence Among the  

Unexposed [p1/G-Value(p1)] G-Value(p1)
Implied Prevalence Among the  

Unexposed [p1/G-Value(p1)]

0.1 3.4 0.03 5.4 0.02

0.2 2.5 0.08 3.6 0.06

0.3 2.2 0.14 3.0 0.10

0.4 2.0 0.20 2.7 0.15

0.5 1.9 0.27 2.4 020

0.6 1.8 0.34 2.3 0.26

0.7 1.7 0.41 2.2 0.32

0.8 1.7 0.48 2.1 0.38

0.9 1.6 0.55 2.0 0.44

1.0 1.6 0.63 2.0 0.50
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provide more realistic bias assessments than can the E-value. 
For example, a researcher can generate a bound on the bias 
for a given prevalence of the confounder and the exposure-
confounder association without knowing anything about the 
confounder–disease association. A discussion of the relation 
of BFdvw and E-values to the Flanders and Khoury4 approach 
can be found in eAppendix 4 of Ding and VanderWeele.15

We have focused on two practical limitations of 
E-values but note there are many more criticisms.17–19,32,36 
For instance, the form of the E-value that has entered 
practice refers to confounding that biases away from the 
null, focusing attention on false-positive associations. 
Confounding toward the null is equally important to consider. 
Additionally, E-values focus on an extreme scenario: one in 
which an uncontrolled confounder completely explains away 
an observed association that is considered to be potentially 
causal, a scenario that is often claimed but has rarely if ever 
been confirmed empirically.17,19

Nonetheless, the E-value does have a valid and useful, 
although somewhat limited, interpretation. It stems from the 
fact that, if RREU and RRUD are not exactly equal to each other, 
then one or the other of them must exceed the E-value for 
the entire exposure–outcome association to be attributable to 
the uncontrolled confounding. That is, if RREU and RRUD both 
exceed unity, one or the other of them must equal or exceed 
the E-value to obtain RRED

adj  = 1. This leads to an alternative 
interpretation that, if RREU ≥ E-value and RRUD ≥ E-value are 
both implausible, it must be implausible that RRED

adj  = 1.
Finally, there is some debate over whether one should 

conduct sensitivity analysis using parameterizations (such 
as prevalences with risk ratios, as in E-values) that will be 
constrained by the observed data. One argument for such 
parameterizations is that they are more easily interpreted by 
researchers and thus will be more easily informed by typical 
background information; this argument applies however only 
to full sensitivity methods, not to E-values. Arguing against 
such parameterizations is that the mathematics is far more 
tractable when one shifts to unconstrained parameterizations, 
and those parameterizations make clear where the data can 
and cannot help in judging effects.36–39 The two views might 
be reconciled in a Bayesian analysis that integrates prior dis-
tributions for unconstrained parameters with a likelihood 
function from an constrained parameterization, but we have 
not as yet seen such an approach.

CONCLUSIONS
Evaluation of the potential magnitude of uncontrolled 

confounding requires careful consideration of unmeasured 
potential confounders. Known potential confounders are 
a first priority as they lend themselves to sensitivity analy-
ses that employ available information about them, rendering 
E-values irrelevant. Second priority should go to unknown 
and unsuspected confounders, for the very reason that they are 
unknown. These are the only potential confounders for which 

E-values might have relevance. Even then, the built-in assump-
tion of an extreme possible prevalence of a risk-increasing 
confounder among the exposed severely limits the E-value’s 
practical utility, yet it invites misinterpretation of E-values as 
plausible values rather than extreme values. Finally, it should 
be emphasized that the E-value refers to the strength of the 
residual associations of the confounder with the exposure and 
the disease (those that remain after adjustments for what was 
measured); those associations may be quite diminished if the 
unmeasured confounder is strongly associated with variables 
used for matching and adjustment.
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