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Abstract

This descriptive study aimed to compare the magnetic resonance appearance of the distal

interphalangeal joint articular cartilage between standing weight-bearing and non-weight-

bearing conditions. Ten forefeet of live horses were scanned in a standing low-field mag-

netic resonance system (0.27 T). After euthanasia for reasons unrelated to the study, the

non-weight-bearing isolated feet were scanned in a vertical positioning reproducing limb ori-

entation in live horses. The same acquisition settings as during the weight-bearing examina-

tion were used. Thickness and cross-sectional area of the distal interphalangeal articular

cartilage and joint space were measured on tridimensional T1-weighted gradient echo high

resolution frontal and sagittal images at predetermined landmarks in both conditions and

were compared using a linear mixed-effects model. Frontal images were randomized and

submitted to 9 blinded readers with 3 different experience levels for identification of weight-

bearing versus non-weight-bearing acquisitions based on cartilage appearance. Weight-

bearing limbs had significantly thinner distal interphalangeal cartilage (p = 0.0001) than non-

weight-bearing limbs. This change was greater in the distal phalanx cartilage than that of the

middle phalanx. Blinded readers correctly identified 83% (range 65 to 95%) of the images

as weight-bearing or non-weight-bearing acquisitions, with significantly different results

observed among the different readers (p < 0.001) and groups (p < 0.001). These results indi-

cate that distal interphalangeal articular cartilage and particularly cartilage of the distal pha-

lanx thins when weight-bearing compared to the non-weight-bearing standing postmortem

conditions and suggest that cartilage abnormalities may be more difficult to identify on

weight-bearing standing magnetic resonance imaging.
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Introduction

With the emergence of a low-field standing system, magnetic resonance (MR) imaging is

increasingly used in the diagnosis of foot pain in horses. [1–4] Recent equine literature has

addressed the possibility of evaluating articular cartilage using MR imaging, [5–11] and many

MR studies have assessed articular cartilage on equine cadaver limbs. [5–8, 10–16] In recent

publications on equine MR imaging, the articular cartilage thickness has been assessed on dis-

tal interphalangeal, [5] metacarpophalangeal [6, 10, 11, 17] and carpal joints. [12] Some studies

demonstrated that MR imaging is reliable for cartilage thickness measurement when com-

pared to histologic measurements of the carpal and metacarpophalangeal articular cartilage on

isolated limbs when using high field magnets. [11, 12] However, other studies have failed to

consistently correlate high field MR imaging measurement with gross cartilage thickness, par-

ticularly in the metacarpophalangeal joint. [17] Furthermore, some concerns have been raised

about limitations associated with spatial resolution of the modality for assessing thin articular

cartilage. [18] Moreover, whereas the limb is imaged in a non-weight-bearing position during

high field MR imaging, it is weight-bearing during low field acquisition in a standing MR

imaging unit, except in the few cases where the magnet is used in patients under general anaes-

thesia. The effect of loading on in vivo or ex vivo cartilage thickness has been well demon-

strated in human orthopedics, e.g. in the knee [19–24], hip [25], and ankle, [26] and articular

cartilage deformation is routinely assessed in human patients in the diagnosis of early degener-

ative joint disease. [20, 27–29] On the contrary, no report discusses the potential difference in

cartilage appearance between weight-bearing and non-weight-bearing conditions in the

equine patient. This study aimed to compare the appearance of the distal interphalangeal joint

(DIPJ) articular cartilage between standing weight-bearing and non-weight-bearing condi-

tions using a low-field MR system. We hypothesized that articular cartilage would have a dif-

ferent appearance in terms of thickness, delineation, homogeneity and signal intensity

between standing weight-bearing and standing non-weight-bearing postmortem acquisitions.

More particularly, we hypothesized that cartilage thickness would be less in images acquired in

a weight-bearing position compared with non-weight-bearing limbs.

Materials and methods

Feet and MR images acquisition

This descriptive study was part of a larger research program approved by and conducted in

accordance with French Institutional Animal Care and Use Committee. Ten forefeet of 5 non-

lame live horses were scanned in a 0.27 T standing MR magnet (Hallmarq Veterinary Imaging

Ltd, Guildford, Surrey, UK) using a dedicated hoof coil. Breed, age, sex and body weight from

the horses are summarized in Table 1.

Table 1. Breed, age, sex and body weight of horses used in the study.

Horse Breed Age (years) Sex Body Weight (kg)

1 French Trotter 3 Mare 408

2 French Trotter 3 Gelding 454

3 French Trotter 4 Mare 468

4 French Trotter 5 Gelding 538

5 French Trotter 6 Mare 430

Range - 3–6 - 408–538

Mean - 4.2 - 459.6

https://doi.org/10.1371/journal.pone.0211101.t001
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A tridimensional high resolution T1-weighted (T1 3D HR) sequence (time of echo—TE: 8

ms, TR: 24 ms, slice thickness: 1.95 mm, matrix 512 x 512, pixel size 0.332 mm) was performed

in the sagittal and frontal planes. Sagittal images were used to pilot the frontal images, in

order to obtain a perpendicular orientation to the palmar portion of the glenoid cavity of the

distal phalanx. The horses were euthanized for reasons unrelated to the study, both front limbs

were transected at the level of the middle carpal joint and postmortem MR images were

acquired within the 2 hours following euthanasia. The isolated feet were scanned in a vertical

position reproducing limb orientation in live horses. The limbs were supported in position,

with full solar contact to the ground, but were not loaded, so that the only load on the limbs

was their own weight. The same MR sequences were acquired as during the ante-mortem

weight-bearing study. Attention was paid during non-weight-bearing acquisitions to keep

the foot positioning and frontal plane orientation as close as possible to the weight-bearing

ones.

MR imaging measurement and blinded reading

Articular cartilage was subjectively assessed on both image planes, by consensus between 2

readers (first and second authors, respectively ECVDI Diplomate and Associated Member).

Homogeneity of signal intensity, delineation of the bone-cartilage and cartilage-synovium

interfaces were evaluated.

Foot balance was evaluated as follow: two lines were traced in the sagittal plane of the mid-

dle and distal phalanx on frontal images. The distal angle α was measured between the 2 lines

to evaluate lateromedial foot balance (Fig 1). Two lines were traced tangential to the dorsal

cortices of the middle and the distal phalanx on sagittal images. The distal angle β between the

2 lines was measured to evaluate DIPJ flexion. (Fig 1).

Two images were selected from the frontal series of each foot in the palmar aspect of the

DIPJ. The images were selected where the section plane was most perpendicular to the articu-

lar surfaces of the palmar half of the condyle of the middle phalanx and of the palmar aspect of

the glenoid cavity of the distal phalanx (Fig 2). Three images were selected from the sagittal

series of 9 feet. One sagittal series was not available at the time of sagittal measurements and

therefore comparative measurements of that foot (LF foot horse 4) were not performed in the

sagittal plane. One image was selected in the median plane of the DIPJ and 2 in the center of

each middle phalanx condyle. The following measurements were made on both frontal (Fig 3)

and sagittal (Fig 4) images for both weight-bearing and non-weight-bearing conditions: 1)

DIPJ space thickness was measured by drawing lines from the hypointense subchondral bone

surface of the middle phalanx to the subchondral bone surface of the distal phalanx, therefore

including articular cartilage from both middle and distal phalanges. Measurements were

obtained perpendicular to the subchondral bone surfaces at 5 predetermined locations in fron-

tal images: abaxial and central aspects of the lateral and medial condyles of the middle phalanx

and glenoid cavity of the distal phalanx, and sagittal aspect of the joint. Measurements were

obtained at 3 predetermined locations in sagittal images: at the dorsal, central and palmar

third of the glenoid cavity of the distal phalanx, excluding the most palmar aspect of the DIPJ

where the middle phalanx articulates with the distal sesamoid bone. 2) DIPJ cross-sectional

area was measured by drawing spline curves along subchondral bone margins of the middle

and distal phalanges and joining them at the most abaxial aspect of articular cartilage on the

frontal images, and at the most dorsal and palmar aspect of the glenoid cavity of the distal pha-

lanx on the sagittal images, including the articular cartilage of both the middle and distal pha-

langes. 3) A subgroup of 5 feet from 3 horses (one foot from horse 2, both feet from horses 4

and 5) was selected, based on better separation of synovium surfaces from the cartilage of the
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middle and distal phalanges on the frontal images. The respective thickness of the articular car-

tilage of the middle and distal phalanges was measured on these 5 feet, at similar locations to

those previously used to obtain the joint space thickness measurements, by drawing lines from

subchondral bone to synovial surface of the cartilage. Individual thickness measurement of the

cartilage of the middle and distal phalanges was also performed on the sagittal images of 9 feet,

at similar locations to those previously used to obtain the joint space thickness measurements.

4) The respective cross-sectional area of the cartilage of the middle and distal phalanges was

also measured separately by drawing spline curves along their subchondral and synovial mar-

gins and joining them abaxially on the frontal images or at the dorsal and palmar aspects of the

glenoid cavity of the distal phalanx on the sagittal images. Those measurements were per-

formed by a single operator (LE) with a dedicated image processing program (Image J32, W.

Rasband, Maryland, USA, 2009). Measurements at all predetermined locations were acquired

sequentially and repeated 3 times in succession on each separate image. The images were not

randomly analyzed and the reader was aware of the conditions of the study and previous mea-

surements. Thickness values were averaged per location, as well as area values. The coefficient

of variation was calculated in order to determine the homogeneity of the measurements. The

Fig 1. Illustration of lateromedial and dorsopalmar foot balance measurement. Upper images—Lateromedial

balance: Frontal tridimensional high resolution T1-weighted (T1 3D HR) images from the same fore foot (left fore foot

horse 3), obtained respectively during weight-bearing (on the left) and non-weight-bearing (on the right) acquisitions.

Lateral is to the right. The angle α measured between the sagittal axes of the middle phalanx (green line) and of the

distal phalanx (yellow line) represents the amount of varus or valgus deviation of the distal interphalangeal joint.

Bottom images—Dorsopalmar balance: Sagittal tridimensional high resolution T1-weighted (T1 3D HR) images from

the same fore foot (left fore foot horse 1), obtained respectively during weight-bearing (on the left) and non-weight-

bearing (on the right) acquisitions. The angle β measured between tangential lines to the dorsal cortex of the middle

(green line) and distal (yellow line) phalanges represents the amount of distal interphalangeal flexion.

https://doi.org/10.1371/journal.pone.0211101.g001
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error in linear distance measurement was also calculated as the ratio of the pixel size and the

thickness measured. [18, 30]

A second part of the study was dedicated to blinded recognition of weight-bearing versus

non-weight-bearing images of each foot, based on the difference in thickness and delineation

of articular cartilage and joint space. The original frontal images, previously used for measure-

ments, were paired (corresponding images in both conditions, total 20 pairs). Image pairs

were then randomized and submitted to 9 blinded readers distributed in 3 groups of 3 readers

each (group 1: equine orthopedic surgeons or large animal imaging residents, group 2: small

animal imaging residents with little experience in equine imaging, group 3: veterinary stu-

dents). They were asked to identify non- from weight-bearing images based on the clearly

stated hypothesis that non-weight-bearing cartilage would be thicker and easier to delineate. A

comparative pair (not included in the measurement and reading studies) was provided as a ref-

erence. The readers were not aware of the laterality of the provided images. Percentage of cor-

rect identification was recorded for each reader.

Fig 2. Illustration of frontal slice selection for articular cartilage measurements. Frontal tridimensional high

resolution T1-weighted (T1 3D HR) images (on the right) are selected from sagittal T1 3D HR images (on the left)

from the same fore foot, obtained respectively during weight-bearing and non-weight-bearing acquisitions. Lateral is

to the left. Note perpendicular orientation of the frontal slice to the palmar aspect of the glenoid cavity of the distal

phalanx. The orange lines represent the dorsal and palmar extremities of the field of view. The green line represents the

selected frontal slice for measurements.

https://doi.org/10.1371/journal.pone.0211101.g002
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Fig 3. Illustration of articular cartilage thickness and area measurements on a frontal tridimensional high

resolution T1-weighted (T1 3D HR) image of the distal interphalangeal joint of a forefoot. a. Individual

sMRI of equine distal interphalangeal cartilage
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Statistics

After validation of the normal distribution of the data and their residues, a mixed linear statis-

tical model [31] (R version 3.1.3) was used to test the relationship between DIPJ cartilage

thickness and area and several independent variables. The differences in thickness and area

between weight-bearing and non-weight-bearing acquisitions were assessed, in both the fron-

tal and sagittal acquisitions. The difference in thickness between medial, sagittal and lateral

aspects and between dorsal, central and palmar aspects of the articular cartilage during the

same acquisition were assessed, in both the weight-bearing and non-weight-bearing condi-

tions. The differences in cartilage thickness and areas between the middle and distal phalanges

was also tested, when available (5 feet for frontal measurements, 9 feet for sagittal measure-

ments). Finally, the presence of interaction between selected independent variables was

assessed (between the lateromedial or dorsopalmar location of the measurement and the

weight-bearing condition of acquisition, between the phalanx and the condition of acquisi-

tion), in order to test the potential influence of measurement location on the differences in

thickness observed. Results were considered significant at p< 0.05.

For the second part of the study (blind reading), a Pearson’s chi-squared test was used to

test the dependency between individual reader and result and between readers group and

result.

Postmortem gross examination

Isolated limbs were finally dissected in order to evaluate the articular cartilage at gross post-

mortem examination.

Results

Subjective evaluation of DIPJ MR appearance

Articular cartilage of the middle and distal phalanges appeared as a homogeneous, clearly high

T1 signal intensity layer covering the hypointense subchondral bone, in both non- and weight-

bearing conditions. Despite the use of a high-resolution sequence, the trilaminar structure of

the articular cartilage was not consistently visible. Synovial fluid with intermediate T1 signal

intensity, was interposed between the cartilage surfaces of middle and distal phalanges in both

conditions. Delineation at the cartilage-fluid interface varied depending on the amount of

synovial fluid present. No MR imaging evidence of a cartilage defect or alteration of signal

intensity consistent with a cartilage lesion was noted on any acquisition of any foot.

Despite hoof trimming, mild differences in foot balance were observed between the feet,

impairing a perfect reproducibility of frontal plane selection among different feet. A difference

in foot balance was also observed between both acquisitions on the same foot. Distal interpha-

langeal varus and subjective medial narrowing of the joint space was observed in 8 feet (all

horses except horse 4) during the weight-bearing acquisition, with a maximum angle of 4.5˚ to

the medial off the axial plane. This was no longer visible or reduced on the non-weight-bearing

acquisition, with a maximum angle of 3˚ to the medial off the axial plane. One foot of horse 4

was balanced during the weight-bearing acquisition but showed varus (3.3˚ to the medial off

measurements of articular cartilage thickness of the middle and distal phalanges, respectively, at 5 predetermined

locations (abaxial and central aspects of medial and lateral condyles, and sagittal aspect). b. Individual measurements

of articular cartilage areas from the middle and distal phalanges, respectively. c. Measurements of distal interphalangeal

space thickness, combining articular cartilage from middle and distal phalanges (same locations as individual

measurements in a). d. Measurement of distal interphalangeal space area, combining articular cartilage from middle

and distal phalanges. Lateral is to the left.

https://doi.org/10.1371/journal.pone.0211101.g003
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the axial plane) and medial narrowing of the DIPJ space on the non-weight-bearing acquisi-

tion. The other foot of horse 4 showed mild valgus (1.7˚ to the lateral off the axial plane) during

the weight-bearing acquisition and varus (2˚ to the medial off the axial plane) during the non-

weight-bearing acquisition. Furthermore, minor to mild differences in the degree of DIPJ flex-

ion were observed between both acquisitions of the same foot, with a maximum flexion angle

of 10˚, despite an attempt to exactly reproduce in vivo foot positioning during the postmortem

non-weight-bearing acquisitions.

MR imaging measurements and blinded reading

Averaged results for DIPJ space thickness, as well as individual cartilage thickness of the mid-

dle and distal phalanges and cross-sectional area measurements are summarized in Tables 2

and 3 and Figs 5 and 6. Complete datasets of frontal and sagittal measurements are available in

S1 and S2 Tables. The mean cartilage measurements were significantly thinner and the areas

significantly less in the weight-bearing DIPJ (p< 0.0001 and p = 0.0001) and distal phalanx

(p< 0.0001) cartilage in both the sagittal and frontal planes, compared with non-weight-bear-

ing cartilage measurements. Given a pixel size of 0.332 mm, percentages of error associated to

the averaged linear thickness measurements ranged from 6% for DIPJ space to 39% for the

individual cartilage of the distal phalanx (mean 18%) on the frontal images, and from 6% for

DIPJ space to 83% for the individual cartilage of the distal phalanx (mean 21%). A coefficient

of variation greater than 0.15 was found in 8/480 (2%) series of 3 measurements each and only

one of those was greater than 0.2. A coefficient of variation greater than 0.15 was found in 52/

648 (8%) series of 3 measurements each on the sagittal images.

In the frontal plane, the cartilage of the middle phalanx was significantly thicker than that

of the distal phalanx in the weight-bearing acquisitions (p = 0.003), while it was thinner in the

Fig 4. Illustration of articular cartilage thickness and area measurements on a sagittal tridimensional high

resolution T1-weighted (T1 3D HR) image of the distal interphalangeal joint of a forefoot. a. Individual

measurements of articular cartilage thickness of the middle and distal phalanges, respectively, at 3 predetermined

locations (dorsal, central and palmar aspect). b. Individual measurements of articular cartilage areas from the middle

and distal phalanges, respectively. c. Measurements of distal interphalangeal space thickness, combining cartilage from

middle and distal phalanges (same locations as individual measurements in a). d. Measurement of distal

interphalangeal space area, combining cartilage from middle and distal phalanges.

https://doi.org/10.1371/journal.pone.0211101.g004

Table 2. Mean values and standard deviation for distal interphalangeal joint space thickness and cross-sectional area (10 feet), articular cartilage thickness and area

of middle and distal phalanges (5 feet) in weight-bearing and non-weight-bearing frontal acquisitions. P-values for Significant Effect of the Weight-Bearing Condition

on the Cartilage Thickness and Area are included.

Thickness in mm P-value Area in mm2 P-value

Weight-Bearing Non-Weight-Bearing Weight-

Bearing

Non-Weight-

Bearing

Med Sag Lat Mean Med Sag Lat Mean

DIPJ 3.06 +/-

0.87

3.35 +/-

0.60

3.85 +/-

0.49

3.43 +/-

0.77

4.04 +/-

0.57

4.14 +/-

0.72

4.37 +/-

0.53

4.19 +/-

0.60

<0.0001 172.86 +/-

28.86

208.54 +/- 45.52 <0.0001

MP 1.19 +/-

0.16

1.20 +/-

0.22

1.28 +/-

0.15

1.23 +/-

0.17

1.23 +/-

0.15

1.39 +/-

0.45

1.29 +/-

0.18

1.29 +/-

0.25

0.6223 59.21 +/- 8.57 63.68 +/- 11.77 0.6223

DP 1.14 +/-

0.22

1.05 +/-

0.21

1.07 +/-

0.12

1.09 +/-

0.18

1.53 +/-

0.43

1.58 +/-

0.34

1.61 +/-

0.47

1.57 +/-

0.42

<0.0001 51.25 +/- 8.85 76.44 +/- 20.42 <0.0001

mm: millimeters; mm2: millimeters square; DIPJ: distal interphalangeal joint; MP: middle phalanx; DP: distal phalanx; Med: mean medial values, averaged from the

centromedial and medial abaxial measurements; Lat: mean lateral values, averaged from the centrolateral and lateral abaxial measurements; Sag: mean sagittal values. P-

values represent the probability of a significant effect of weight-bearing condition on the measured cartilage thickness and area.

https://doi.org/10.1371/journal.pone.0211101.t002
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non-weight-bearing acquisitions (p< 0.0001). In the sagittal plane, a significant difference

was observed for the weight-bearing acquisitions (p = 0.0134) only, where the mean thickness

of the middle phalanx was greater than that of the distal phalanx, similar to the frontal mea-

surements. A significant interaction was observed between the phalanx and the condition of

acquisition in frontal (p< 0.0001) and sagittal (p = 0.001) thickness measurements, as well as

in the frontal (p = 0.0015) and sagittal (p = 0.0002) area measurements.

Cartilage thickness significantly differed between the medial, lateral and sagittal aspects of

the joint, in both sagittal and frontal planes, both for individual cartilage layers (p = 0.001 on

frontal images; p< 0.0001 on sagittal images except for area measurements where p = 0.0195)

and DIPJ space measurements (p< 0.0001). On frontal images, cartilage was thinner medially

in 7/10 feet (all feet except horse 4 and right front foot of horse 2) during weight-bearing acqui-

sitions, and in 5/10 feet during non-weight-bearing acquisitions. On sagittal images, cartilage

was thinner medially in both conditions in all feet except in non-weight-bearing images of the

right front foot of horse 2 and the left front foot of horse 3. A significant interaction was found

Table 3. Mean values and standard deviation for distal interphalangeal joint space thickness and cross-sectional area, articular cartilage thickness and area of mid-

dle and distal phalanges (9 feet) in weight-bearing and non-weight-bearing sagittal acquisitions. P-values for Significant Effect of the Weight-Bearing Condition on

the Cartilage Thickness and Area are included.

Thickness in mm P-value Area in mm2 P-value

Weight-bearing Non-Weight-Bearing Weight-

Bearing

Non-Weight-

Bearing

Dors Centr Palm Mean Dors Centr Palm Mean

DIPJ 2.90 +/-

0.49

3.22 +/-

0.47

3.37 +/-

0.45

3.15 +/-

0.51

3.08 +/-

0.61

3.83 +/-

0.66

4.20 +/-

0.57

3.69 +/-

0.77

<0.0001 73.97 +/-

13.22

86.48 +/- 17.35 <0.0001

MP 1.17 +/-

0.18

1.28 +/-

0.25

1.36 +/-

0.20

1.26 +/-

0.23

1.21 +/-

0.23

1.27 +/-

0.20

1.53 +/-

0.33

1.34 +/-

0.29

0.2515 29.17 +/- 5.84 29.59 +/- 6.37 0.2515

DP 1.06 +/-

0.26

1.25 +/-

0.33

1.66 +/-

0.18

1.19 +/-

0.28

1.05 +/-

0.21

1.75 +/-

0.44

1.66 +/-

0.42

1.49 +/-

0.48

<0.0001 31.28 +/- 6.33 38.00 +/- 9.17 <0.0001

mm: millimeters; mm2: millimeters square; DIPJ: distal interphalangeal joint; MP: middle phalanx; DP: distal phalanx; Dors: mean dorsal values; Centr: mean central

values; Palm: mean palmar values. P-values represent the probability of a significant effect of weight-bearing condition on the measured cartilage thickness and area.

https://doi.org/10.1371/journal.pone.0211101.t003

Fig 5. Comparison between tridimensional high resolution T1-weighted (T1 3D HR) frontal images from the

same forefoot, respectively weight-bearing and non-weight-bearing, illustrating the difference in articular

cartilage thickness and delineation between both conditions. Articular cartilage is thicker and better delineated on

the non-weight-bearing compared to the weight-bearing images. Lateral is to the left.

https://doi.org/10.1371/journal.pone.0211101.g005
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Fig 6. Comparison between tridimensional high resolution T1-weighted (T1 3D HR) sagittal images from the same forefoot, respectively weight-

bearing and non-weight-bearing, illustrating the difference in articular cartilage thickness and delineation between both conditions. Articular

cartilage is thicker and better delineated on the non-weight-bearing compared to the weight-bearing images. CL: centrolateral; sag: sagittal; CM:

centromedial.

https://doi.org/10.1371/journal.pone.0211101.g006
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between the location (medial vs lateral) and the condition of acquisition on the frontal

(p = 0.0112) as well as sagittal DIPJ (p = 0.0397) thickness measurements, with a larger medio-

lateral difference observed on weight-bearing compared to non-weight-bearing measurements

of the DIPJ thickness in the majority of cases (28/40 measurements in 5/10 feet on frontal

images, 6/9 feet on sagittal images).

In sagittal images, the articular cartilage was thinner on the dorsal aspect in a large majority

of cases (49/54 measurements in 5/9 feet), on both weight-bearing and non-weight-bearing

acquisitions (p< 0.0001). Cartilage was significantly thicker at the palmar and central aspects

of the joint on the non-weight-bearing compared with the weight-bearing acquisitions

(p< 0.0001), while no significant difference was observed between weight-bearing and non-

weight-bearing dorsal individual and combined DIPJ measurements (p = 1).

Results from the blinded reading are summarized in Table 4. Detailed results are available

in the S3 Table. A significant difference was observed between individual readers (p< 0.001)

as well as between groups (p< 0.001), with better results obtained from the experienced

group. No significant difference was observed among the results obtained from individual

readers within the same group, except for the students group (p = 0.0287).

Postmortem gross examination

On gross postmortem examination, 4 feet had 1 to 2 focal partial thickness erosions at the pal-

mar aspect of the articular cartilage of the medial condyle of the middle phalanx. One of the

feet had a concomitant sagittal fibrillation of the articular cartilage of the distal phalanx. No

deeper lesion was observed on any foot.

Discussion

Difference in cartilage thickness due to load has been demonstrated in human studies [19–21,

25, 26]. It explains the findings of this study where a significantly thinner articular cartilage

was observed in the weight-bearing limb compared to the same non-weight-bearing limb. A

difference in articular cartilage thickness has been observed in the equine carpus, between

antebrachiocarpal and middle carpal joints, [32, 33] but no report discusses in detail different

thickness of two opposing articular cartilage surfaces in horses. Differences in biochemical

Table 4. Results obtained during identification of weight-bearing versus non-weight-bearing frontal tridimen-

sional high resolution T1-weighted magnetic resonance images of the distal interphalangeal joint by 3 groups of

blinded readers.

Reader Images Correctly Identified (%) Mean % Obtained by Group

GROUP 1a 1 38/40 (95) 95

2 38/40 (95)

3 38/40 (95)

GROUP 2b 4 32/40 (80) 80

5 32/40 (80)

6 32/40 (80)

GROUP 3c 7 26/40 (65) 75

8 36/40 (90)

9 28/40 (70)

a Experienced readers: equine surgeons and large animal imaging residents
b Readers with little experience in equine imaging: small animal imaging residents
c Readers without experience in equine imaging: veterinary students

https://doi.org/10.1371/journal.pone.0211101.t004
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composition and thickness may lead to different cartilage behaviors under load. [33–37] In ex-
vivo studies of the human femorotibial joint, tibial cartilage deforms and strains markedly

more in both compression and shear, than femoral cartilage as a result of femoral cartilage

being stiffer. [38] This greater deformation in human tibial cartilage as compared to that of the

femoral condyle is also observed with MR imaging following impact loading. [39] The differ-

ence between the cartilage thicknesses of the middle and distal phalanges may have similar

causes and be related to strain direction and magnitudes varying with joint location and tissue

depth, and to difference in biomechanical properties of the cartilage. [40, 41]

Lateromedial foot imbalance is a concern in standing low-field MR imaging, due to limb

positioning within the magnet. In fact, limb abduction during standing MR imaging [42] may,

in some horses, induce lateromedial asymmetry of DIPJ space, leading to reduction in thick-

ness on the medial aspect as it has been demonstrated on radiographs of normal feet. [43] This

joint space asymmetry was also observed in the majority of the feet of the present study, and

cartilage margins could not always be outlined on the medial aspect of the joint. This is related

to the morphology of the magnet in relation to the height and width of the horse’s breast: the

smaller or the narrower chested the horse, the more severe will be the abduction and therefore

the secondary medial DIPJ compression. Because horse height and breast width were not

recorded, correlation between the degree of medial joint space narrowing and size of the horse

were not evaluated in the present study, and further studies are needed to investigate this

effect.

Only very focal partial thickness erosions and fibrillation were seen at gross post-mortem

examination, which were likely too small to be detected with MR imaging. [18] On low-field

systems, although T2-weighted fast spin echo sequences demonstrated some utility in detec-

tion of metacarpophalangeal cartilage lesions, [8] T1-weighted gradient echo images have been

demonstrated to be more accurate for cartilage visualization and delineation [5, 7, 15] as well

as for cartilage lesion detection in the DIPJ. [5] Gradient echo sequences are sensitive to chem-

ical shift artefacts, which may lead to false negative results in case of lesions at the osteochon-

dral interface, [7, 8, 44] creating a false appearance of an intact surface adjacent to synovial

fluid. However, this artefact is proportional to field strength [45] and its impact on our low-

field MR measurements was therefore considered negligible. Therefore, in absence of deep

gross postmortem lesions, the results support the hypothesis that asymmetrical narrowing of

the DIPJ space during standing MR imaging does not necessarily correspond to pathological

cartilage thinning, but is likely the result of asymmetrical loading related to positioning. Future

work would be necessary to evaluate the effect of positioning on thinning of articular cartilage

when weight-bearing.

A limitation of the present study is the small values of the measurements which were used

to test statistical significance despite interpolation, limited spatial resolution and partial vol-

ume averaging. Given the low field strength and need for short acquisition times on standing

magnets, spatial resolution becomes an issue for evaluating thin structures such as articular

cartilage, [18, 30, 44, 45] and partial volume averaging is a major limitation for an accurate car-

tilage assessment. [5, 8, 12, 46] Furthermore, as the measurements have been performed on a

dedicated image processing program, some level of interpolation may also have reduced the

accuracy. However, the use of a high-resolution sequence with a pixel size of 0.33 mm resulted

in a low error in thickness measurement, particularly when measuring thicker structures like

the DIPJ space. [18, 30] As this study aimed to compare articular cartilage thickness values

obtained during weight-bearing and non-weight-bearing acquisitions, with similar conditions

of acquisition and measurement, and did not aim to obtain reference thickness values of the

articular cartilage, the authors believe that the effects of partial volume averaging and interpo-

lation similarly affect both conditions and thus should not impact the statistical differences
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observed between weight-bearing and non-weight-bearing conditions. A blinded assessment

of the images was conducted in order to support the statistical results with a subjective evalua-

tion of differences in cartilage visualization, delineation and thickness between weight-bearing

and non-weight-bearing conditions. As the blinded readers correctly identified a large major-

ity of non- vs weight-bearing images based on those criteria, the results of the subjective assess-

ment are similar to quantitative results. The significant difference in results among assessor

groups results from a different level of expertise among the groups, with logically better results

obtained from the experienced equine practitioners group. The significant difference in results

among individuals within the students group is likely to be due to the low level of expertise.

Beyond partial volume averaging, curvature of articular surfaces of the DIPJ is another

source of potential error in measurement, as obliquity of the section plane may lead to thick-

ness overestimation. For this reason, the use of several (3–4) oblique frontal planes is recom-

mended in order to be perpendicular to distinct aspects of the articular cartilage while

obtaining the measurements. [5] In our study, the weight-bearing frontal images were

acquired as perpendicular as possible to DIPJ articular cartilage and attention was paid during

non-weight-bearing acquisitions to keep the plane orientation as close as possible to the

weight-bearing plane, but no frontal plane was acquired perpendicular to the dorsal aspect of

the distal interphalangeal joint, due to practical reasons. This is a limitation from the study

since the potential effect of loading on the articular cartilage of the dorsal aspect of the joint

has not been assessed on frontal images. However, measurements have been obtained in the

dorsal aspect of the joint on the sagittal images, which partly compensated the absence of mea-

surement in the frontal plane.

Finally, the small number of specimens used for this study is due to obvious ethical reasons

making this study possible only when particular conditions occurred (horses being available

for in vivo imaging and being, after a short period of time, euthanized for reasons unrelated to

the study). However, the high statistical significance of the majority of our results let us to con-

sider our results reliable despite the limitation of the low sample size.

Conclusions

The results of the present study demonstrate that the articular cartilage of the DIPJ thins when

loaded compared to post mortem isolated decreased weight-bearing distal limbs and differ-

ences exist between cartilage deformation in the middle and distal phalanges. Some cartilage

abnormalities easily visualized on non-weight-bearing limbs may therefore be more difficult to

identify on standing foot MR imaging when asymmetrical joint space thinning due to posi-

tioning is a common feature and DIPJ cartilage is compressed and sheared. Caution should

therefore be recommended in interpreting articular cartilage on weight-bearing limbs and in

using cartilage thickness values obtained on non-weight-bearing limbs as a reference for stand-

ing MR imaging on clinical cases.

Supporting information

S1 Table. Frontal measurements data.

(CSV)

S2 Table. Sagittal measurements data.

(CSV)

S3 Table. Results of blinded reading.

(CSV)
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