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Abstract: The use of tactile perception can help first response robotic teams in disaster scenarios,
where visibility conditions are often reduced due to the presence of dust, mud, or smoke,
distinguishing human limbs from other objects with similar shapes. Here, the integration of the
tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition
task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in
adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human
body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on
the fin ray effect. The classifier was compared against the rigid configuration and a support vector
machine classifier (SVM). Finally, a two-level output network has been proposed to provide both
object-type recognition and human/non-human classification. Sensors in adaptive grippers have a
higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72%
less) than when using a rigid sensor, with a softer grip, which is needed in physical human–robot
interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen,
even though the human/non-human classification had better results (98.78%) with a rigid sensor.

Keywords: adaptive gripper; tactile sensors; human–robot interaction; object recognition

1. Introduction

Haptic perception, conceived as a combination of kinesthetic and tactile information, is
indispensable for human beings. Daily living activities such as manipulating and grasping objects
would be impossible without the sense of touch [1]. As in humans, tactile information is useful in
robotics in different ways, such as for object recognition or grasping tasks, physical human–robot
interaction (pHRI), or dexterous manipulation [2,3].

It is becoming more common to see the use of robots in different applications. In those in which
the interaction of the robot with the environment is required, tactile perception is critical. In robotics
surgery, tactile sensing plays an important role [4–6]. Moreover, in other applications related to
medicine (e.g., for rehabilitation [7,8] or biomedical engineering [9]), tactile sensing is often used.
The use of tactile perception in pHRI operations for touching or manipulating humans has also been
considered [10]. In [11], a textile pressure sensor was developed to detect the emotional intention of
human touches.

Autonomous or teleoperated first response robotics (as the robot show in Figure 1) for emergency
situations operate in disaster scenarios where visibility conditions can be reduced due to the presence
of dust, mud, or smoke, revealing the limitations of existing emergency robots. A mobile manipulator
should be able to identify objects with similar shapes. With this ability, a robot with tactile perception
can enhance the perception capabilities of the system, whether teleoperated or autonomous. Moreover,
the use of a suitable gripper is important to avoid injuring possible humans. Identification of the
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manipulated object using soft or adaptive grippers is important for a safe physical human–robot
interaction (pHRI).

Figure 1. The all-terrain mobile robot for rescue applications, from the University of Málaga, showing
the attached arm with a flexible adaptive gripper.

Tactile identification of the objects in uncertain environments is complex due to the variability of
the objects and grasping conditions. In particular, the size of the detected contact area—even for the
same object type—can change depending on multiple factors:

• Location of the object inside the gripper. As the sensing area is often smaller than the contact
surface, the detected contact area can be different. A diagonal alignment with the sensor provides
larger area than a vertical (or horizontal) one.

• Stiffness of the object and the gripper. Soft objects change the contact area depending on the
pressure. Rigid objects and rigid grippers provide higher pressures with smaller contact areas.
The contact pressure depends on the gripping force, but also on the object weight and eventual
external forces.

• Size of the object. Individuals of the same object class may have different sizes. Human body parts
can also be found in a variety of sizes depending on the sex, age, and physical condition [12,13] of
the subject, providing similar contact pressure shapes with different scales.

As the size of the contact area cannot be used to reliably classify the grasped object, the use of
deep convolutional neural networks (DCNNs) designed and trained for computer vision applications
may provide accurate object recognition using tactile images with independence of the location, scale,
and overall pressure.

In this work, two types of adaptive grippers for pHRI were built, and a flexible high-resolution
tactile sensor was integrated to measure the performance of the manipulator in the classification of
the grasped objects, based on DCNN. The set of training objects included human limbs and common
objects, so a dual classification was performed based on the type of object and on its human nature. The
results of the different approaches are compared to identify the best configuration for the desired task.

To our best knowledge, no previous work has integrated a flexible tactile sensor within adaptive
grippers for object recognition. The major contribution and the novelty of this work lies in the first
evaluation of different gripper hardness for tactile recognition with a flexible tactile sensor. To this
end, we first analysed the sensing characteristics of two types of adaptive grippers and their suitability
for pHRI applications. Next, we propose the adoption of a method based on a pre-trained deep
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convolutional neural network to classify different types of objects and human body parts. Furthermore,
the paper offers experimental results indicating that the proposed solution can be applied to disaster
response robots to better support rescue workers in future emergencies.

In the next section, a review of the related works is included. In Section 3, the sensor and the
configuration of the grippers is described. Section 4 describes the implemented classification methods.
In Section 5, the comparative experiments are included. Section 6 offers a discussion based on the
experimental results, and the paper is closed with a Conclusions section.

2. Related Work

Different topics related to the use of tactile sensors in robot grippers and tactile object recognition
for pHRI applications have been reviewed.

2.1. Human–Robot Interaction

In the case of interaction with humans, the robot is required to manipulate or grasp parts of
the human body (e.g., hands, arms, head). In those situations where pHRI is required, the safety is
indispensable [14]. In [15], an overview of the use of capacitive tactile proximity sensors (CTPSs) for
different applications (i.e., grasping, haptic exploration, collision avoidance, and safe human–robot
interaction) is presented. We need to exert low pressure, so large fingers are better suited for this task.

Flexible fingers can adapt better to the shape of the body part to provide a soft contact but limit the
maximum gripping forces, as shown in [16]. In this paper, soft robotics grippers are used to delicately
manipulate fragile species on deep reefs.

The use of adaptive or soft robots has also been applied for medical activities. In [17], a soft
robotic glove for rehabilitation utilizes soft actuators that induce specific bending trajectories that
are able to produce significant forces under controlled pressures and present low impedances when
un-actuated to allow the movement of the fingers without risk of injuring the patient.

2.2. Haptic Perception in Adaptive and Soft Grippers

Recent trends in robotics are based on the use of soft or adaptive grippers [18,19]. Related works
present the integration of sensors with haptic feedback. Although soft grippers have a simple structure,
good compliance, and a natural motion, there are still significant challenges about the sensors used for
detecting forces and deformations. Those points are considered in [20], where a pneumatic soft sensor
is used for measuring the contact force and curvature of a soft gripper.

Soft robotics grippers are used to identify objects through haptic perception. In [21], a self-adaptive
under-actuated gripper with haptic feedback is presented. On the other hand, a soft gripper is
employed to identify objects in [22]. Each finger of the three-finger gripper has resistive bend sensors
to provide a configuration estimate for distinguishing the grasped object using a clustering algorithm.

2.3. Robot Grasping

The use of a tactile sensor inside the gripper provides useful information for gasping [23,24],
object recognition [25], and manipulation [26,27] tasks. This problem has not yet been solved [28].

Multiple research projects have based their perception of the robots on the information provided
by force or tactile sensors for carrying out grasping and manipulation tasks [29]. One common
approach in this research line consists of estimating the pose of the grasped object based upon tactile
information. In [30], the design of a tactile sensor to estimate the pose and orientations of a grasped
wire is presented. Other approaches presented in [31] are based on exploiting the contact and position
information to estimate the pose of an object inside a robotic hand, then a bootstrap particle filter is
used to evaluate multiple hypotheses of the estimation of the pose.

The use of simple rigid sensors provides little contact information, so many articulated rigid
grippers have multi-pad tactile sensors to perceive different areas of the grasped object [32].
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2.4. Tactile Object Recognition

In the literature, multiple research projects related to object recognition can be found. However,
given the differences in the hardware, providing a comparison between the different works is
complex [32]. Essentially, two main approaches are defined. On one hand, object recognition is
carried out by identifying the material or the surface of the object in contact with the robot [33,34].
On the other hand, the recognition is based on the shape of the object [25,35–37].

Independent of the approach, the majority of these works are based on the use of artificial
intelligence algorithms to classify the data. One proposition consists of using computer vision
algorithms and machine learning techniques by treating the pressure data as images [38,39]. Moreover,
related works made use of neural networks and deep learning [40,41]. One of the benefits of using
convolutional-networks-based techniques is the translation-invariant property presented in this kind
of neural network [42]. In [43], a DCNN-based algorithm to recognise an in-contact human hand
with a robotic arm covered by an artificial skin is developed. This algorithm takes advantage of the
translation-invariant property of the network, and is able to recognise both left and right hands with
different postures.

Other object recognition concepts can be found. In [44], the benefits of using both kinesthetic
and tactile information is presented. On the other hand, in [45,46] the interpretation of the tactile data
as time series is considered. The use of sequential data is important to further identify properties of
the objects (e.g., textures). In the case of [47], an exploratory motion is performed to obtain dynamic
tactile information with a single force sensor (pressure and tangential compliance). In that case, the
control of the actuator is important to keep constant pressure against the materials and obtain reliable
information. The classifier uses a multi-channel approach with very high accuracy. In [48], a flexible
high-resolution sensor was used to create test equipment to evaluate food textures. They use a DCNN
with a pressure sequence image, taken as the artificial mouth closes, to identify parameters of the
food’s texture. The sequence of tactile images is important to track the behaviour of gel-like food when
breaking, even though they found that using only two pressure images yields similar results.

Multi-modal techniques were considered in [49]. Approaches based on the fusion of haptic and
visual data provide better results than using a single type of information, and make a robot able to
predict the physical interaction with the object just by “seeing” it [50].

3. Sensor and Gripper Configurations

This section includes a description of the tactile sensor used and the characteristics of the two
adaptive grippers, with a comparative study of the sensing differences between using a rigid sensor
probe and the two grippers.

3.1. Tactile Sensor

The data acquisition system is composed of the tactile sensor, model 5051 from Tekscan (South
Boston, MA, USA). The high-resolution tactile-array has a total of 1936 pressure sensels (also called
tactels or taxels), where each one has a size of 0.76× 0.76 mm and the sensor presents a density of
62 tactels/cm2 distributed in a matrix of 44 rows by 44 columns of resistive pressure sensors. In Table 1,
the main features of the sensor are shown. Data acquisition software provided by Tekscan was used.

A silicon rubber pad (manufactured by RS with code 733-6713) provides soft contact between the
sensor and the objects. Its main mechanical properties are summarized in Table 2.
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Table 1. Specifications of the tactile sensor model 5051 from Tekscan.

Parameter Value

Max. pressure 48 KPa
Number of tactels 1936
Tactels density 62 tactels/cm2

Temperature range −40 ◦C to +60 ◦C
Matrix height 55.9 mm
Matrix width 55.9 mm
Thickness 0.102 mm

Table 2. Mechanical properties of the silicon rubber pad used on the contact surface of the
gripper fingers.

Parameter Value

Thickness 3 mm
Density 0.25 g/cm2

Elongation 100%→ 200%
Temperature range −60 ◦C to +200 ◦C

3.2. Adaptive Grippers

Two adaptive grippers were implemented based on a two-finger version of the adaptive griper
manufactured by Festo (https://www.festo.com/group/en/cms/10221.htm) using the Fin Ray R© effect,
as shown in Figure 2. This kind of mechanism can be built with different materials, and exhibits an
interesting bending behaviour [51]. The tactile sensor pad is located on the inner side of one of the
fingers, and bends as the finger adapts to the contact surface.

Figure 2. Adaptive gripper based on the Fin Ray R© effect with the flexible configuration and a tactile
sensor. Note that the tactile sensor bends to the contact surface due to the structure of the fingers,
changing the perceived information.

Different materials were used with similar designs (https://www.thingiverse.com/thing:2710725)
using Fused Deposition Modeling (FDM) 3D printing. The materials used are PLA (PolyLactic Acid)
for the semi-rigid gripper, and thermoplastic elastomer (poliurethane) with hardness 90A for the

https://www.festo.com/group/en/cms/10221.htm
https://www.thingiverse.com/thing:2710725
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flexible gripper, by Smart Materials 3D (Spain). Figure 3 shows the rendered image of the CAD models
for each configuration, including the attached tactile sensor.

(a) (b)

Figure 3. Illustration of (a) Semi-rigid and (b) flexible finger and sensor mounting configurations,
showing the dispositions of the data acquisition electronics and the contact rubber pad. Note that the
structure of the semi-rigid gripper has joints that allow the bending of the surface.

The semi-rigid gripper has a multi-part design with hinged ribs than can be 3D-printed in plastic
and assembled in a single batch. The sides of the fingers have a thickness of 0.8 mm to make it bendable.
The flexible version is designed as a single part using elastomer material. The ribs have a thicker
middle section to provide the desired bending effect.

3.3. Mechanical Properties

To characterize soft materials or grippers, the force/displacement relationship was measured.
Figure 4 shows the characterization process of the adaptive fingers’ elasticity before mounting the
tactile sensor. In this process, a force sensor with a range of 0.01 to 50 zN, similar to the force sensor
used in [52], was used.

(a) (b)

Figure 4. Experimental measurement of the fingers’ elasticity (without tactile sensor and pad) through
the displacements δ produced by a controlled force F with (a) the semi-rigid configuration and (b) with
the flexible configuration.

Figure 5 shows the force/displacement curves and the identified parameters, based on a first- and
second-order polynomial regression using the Curve Fitting Toolbox from Matlab. Note that the models
are valid for the range of measured forces of up to 20 N, which seems to be the maximum force before
damaging the finger or losing its bending behaviour.
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Figure 5. Parameter identification of the linear and quadratic models of the semi-rigid and flexible
configurations.

3.4. Different Tactile Images

An adaptive gripper increases the contact surface between the object and the gripper. When
the contact surface is larger, the information acquired by the tactile sensor is higher. To illustrate the
differences, a sample object was used. In Figure 6, a picture of a plastic pipe is shown, along with the
corresponding pressure images obtained with each configuration.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 6. Different contact areas of the different gripper configurations, showing the fin ray effect. (a)
Plastic pipe object, (b) Rigid contact, (c) Semi-rigid gripper contact, (d) Flexible gripper contact, (e)
Pressure image from contact with the rigid probe, (f) Pressure image from contact with the semi-rigid
gripper and (g) Pressure image from contact with the flexible gripper.
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The contact surface can be calculated using Equation (1), where S is the contact surface, κ is the
density of the sensor, measured as the number of tactels per square centimeter, and n is the number of
tactels with values other than 0.

S =
n
κ

(1)

The mean value perceived by the tactels in contact with an object can be obtained according to
Equation (2), where µp is the mean value of the tactels in contact, and p(i, j) is the value of the tactel
(i, j).

µp =
∑m,n

i,j=1,1 p(i, j)

n
(2)

The histograms of the tactile images exhibit information about the distribution of the pressure
values. For the sample tactile images presented in Figure 6, the histogram and the mean value of the
tactels is shown in Figure 7. The contact area in the sensor of a semi-rigid gripper was 26% greater than
the contact area in the rigid sensor, and 37% in the case of the flexible gripper. The mean pressure value
at the semi-rigid sensor was 57% lower than the mean pressure at the rigid probe, and 72% lower in
the case of the flexible gripper. Even when the tactile sensor did not cover all of the finger surface, the
detected contact area of the rigid probe was smaller than in the adaptive grippers. The flexible gripper
measured the largest contact surface when touching the same object. Nonetheless, the histograms
related to adaptive grippers present a lower range of pressure values than the rigid probe.
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Figure 7. Histograms with contact surface and mean tactels value of the data recorded while touching
the object in Figure 6 with each configuration.

4. Tactile Recognition

The recognition procedure adopted in this paper complies with the idea of classifying an object
by its contact shape, treating pressure data from a high-resolution tactile sensor as common images,
and using a deep convolutional neural network [53]. This method was successfully implemented with
a tactile sensor mounted on a rigid probe, applied to robotics search and rescue tasks [54], showing
how tactile perception provides valuable information for the search of potential victims—especially
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in low-visibility scenarios. The purpose of this classifier is to augment the sensory perception by
providing cognitive functions to a robotic system that can be teleoperated in emergency situations
where the visibility conditions are poor due to the presence of dust, mud, or smoke, and the best way
to identify the nature of objects with similar shapes is by using its tactile properties.

The tactile object recognition is implemented in two stages. First, the convolutional layers of
a pre-trained DCNN extract the features from the input tactile data. Next, custom-made layers are
introduced at the final-stage of the network to classify according to our predefined class in a supervised
learning process. Moreover, a variation of this methodology which consists of a DCNN with two levels
of classification is implemented. This way, the first-level classifier provides the nature of the object in
contact (in our case, a human limb or a common object), whereas the second level provides the object
label of the contact.

4.1. Dataset

For the classification process, a dataset of labelled data is necessary. The dataset is composed of
normalized pressure images from 15 classes of objects, including 12 from ordinary objects and three
from human body parts. A picture of the objects and the body parts used in the experiments is shown
in Figure 8. As the recognition can be done on two levels, the objects were labelled in two ways: first
by their human nature, and second as individual objects, as shown in Table 3.

Bottle

Can

Ball

Tube

Branch
Cable

Adhesive

Box Rock

Tape

Mouse

Screwdriver

(a)

Fingers

Arm

Hand

(b)

Figure 8. Images of (a) the inert objects and (b) human limbs used for the experiments.

The reference tactile images were recorded by manually grasping the objects with the three gripper
configurations, as shown in Figure 6b–d. For each configuration, 50 tactile images for each class were
obtained, giving a total of 750 images each. In Figure 9, a sample of 30 pressure images of the classes
tube, ball, and fingers (10 for each class) are shown. The images were collected using the flexible gripper.
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(a) Sample pressure images from “Tube” object.

(b) Sample pressure images from “Ball”.

(c) Sample pressure images from a human body part (“Fingers”).

Figure 9. Sample of pressure images from the dataset created for the experiments taken with the
flexible adaptive gripper. (a) two rows from the class tube, (b) the two middle rows are from the class
ball, and (c) the two last rows are from the class fingers. Each training class has a total of 50 pressure
images for each type of gripper for the objects detailed in Table 3.

As the convolutional-network-based methods used for the experiments are translation-invariant,
the data capture both for the training and validation sets was carried out by grasping the objects with
different positions and orientations. The I-Scan software from Tekscan was used to start recording a
sequence of measurements. Then, the gripper was used to repeatedly close and open up to 200 times
over the target object, which was manually placed by the operator in random positions trying to keep
the centre of the object grasping area over the sensing surface (55.9× 55.9 mm). While placing the
object, the operator also changed the pitch angle randomly with an angle from −45 to 45 degrees
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between the object’s main axis and the bending axis of the gripper. There was no roll angle variation.
Then, the recording was stopped and the sequence was reviewed with the same software and 50
tactile images were manually chosen and saved as individual .csv files. After that, the files were
converted to .jpg files using a matlab script. Finally, the full set of images was directly used to feed the
classification methods using the Neural Network Toolbox. An illustration of the data collection procedure
is presented in Figure 10. The fin ray effect gripper pushes the objects to the middle section of the
gripper. However, if the object is fixed, a compliant position control of the gripper is assumed, with
the help of force/torque sensors.

Table 3. Fifteen different classes were defined, categorized by their individual object label and nature
(Human/Non-human).

Object Label Nature Dimensions

Adhesive tube Non-human 32× 45× 110 mm
Ball Non-human 65 mm Ø
Bottle Non-human 60–85 mm Ø
Box Non-human 22× 22 mm section
Branch Non-human 18–22 mm Ø
Cable Non-human n.a.
Can Non-human 66 mm Ø
Mouse Non-human 62× 108× 48 mm
Rock Non-human 37× 70× 98 mm
Screwdriver Non-human 19–31 mm Ø
Tape Non-human 53 mm Ø
Arm Human 50–70 mm Ø
Fingers Human 16× 70 mm
Hand Human 30× 80 mm section

Figure 10. Illustration of the data collection procedure by grasping an object (tube) from different
locations with the flexible gripper (top) and the corresponding pressure images (bottom).

4.2. Tactile Data Classification with a DCNN

The DCNN used in this work is based on AlexNet, a highly used neural network in computer vision
for object classification [55]. This network contains eight layers, where the first five are convolutional
and the last three are fully-connected.

A large dataset is needed to train this kind of neural network. Although there is a wide variety of
datasets with common RGB images, there is no dataset of tactile images which fit in our application.
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Creating a large enough dataset with labelled tactile data to train this kind of DCNN is an arduous
task. Instead, we propose the use of the transfer learning approach. This concept is based on the idea
of pre-training the DCNN in a dataset of RGB images and then only re-training the final layers, so a
smaller tactile dataset is needed. The network was pre-trained in the Imagenet dataset [56], formed by
common pictures (RGB). Data augmentation techniques such as translations, horizontal reflections,
or increasing and decreasing brightness was used to pre-train the network, as in [55]. The first part
of the network is where the features extraction is done. Then, because the pre-training data was
artificially transformed, the network will be able to recognise grasped objects independently of their
position, orientation, or grasping pressure (equivalent to brightness in RGB images), exploiting the
translation-invariant property [57].

The structure of the pre-trained part of the network must be maintained. In our application, the
five convolutional layers (conv1-5) and the two first fully-connected layers (fc6 and fc7) comprise the
pre-trained part of the network. It is followed by a custom-trained fully-connected layer (fc8) with an
output of a 15-way softmax which provides a probability distribution over the 15 classes of objects.
Figure 11 illustrates the architecture of the DCNN used for the tactile recognition task.

Because the first convolutional layer of AlexNet filters the 224 × 224 × 3 input image,
the 44× 44× 1 input tactile data is resized to 224× 244 and copied in each of the three channels.
After each convolution, a rectified linear unit (ReLU) introduces non-linearities to the model.
A normalization layer with hyper-parameters α = 10−4, β = 0.75, k = 1, and n = 5 is introduced
after convolutional layers conv1 and conv2. Then, 3 × 3 max-pooling layers with a stride 2
follow both the normalization and the fifth convolutional layers. The neurons in the pre-trained
fully-connected layers are connected to all neurons in the previous layer, and its outputs are
given by ReLUs including a 0.5 probability of dropout. The classifier was implemented in Matlab
R2017b using the Neural Network Toolbox and uploaded to the author’s public software repository
(https://github.com/TaISLab/Classification-Tactile-Adaptive-Gripper).
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Figure 11. Architecture of the pre-trained deep convolutional neural network (DCNN) with a last
custom-trained layer for classification.

4.3. Two-Level Classification

After a set of common objects and human limb parts were used to train the object classifier, a
more important piece of information for a rescue robot is to know if the grasped body belongs to a
human or not. Although this task could be achieved by knowing the highest rated class form the object
classifier, a second-level layer was added to further identify the nature of the manipulated body.

The architecture of this network is presented in Figure 12. The network has two classification
levels. At the first level, a fully-connected layer (fc8.1) with a softmax output provides a probability
that the grasped body belongs to a human limb or an inert object, whereas at the second level a
fully-connected layer (fc8.2) with a 15-way softmax function returns the probability distribution over

https://github.com/TaISLab/Classification-Tactile-Adaptive-Gripper
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the 15 classes of objects. The rest of the architecture of the network and the hyper-parameters match
the previous network.
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Input
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Figure 12. Architecture of the two-level convolutional neural network. The network has two outputs:
the first-level classifier (nature) and the second-level classifier (object label).

5. Experiments

The performance of the different sensor configurations is compared based on the recognition
rates of the object classification task. In the experiments, the rigid probe as well as the semi-rigid
and flexible grippers were used. To have a comparison point to our proposed method (DCNN), the
DCNN-SVM method was also implemented. This method was previously presented in [53], where the
first pre-trained layers of a DCNN are used to extract the features of the input tactile images. Then,
the SVM replaces the last layer of the network and must be trained with pre-labelled tactile images.

To deeply analyse both the classification method and the gripper configurations, a comparison
in terms of mean recognition rate in a 10 and 15 classes experiments with each configuration and
with datasets of 20, 30, 40, and 50 tactile images for each configuration are presented. In addition, the
training time for each experiment was also evaluated. Furthermore, an evaluation of the recognition
rate achieved in the first-level classifier of the two-levels DCNN is done.

The training set was formed by 40% of the images of the dataset for each class—a total of 80, 120,
160, and 200 for the 20, 30, 40, and 50-images dataset respectively for each configuration in the 10
classes experiment; and 120, 140, 240, and 300 for the 20, 30, 40, and 50-images dataset respectively
with 15 classes. Note that the experiment’s accuracy depends on the images used for the learning and
test phases of the algorithm. Because in this case the number of images was small, the dependency was
high and the results could vary depending on the formation of the training and the test sets. For this
reason, 20 samples for the dataset of each configuration were evaluated. For each one, the dataset was
randomized before being split into the training and test sets. The custom-trained parts of the DCNNs
were trained on a GPU NVidia GeForce GTX 1050 Ti with 4 GB of RAM and with learning rate of 10−4

and momentum of 0.9.
After the training process is done, the classifier result must be evaluated. To do that, the test

set—comprised of the remaining 60% of the images of the dataset for each class—is used as an input.
Each image of the test set passes through the DCNN, returning a label. This output is then checked
with the real label of the input. A confusion matrix for each dataset is obtained, doing this for every
image of the test set.

The respective confusion matrices for the samples corresponding to the best recognition rate of
each configuration using the DCNN-SVM and the DCNN methods in a 15-class recognition experiment,
with a dataset of 50 images per class and per configuration (total of 2250 images) are shown in Figure 13.
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Figure 13. Confusion matrices corresponding to the best recognition rate achieved in the 15-class
experiment for the (a,d) rigid, (b,e) semi-rigid, and (c,f) flexible configurations using the DCNN-SVM
(support vector machine classifier) (top) and DCNN (bottom) approaches and the dataset of 50 images
per class.

To evaluate the mean recognition rate achieved for each configuration over the 20 samples, a bar
graph was obtained from the recognition rate of each sample. This data was then calculated as the
average of the diagonals of each confusion matrix. Figure 14 presents the distribution graphs of the
accomplished recognition rates by each configuration in the 10 and 15 classes experiments, using the
datasets of different sizes corresponding to the application of the DCNN and DCNN-SVM methods to
the 20 randomized samples of each dataset.
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Figure 12. Mean recognition rate of each configuration with the DCNN-SVM (up) and the DCNN
(down) approaches for the object recognition experiment with 10 (left) and 15 (right) classes.

the distribution of the accomplished recognition rates by each configuration corresponding to the212

application of the DCNN-SVM method to the 20 randomized samples of the dataset. As expected, it is213

proven that the results vary depending on the images used for the training and test sets.214

The Table ?? summarizes the results of the classification experiment and gives a comparison215

of the configurations considering the capability of grasping an object. The mean recognition rates216

disclose that the best accuracy has been obtained with the semi-rigid configuration. Note that the high217

recognition rates achieved are partly due to the fact that the data has always been recorded in the same218

grip position for each object, especially with cylindrical objects.219

To ensure the reproducibility of the experiments, all the details about the components used have220

been included, and the designs, the used datasets, the Neural nets and algorithms presented here have221

been made available on-line to the reader.222

7. Conclusions223

In this work, the detection capabilities of a robot for pHRI have been enhanced thanks to the224

deep learning convolutional neural networks and the use of tactile sensing. This way, a robot is able225

to classify the grasped objects based on the pressure images, to know if it is holding a human body226

part or an object from the environment. This is particularly useful in poor visibility conditions, which227

can be common in emergency scenarios, and increases the safety of the human/machine interaction.228

Moreover, the use of the tactile sensor in adaptive grippers has also been comparatively evaluated,229

showing how increasing the contact area enhances the recognition success rate and reduces the230

pressure.231

The accuracy of the tactile detection has been evaluated in experiments with a specific set of232

objects and body parts that could be different for different purposes and scenarios. In the given results,233

the best recognition rate has been obtained by the semi-rigid gripper configuration.234

Figure 14. Mean recognition rate of each configuration with (top) the DCNN-SVM and (bottom) the
DCNN approaches for the object recognition experiment with (left) 10 and (right) 15 classes.
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It can be noticed that—independent of the number of classes of the experiment—the best
recognition rate (96.81% in the 10 classes experiment and 95.78% in the 15 classes experiment) was
achieved when using the semi-rigid gripper, whereas the worst recognition rate was obtained when
using the rigid probe (84.47% in the 10 classes experiment and 78.43% in the 15 classes experiment).

In Figure 15, a deeper comparison of the DCNN and DCNN-SVM methods after the 10 and 15
classes experiments is presented. As commented before, the best accuracy was obtained by the DCNN
approach with the semi-rigid configuration, and the worst was obtained by the rigid sensor and the
DCNN-SVM method.
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Figure 15. Mean recognition rate and standard deviation of (a) the 10 classes and (b) 15 classes
experiments of the different approaches and configurations with respect to the number of images
employed to train the algorithm.

The DCNN-SVM method needs less time to train than the DCNN. Figure 16 shows the differences
in this term. As expected, the highest time was obtained in the 15 classes experiment with the dataset
of 50 images per class, using the DCNN method (≈16 s). The lowest time was obtained in the 10
classes experiment with the 20 images dataset per class, using the DCNN-SVM method (≈0.04 s). Note
that in order to quantify the training time we have not considered the time needed for the pre-training
part of the DCNN.
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Moreover, the two-level DCNN was tested. Note that the second-level output of the network was
already studied in the previous experiment (15 classes experiment). On the other hand, the first-level
classifier was evaluated using a dataset of 750 tactile images per configuration, where 250 belong
to human limbs and the remaining 500 belong to common objects. Figure 17 shows the bar graph
resulting from this experiment. In this case, the highest recognition rate (98.78%) was obtained with
the rigid configuration, and the worst (95.92%) with the flexible configuration.
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Figure 17. Recognition rate of the first-level output.

6. Discussion

The use of tactile sensors in adaptive grippers is an interesting tool, not only to design recognition
methods, but also to study the pressure profiles of the robotic grasper. In this case, the pressure profiles
of the three configurations were studied showing significant variations in terms of contact area and
pressure levels. Although the sensor does not cover the whole contact surface of the gripper (42%), an
increment in the contact surface area (26% and 37%), reducing the mean pressure value on the grasped
object (57% and 72%) can be seen. This is particularly interesting for the human–robot interaction, as a
safe contact requires low-pressure contacts.

The performance of the use of the above mentioned pressure images must be evaluated. Different
parameters were studied to analyse the effects of the number of classes, the number of training images,
and most importantly the performance comparison between the three gripper configurations. As a
result, the best results came from the semi-rigid gripper (up to 96.81%). The figures show that the
increment in the number of training images gave lower variance in the results. The increment in the
number of classes gave little decrement (2%) of the recognition rate.

When comparing the pure DCNN method with the mixed DCNN-SVM classifier, the results were
similar with a consistently higher score in the case of the first (5–6%). The main difference was in the
training times, where SVM was much faster (300 times), although this is a one-time operation.

Even when the nature of the classified object could be determined by the object class (see Table 3),
a second DCNN was implemented to to have a more generic classification (first level), in the case where
the grasped object does not belong to any of the trained classes. This classifier was also evaluated with
a high recognition rate (up to 98.78%) for the trained objects. However, the results show that the best
sensorial configuration for the detection of human contact is the rigid probe. This can be explained by
the better dynamic range in the pressure images, which better distinguishes the texture differences
between human skin and objects.

7. Conclusions

In this work, the detection capabilities of a robot for pHRI were enhanced thanks to deep learning
convolutional neural networks and the use of tactile sensing. In this way, a robot is able to classify the
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grasped objects based on the pressure images and knowing if it is holding a human body part or an
object from the environment. This is particularly useful in poor visibility conditions, which can be
common in emergency scenarios, and increases the safety of the human/machine interaction.

To our best knowledge, this work has presented the first adaptive gripper which integrates a
flexible tactile sensor for object recognition. Furthermore, the paper has offered results that can be
useful for the development of safe manipulation in autonomous robotic systems in contact with
humans in catastrophe scenarios. In particular, the pressure profiles from different grippers were
measured, showing how a flexible gripper increases the contact area and reduces the pressure on the
potential human victims. The accuracy of the tactile detection has also been evaluated in experiments
with a specific set of objects and body parts. According to the results, the best configuration for each
classification was found.

The results of the experiments have shown that the semi-rigid gripper obtained the
best recognition rate when identifying different objects and body parts. However, for the
human/non-human classification problem, the best accuracy was obtained by using the rigid gripper.
Despite this fact and considering that the difference in the accuracy achieved by these configurations
was less than 1%, the authors believe that the use of the semi-rigid gripper is more appropriate during
a pHRI due to the benefits of using soft or adaptive grippers both for the safety of the operation and the
easier grasping. As mentioned before, the results show how adaptive grippers provide safer contact
while keeping high recognition rates using integrated tactile sensors.

Additionally, to ensure the reproducibility of the experiments, all the details about the components
used have been included, and the designs, the used datasets, the neural nets, and algorithms presented
herein have been made available on-line to the reader.

In future works, the complete integration of the tactile sensing with a manipulation controller for
active compliance will be considered, so a safe interaction can be achieved to perform human limbs
repositioning and radial pulse measurement.
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