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Abstract
Cell adhesion molecules play a central role in mediating axonal tract development within

the nascent nervous system. NF-protocadherin (NFPC), a member of the non-clustered

protocadherin family, has been shown to regulate retinal ganglion cell (RGC) axon and den-

drite initiation, as well as influencing axonal navigation within the mid-optic tract. However,

whether NFPCmediates RGC axonal behaviour at other positions within the optic pathway

remains unclear. Here we report that NFPC plays an important role in RGC axonogenesis,

but not in intraretinal guidance. Moreover, axons with reduced NFPC levels exhibit insensi-

tivity to Netrin-1, an attractive guidance cue expressed at the optic nerve head. Netrin-1

induces rapid turnover of NFPC localized to RGC growth cones, suggesting that the regula-

tion of NFPC protein levels may underlie Netrin-1-mediated entry of RGC axons into the

optic nerve head. At the tectum, we further reveal a function for NFPC in controlling RGC

axonal entry into the final target area. Collectively, our results expand our understanding of

the role of NFPC in RGC guidance and illustrate that this adhesion molecule contributes to

axon behaviour at multiple points in the optic pathway.

Introduction
During nervous system development, neurons extend axons that often navigate long distances
to make contact with their synaptic targets. For instance, retinal ganglion cells (RGCs) synapse
with neurons within the optic tectum [1]. To do this they must extend an axon out of the eye
via the optic nerve, across the midline at the optic chiasm and along the optic tract to the tec-
tum of the midbrain [2]. The navigation of RGC axons through this complex pathway is medi-
ated by how growth cones interpret both cell-extrinsic guidance cues expressed at specific
locations within the retinotectal pathway and by cell-intrinsic factors such as internal guidance
receptors [3].
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Cell adhesion molecules, such as members of the cadherin superfamily, can act as both
intrinsic and extrinsic factors and also play a critical role with relation to promoting neuronal
connectivity during development [4]. N-cadherin, for instance, has been implicated in pro-
cesses including axon outgrowth [5], fasciculation [6], growth cone guidance [7], synaptogen-
esis [8] and dendrite arborization [6]. The protocadherins, a subgroup of the cadherin
superfamily, have recently emerged as another set of factors important for the regulation of
neural development [4]. Protocadherins have been shown to influence axon tract formation
[9], axon target selection [10] and synaptic development [11]. With regards to the development
of the retinotectal pathway, NFPC function has been shown to be critical for aspects of RGC
axonal connectivity. This protein, which consists of seven cadherin-like ectodomains, a single
transmembrane domain and a C-terminal intracellular domain [12], is expressed on RGCs
within the retina, on RGC axons and by cells within the optic tract and tectum [13]. Moreover,
functional studies have revealed that NFPC plays an important role in RGC axon initiation and
elongation, as well as in mediating Sema3A-induced guidance of RGC axons within the mid-
optic tract [13,14].

While performing the previous studies on NFPC, we noted expression of NFPC on RGC
axons and within the tectum, indicating that this cell adhesion molecule may mediate addi-
tional aspects of retinotectal pathway development that have previously been unrecognized.
Here we report that, although NFPC function does not appear to be necessary for intraretinal
guidance of RGC axons, it does play a role in mediating chemotropic guidance to the attractive
guidance cue Netrin-1, which is expressed at the optic nerve head. Netrin-1 induces rapid turn-
over of NFPC at the growth cone, indicative of changes in adhesion underlying guidance cue-
mediated entry into the optic nerve head. At the entry point to the tectum, perturbations to
NFPC expression, or inhibition of NFPC function with exogenously applied NFPC ectodo-
mains, culminates in axons growing along the borders of the tectum, or looping aberrantly
within the tectum. Together, these results show that NFPC is an important regulator of RGC
axonal behaviour at multiple points within the retinotectal pathway.

Materials and Methods

Xenopus embryos
Xenopus laevis embryos were acquired through in vitro fertilization as described previously
[14], and staged according to the normal tables of Xenopus laevis [15]. All animal experiments
were approved by the Ethical Review Committee of the University of Cambridge and complied
with Home Office guidelines.

Lipofection
Stage 19 embryos were washed with 1x modified Barth’s saline (MBS) and aligned on freshly
made agarose grids, before NFPC constructs were co-lipofected with a membrane-tethered
GFP construct (GAP-GFP) into the eye field using previously described methods [16]. Briefly,
DNA constructs were first mixed with the cationic lipid DOTAP at a 1:3 ratio (m/v), loaded
into a glass micropipette and injected to the presumptive left hand eye field.

Antisense morpholino oligonucleotides
Morpholino oligonucleotides were designed and synthesized by GeneTools. Morpholinos
directed against the Xenopus nfpc start site (bold; NFPC-MO) were conjugated to FITC (3’
end) to make them detectable either directly or through immunostaining with an anti-FITC
antibody. A standard non-specific sequence acted as a control morpholino (Con-MO). Control
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morpholinos were also conjugated to FITC. The efficacy of the NFPC-MO has previously been
validated in retinal tissue [14].

Con-MO: 5’-CCTCTTACCTCAGTTACAATTTATA-3’
(125 μM for eye electroporation and 0.5 μM for tectum electroporation).
NFPC-MO: 5’-TCTGTGTCCCCTCAGTCCTCATCAT-3’
(125 μM for eye electroporation, 0.5 μM for tectum electroporation).

Electroporation
Electroporation of Xenopus embryos was performed as recently described with minor modifi-
cations [17]. Briefly, stage 22 embryos were anaesthetized with tricaine and transferred into
modified Sylgard transfection chambers before 5–15 nl of diluted cDNA, plasmids, or antisense
morpholino oligonucleotides were injected into the target area using a picospritzer. Immedi-
ately following this, electric pulses (8 pulses, 18 V, 50 ms pulse width with 1000 ms gap between
pulses) were generated by a TSS20 OVODYNE electroporator. For the growth cone turning
assay, embryos were allowed to recover at room temperature in 0.1xMBS for 1–2 h following
electroporation of the retina, after which retinal primordia were dissected for culture. For elec-
troporation of the tectum assay, morpholinos were injected directly into the tectum ventricle at
stage 32 and electroporated toward the tectum neuropil. Embryos were then allowed to develop
until stage 40, after which retinal axons were labelled with DiI loading.

Fixation
Xenopus embryos were fixed in a 4% paraformaldehyde solution in phosphate buffered saline
(PBS) for at least 3 h at room temperature or overnight at 4°C.

Immunocytochemistry and intraretinal labelling
Standard immunostaining protocols were used with modifications for intraretinal antibody
labelling [18]. Briefly, RGC axons were labelled intraretinally with an anti-acetylated α-tubulin
antibody (1:400; mouse monoclonal, Sigma). For the antibody to access the retinal layers,
lenses were first removed from freshly fixed embryos prior to immunostaining. Samples were
then washed with PBS before being incubated with a Cy3-conjugated goat anti-mouse IgG
secondary antibody (1:700, Sigma). For some samples, a small incision was made in the optic
fissure so that the eye could be flat mounted to display more of the retinal surface. The quantifi-
cation of the number of axon bundles was performed by counting clearly identifiable axon bun-
dles within a manually selected region of interest (ROI; the visible retina after removing the
lens), and dividing this by the area of the ROI (shown as dashed lines in our Fig 1 examples).
Data were normalized to the Con-MO treated group. Immunocytochemical labelling of cul-
tured retinal neurites was performed as described previously [19]. The primary antibody used
was a rabbit polyclonal anti-NFPC antibody (1:500; gift from Assoc. Prof. Roger Bradley, Mon-
tana State University), and the secondary antibody used was an Alexa 488-conjugated goat
anti-rabbit IgG (1:500; Molecular Probes).

Quantitative immunofluorescence
Eye primordia were dissected from stage 24 embryos and cultured at 20°C for 24 h on cover-
slips coated with 10 μg/ml poly-L-lysine (Sigma) and 10 μg/ml laminin (Sigma). Immediately
prior to the addition of Netrin-1 (300 ng/ml; a gift from Prof. Marc Tessier-Lavigne, The
Rockefeller University), or vehicle control, the following pharmacological reagents were bath-
applied to retinal cultures: 10 μg/ml α-amanatin (Calbiochem), 40 μM anisomycin (Sigma),
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Fig 1. Electroporation of NFPCmorpholinos disrupts RGC axon outgrowth in vivo. (A-D) A method for investigating intraretinal guidance. (A) RGCs
were lipofected with either GAP-GFP or NFΔE constructs at stage 19, or electroporated with control (Con-MO) or NFPCmorpholinos (NFPC-MO) at stage
24. Embryos were then allowed to develop until stage 40, at which time eyes were dissected from the embryo. After removal of the lens, immunostaining for
acetylated α-tubulin was performed to mark retinal axons. (B) Brightfield image of an uninjected eye with lens removed. (C) Fluorescence labelling of the
same eye as in B, revealing expression of acetylated α-tubulin in retinal axons. (D) Magnified view of the boxed region in C, showing immunolabelled retinal
axons coursing towards the optic disc. (E, F) Acetylated α-tubulin staining in a retina loaded with the Con-MO (E) and a retina loaded with the NFPC-MO (F).
In all cases analyzed regions of interest are delineated by dashed lines. Immunostaining reveals that in all cases RGC axon bundles (arrows in E and F) form
and are oriented towards the optic disc (double arrowheads in E and F). However, quantification of the number of RGC axon bundles per unit area of the
retina (G) reveals significantly reduced number of axon bundles in NFPC-MO-loaded retinae in comparison to Con-MO-loaded eyes. Values were normalized
against the Con-MO group and the number of retinae analysed are presented within the bars. * p <0.05, Kruskal-Wallis test. Scale bar in F: 75 μm (B, C),
30 μm (D), 40 μm (E, F).

doi:10.1371/journal.pone.0141290.g001
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10 μM lactacystin (Sigma), 50 μMN-acetyl-leu-leu-norleu-al (LLnL, Sigma), 50 μM phenylar-
sine oxide (Sigma) and 100 nMmonodansylcadaverine (Sigma). Immunostained cultures
were assayed for fluorescence intensity with a 100x objective (Nikon) on a Nikon eclipse
TE2000-U inverted microscope as previously described [19]. Briefly, a minimum of 30
non-collapsed growth cones were randomly picked, and examined for each sample group.
Phase and fluorescence images were captured using a Hamamatsu camera. Outlines of
growth cones (phase) were traced digitally in Openlab (Improvision) and used to calculate the
mean fluorescence (pixel) intensity per unit area in the fluorescent image of the outlined
growth cone and the background. To give final intensity measurements, subtractions of back-
ground from the growth cone values were done using Excel (Microsoft). Values are presented
as mean ± standard error of the mean from a minimum of 4 independent experiments and are
normalized to vehicle-stimulated means. Significance was determined by the Kruskal-Wallis
test for non-parametric variance.

Growth cone turning assay
In vitro growth cone turning assays were performed as previously described [20,21]. Briefly, a
1000-fold gradient (with a radius of 100 μm) of Netrin-1 diluted in culture medium (CM; this
was also used for the vehicle-only control) was generated by pulsatile ejection out of a micropi-
pette (pulled to a final tip diameter of 1 μm) using a picospritzer (General Valve). Using a 20x
objective, growth cones from 24 h retinal cultures were positioned at a distance of 100 μm from
the micropipette tip at an angle of 45° relative to the initial direction of the axon shaft. RGC
growth cones were examined at 100x using a fluorescence microscope prior to the assay to ver-
ify the presence of the morpholinos. Selected growth cones were exposed to a gradient of
Netrin-1 (or culture medium) for 1 h, and images were captured every 10 min. The turning
angles of growth cones that displayed a minimum net extension of 10 μm were measured using
Openlab or Image J software (NIH) as described previously [20]. The final patterns of exten-
sion were traced to create trajectory plots. A comparison of means was determined by the
Mann-Whitney U statistic and the Kolmogorov-Smirnov test was used to compare the normal-
ity of distributions.

Open brain incubation with NFPC ectodomains
To inhibit the homophilic interaction of axon and tectum expressed NFPC, the dominant neg-
ative NFPC ectodomain (NFPC-Fc) protein and control-Fc protein were produced and har-
vested as described previously [14]. Open brain experiments were performed on stage 35
embryos as previously described [22]. Briefly, the skin and dura were removed from above the
target area to be exposed with mounted insect pins. Embryos were then transferred to a 4-well
dish containing 500 μl of 1.3x MBS and MS222 containing control-Fc or NFPC-Fc (1:100).
Embryos were incubated until stage 40 prior to fixation and DiI axon labelling.

DiI filling
The lipophilic dye, DiI, was used to label the entire population of retinal axons such that the
path followed by the RGC axons could be visualized in both control and test conditions. 25
mg/μl (m/v) of DiI crystals dissolved in ethanol was loaded into a micropipette, and injected
into the eye as described previously [14]. After dye transfer, samples were immediately visual-
ized with an upright fluorescence or confocal microscope.
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Statistical analysis
Aminimum of three independent trials were conducted for each experiment. Data were ana-
lysed with either the Kolmogorov-Smirnov, Kruskal-Wallis or Fisher’s exact test as appropri-
ate. Error bars represent the standard error of the mean.

Results

Downregulation of NFPC does not disrupt intraretinal guidance of RGC
axons
NFPC is expressed within the developing retina by RGCs [13,14]. We have previously shown,
using a dominant-negative NFPC construct (NFΔE), that both axon and dendrite formation
are reduced when NFPC function is impaired [13]. However, whether inhibition of NFPC
function perturbs axon navigation across the retinal surface to the optic nerve head (the future
optic disc), known as intraretinal axon guidance, is unknown. To address this we adopted a
method for investigating the navigation of RGC axons towards the optic disc (Fig 1A–1D)
[18]. NFPC function was knocked-down within RGCs by either lipofection of the dominant
negative NFΔE construct into the optic primordium at stage 19, or by electroporating an anti-
NFPC morpholino (NFPC-MO) into the retina at stage 24. The efficacy of the NFPC-MO in
retinal tissue has previously been demonstrated [14]. Embryos were then grown until stage 40,
whereupon the lens was removed from the treated eye and retinal axons were labelled in whole-
mount retinae by immunostaining for acetylated α-tubulin [23]. The growth of RGC axons in
uninjected retinae (data not shown), as well as those treated with the control morpholinos
(Con-MO; Fig 1E and 1G) or GAP-GFP alone (S1 Fig), was clearly oriented towards the optic
disc prior to their entry into the optic nerve head. However, analysis of the number of RGC
axon bundles in those retinae treated with the NFPC-MO revealed significantly reduced axon
bundle numbers, consistent with previous reports detailing deficits in RGC axonogenesis in
retinae with perturbed NFPC function ([13] Fig 1F and 1G). Similar results were obtained fol-
lowing lipofection of the NFΔE construct into stage 19 retinae (S2 Fig). Interestingly, however,
there were no obvious deficits in RGC intraretinal guidance, as those axon bundles evident in
treated retinae were appropriately oriented towards the optic disc (Fig 1F; S2 Fig), indicating
that NFPC may not modulate this aspect of RGC axon guidance.

Knockdown of NFPC abolishes retinal neurite sensitivity to Netrin-1
We have previously reported that the majority of RGCs with perturbed NFPC function prior to
axon extension fail to extend an axon beyond the retina [13]. The above results show that this
defect is not because the affected axons are misguided in the retina, as they appear to grow
directly towards the optic disc. Thus, we conclude that the failure of these axons to exit the eye
happens at the point where they join the optic nerve. To investigate whether NFPC contributes
to retinal axon behaviour in response to chemotropic guidance cues expressed at this point in
the optic pathway, we examined whether RGC axons with compromised NFPC function show
altered chemotropic responses to Netrin-1, which is specifically expressed at the optic nerve
head, and which is pivotal for promoting RGC axonal exit from the eye [24,25].

It has been reported that RGC neurites cultured from young embryos navigate towards a
point source of Netrin-1 [23,24]. We first repeated these findings to ensure that our source of
Netrin-1 was indeed chemoattractive to retinal growth cones. In line with previous find-
ings [18,23,24], stage 22 retinal growth cones cultured for 24 h exhibited chemoattractive
turning towards a Netrin-1 gradient, whereas retinal neurites displayed no directional bias
towards a gradient of vehicle solution (S3 Fig). To investigate the contribution of NFPC to

NFPC Regulates Retinal Growth Cone Pathfinding

PLOS ONE | DOI:10.1371/journal.pone.0141290 October 21, 2015 6 / 17



Netrin-1-mediated guidance within the turning assay, we used electroporation of the anti-
NFPC-MO oligonucleotides conjugated to FITC, which enabled the identification of neurons/
neurites containing the morpholino (S4 Fig). NFΔE-expressing cells, on the other hand, can
only be identified post hoc through immunostaining post-fixation. As a control, we first investi-
gated whether electroporation itself could affect the growth cone turning response, as there is
extensive evidence implicating membrane potential and voltage-gated channels in influencing
turning [26–28]. Neurites from mock-electroporated retinae exhibited net turning towards the
source of Netrin-1 (S3 Fig), illustrating that electroporation per se did not influence turning
behaviour within the assay.

To assay for the role of NFPC in Netrin-1-mediated growth cone turning, we selected fluo-
rescently labelled Con-MO-containing (FITC-tagged Con-MO) or NFPC-MO-containing
(FITC-tagged) neurites (S4 Fig). Whereas neurites from uninjected retinae or those electropo-
rated with the Con-MO demonstrated chemoattraction to Netrin-1 in the turning assay, retinal
neurites loaded with the NFPC-MO exhibited no turning bias (Fig 2). Netrin-1 is known to
promote both elongation and turning in vitro [24]. Therefore, we quantified the average rate of
neurite elongation between the Con-MO-loaded group (24.3 μm/hr; 7 neurites) and the
NFPC-MO-loaded group (23.3 μm/hr; 13 neurites). There was no significant difference in
average neurite elongation between the groups (p> 0.05, Kolmogorov-Smirnov test), suggest-
ing that the failure of NFPC-MO-loaded neurites to turn towards a gradient of Netrin-1 was
not due to a non-specific defect in elongation. Moreover, we have previously measured the
extension rate of NFPC-deficient axons growing through the optic tract using live imaging and
found that they extend at the same rate as controls in the ventral optic tract [14]. Collectively,
the findings in the in vitro turning assay, coupled with the failure of the majority of NFΔE-
expressing RGC axons to exit the retina [13], points to a role for NFPC in the Netrin-1-medi-
ated entry of retinal axons into the optic nerve head.

Netrin-1 dynamically regulates NFPC in cultured retinal growth cones
Mechanistically, RGC growth cone responses to Netrin-1 have been shown to require protein
turnover involving both local protein translation and degradation [29–31]. For example, attrac-
tive guidance towards Netrin-1 or BDNF requires local translation of β-actinmRNA [31,32].
Given the expression of nfpcmRNA within RGC axons in the optic fibre layer of the retina
[13], and our finding that blocking retinal neurites with NFPC-MO abolishes Netrin-1-induced
chemoattraction, we sought to determine whether Netrin-1 application to retinal neurites elic-
ited changes to the level of NFPC localized to the growth cone. To do this we analysed growth
cones from stage 24 retinae (prior to axon initiation in vivo) that had been cultured for 24 h on
a laminin substrate, as laminin is expressed strongly in the optic fibre layer [23]. Cultured
growth cones were stimulated with bath-applied Netrin-1 for times ranging between 10 and 60
min. Quantitative immunofluorescence was then used to determine the total level of NFPC
localized to the growth cone. When normalized to vehicle control levels, Netrin-1 induced a
rapid and highly significant decrease in NFPC after 10 min, but by 30 min the level of NFPC
had returned to that seen prior to stimulation (Fig 3A–3E). This suggests that Netrin-1 induces
a rapid turnover of this adhesion molecule. The reduction in NFPC levels in response to
Netrin-1 likely occurs via protein degradation, as this process has previously been shown to be
required for rapid chemotropic responses to Netrin-1 [29]. Indeed, the proteasomal inhibitors
lactacystin and LLnL both abolished the decrease in NFPC levels observed after 10 min, impli-
cating protein degradation in the decrease in NFPC levels induced by Netrin-1 (Fig 3F).

As NFPC is mainly expressed on the membranes of growth cones and is degraded in
response to Netrin-1, this suggests NFPC is first internalised before it is targeted to the
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Fig 2. Cultured retinal growth cones loaded with NFPCmorpholino do not exhibit chemoattraction to Netrin-1. (A-C) Phase contrast images of retinal
neurites cultured from uninjected (A), control morpholino-loaded (Con-MO; B) and NFPCmorpholino-loaded (NFPC-MO; C) retinae. Neurites from
uninjected (A) and Con-MO-loaded (B) retinae exhibit robust turning towards the point source of Netrin-1. Neurites loaded with the NFPC-MO, however, are
not attracted towards Netrin-1 (C). (D) Cumulative distributions of turning angles of each sample group. (E) Mean turning angles of the experimental groups
reveals that, whereas uninjected and Con-MO-loaded neurites exhibit attraction to Netrin-1, NFPC-MO-loaded neurites do not. * p < 0.05, Kolmogorov-
Smirnov test. Panel F shows a summary of the trajectory plots from the uninjected and NFPC-MO experimental groups exposed to Netrin-1. Each line
represents a single growth cone trajectory; the origin represents the centre of the growth cone at 0 min, and positive (+ve) and negative (-ve) turning angles
are indicated. Scale bar in A: 10 μm.

doi:10.1371/journal.pone.0141290.g002
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Fig 3. Netrin-1 dynamically regulates NFPC in retinal growth cones. (A-D) Cultured stage 24 retinal neurites were stimulated with Netrin-1 or a vector-
only control for 0 (A), 10 (B), 30 (C) or 60 (D) min, and then assayed for NFPC expression via immunofluorescence labelling. Panels E-H reveal the
quantification of immunofluorescence as an indicator of total NFPC levels within the growth cone (open bars–vector only control; black bars–Netrin-1
treatment). In each case, data were normalized to the 0 min control treatment. (E) Netrin-1 induced a significant decrease in the levels of NFPC within the
growth cone after 10 min. By 30 min, however, NFPC localized to the growth cone had returned to levels comparable to that in the control. (F) The decrease
in NFPC immunoreactivity localized to the growth cone after 10 min was abolished when explants were pre-treated with the proteasomal inhibitors lactacystin
(Lacta) or LLnL. (G) The decrease in NFPC localized to the growth cone after 10 min was also abolished when the explants were treated with the endocytosis
inhibitors phenylarsine oxide (PAO) or monodansylcadaverine (MDC). (H) Blocking protein translation with anisomycin (Aniso) in isolated retinal neurites
suppressed the recovery in growth cone NFPC levels seen after 30 min of Netrin-1 exposure. However, inhibition of transcription with α-amanatin (α-aman)
did not prevent the recovery of growth cone NFPC levels. *** p < 0.001, Kruskal Wallis test. Numbers within the bars indicate the number of growth cones
assayed. Scale bar inA: 5 μm.

doi:10.1371/journal.pone.0141290.g003
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proteasome. To test this, we pre-incubated growth cones with either the broad endocytosis
inhibitor phenylarsine oxide or the clathrin-mediated endocytosis inhibitor monodansylcada-
verine. Both treatments effectively blocked the reduction in NFPC immunoreactivity seen after
10 min of stimulation with Netrin-1 (Fig 3G). These findings suggest that endocytosis of sur-
face NFPC and degradation of this cell adhesion molecule are both essential components of the
growth cone response to Netrin-1.

We also observed that, after 30 min of netrin-1 application, the level of NFPC protein local-
ized to the growth cone had returned to a range equivalent to that observed prior to stimulation
(Fig 3E). This recovery in NFPC levels could arise from either transport of NFPC from the
soma, or by translation of nfpcmRNA, which is abundant in RGC axons and growth cones. To
differentiate between these possibilities, we first pre-incubated our samples with either α-ama-
natin, a transcriptional inhibitor, or anisomycin, a translational inhibitor, and then stimulated
retinal growth cones with Netrin-1 for 30 min. Only anisomycin inhibited the recovery in
NFPC immunoreactivity observed after Netrin-1 stimulation, suggesting that the translation of
NFPC underlies the recovery in protein levels (data not shown). Furthermore, when we
repeated this experiment on retinal neurites that had been separated from their cell soma by
transection prior to the assay, we saw a similar effect (Fig 3H), providing evidence that it is
local translation of nfpcmRNA within the growth cone that underlies the recovery in NFPC
protein levels following Netrin-1 stimulation. This is consistent with reported findings that
NFPC is synthesized locally in growth cones in vivo [14]. Taken together, these findings suggest
that Netrin-1 dynamically regulates the level of NFPC protein localized to the growth cone
through local degradation and synthesis, and that this could contribute to Netrin-1-mediated
entry of retinal axons into the optic nerve head.

NFPC regulates axon entry into the optic tectum
As well as being strongly expressed within the eye, NFPC is also present within the dorsal optic
tract and the optic tectum [14], suggestive of additional roles for this cell adhesion molecule
beyond regulating axonogenesis and axonal exit from the retina. Indeed, a recent study has
shown that NFPC function is critical for the navigation of retinal axons in the mid-optic tract.
For instance, inhibiting NFPC’s homophilic interactions with a blocking peptide containing
the NFPC ectodomain fused to a Fc fragment (NFPC-Fc) in open brain preparations culmi-
nated in retinal axon pathfinding defects in the caudal turn portion of the mid-optic tract [14].
In this study we also noted that some axons skirted around the border of the tectum rather
than entering it, indicative of tectal avoidance. To expand on these preliminary findings, we
exposed the brains of stage 35 embryos to either the control-Fc, or NFPC-Fc, and analyzed axo-
nal behavior at stage 40. Brains treated with Con-Fc exhibited normal growth of retinal axons
into the tectum (Fig 4A and 4C). However, embryos treated with the NFPC-Fc ectodomain
construct displayed defects in guidance, including avoidance of the tectal boundary, and failure
of entry to the tectum (Fig 4B and 4C). Quantification of these defects revealed a significant
proportion of axons making aberrant guidance decisions at the tectum when treated with the
NFPC ectodomain (Fig 4C).

We have previously shown, using open brain preparations treated in this way, that RGC
axons display guidance defects at the mid-optic tract [14]. It is therefore possible that the tectal
entry deficits are simply a product of this earlier guidance defect. To address this, we took
advantage of the fact that NFPC is expressed both on RGC axons, and within the tectum itself
[13]. Homophilic interactions between NFPC-expressing RGC axons and the NFPC-express-
ing substrate within the mid-optic tract are critical for axon navigation within this portion of
the retinotectal pathway [14]. As such, we postulated that manipulating the expression of the
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Fig 4. Perturbation of NFPC binding leads to tectum entry defects.Open brain embryos were incubated with Con-Fc (A) or NFPC-Fc (B) from stage 35.
At stage 40, retinal axons were labelled with DiI. Brains were then dissected and mounted in the contralateral view to enable visualization of the optic tract.
Inverse greyscale images show that the axon bundle trajectories of Con-Fc-treated brains appeared normal (A, higher magnification shown in A’), with RGC
axons entering the tectum normally (the tectum is delineated with a dashed line in A’). Brains treated with the NFPC-Fc ectodomain construct (B), however,
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homophilic NFPC ligand within the tectum alone would provide an avenue to address the role
of NFPC in RGC axon entry into this area without the potential confounds arising from earlier
guidance deficits. We therefore electroporated the Con-MO or the NFPC-MO directly into the
tectum at stage 32, prior to retinal axon entry into the lateral optic tract. At stage 40, retinal
axons were labelled with DiI, and their projection into the tectum was assessed. Electroporation
of the Con-MO did not affect the entry of DiI-labelled retinal axon bundles into the tectum
(Fig 4D). However, the electroporation of the NFPC-MO culminated in a range of phenotypes
(Fig 4E). Firstly, at a population level, retinal axons grew into regions containing the
NFPC-MO far less frequently (10.4%, n = 48, p< 0.001, Fisher’s exact test; Fig 4F) than into
Con-MO regions (82.9%, n = 41), suggesting that retinal axons were avoiding these regions.
Moreover, we observed two other main phenotypes at an individual axon level: looping, where
axons grew in a circular path within the tectum, and aberrant axonal growth towards the poste-
rior tectal boundary. Axonal looping was observed at a significantly higher level in those
embryos in which NFPC expression had been inhibited within the tectum when compared to
controls (56.2% in NFPC-MO-treated samples; 7.3% of Con-MO-treated samples, p< 0.001,
Fisher’s exact test, Fig 4F). Similarly, there was a significantly higher level of posterior growth
in NFPC-MO-treated samples when compared to controls (p< 0.001, Fisher’s exact test, Fig
4F). This indicates that the NFPC-mediated interaction of retinal axons and the tectum sub-
strate likely provides a signal for RGC axon invasion of target area for subsequent synaptic
connectivity.

Discussion
NFPC has been shown to mediate RGC axon initiation and elongation, and more recently it
has been demonstrated that it is upregulated in response to the guidance cue Sema3A, thereby
mediating axonal pathfinding in the mid-optic tract [13,14]. Here we extend these studies to
reveal a role for NFPC at additional locations within the retinotectal pathway. Using a suite of
in vitro and in vivo techniques, coupled with perturbation of NFPC function, we demonstrate
that Netrin-1-induced attraction of RGC neurites is abolished upon reduction in growth cone
NFPC levels, suggestive of a role for NFPC in mediating RGC axon entry to the optic nerve
head. Reciprocally, Netrin-1 exposure leads to the rapid endocytosis and degradation of NFPC,
which may help RGCs axons exit the retina once they have made to turn into the optic nerve
head. Furthermore, we demonstrate that NFPC is required for the correct entry of RGC axons
into the tectum. Collectively, this study, in association with previous reports, suggests a model
whereby NFPC is required at key locations within the retinotectal pathway, including for RGC
axonogenesis [13], for sensitivity towards Netrin-1 expressed at the optic nerve head (this
study), for axon pathfinding at the mid-optic tract [14] and for RGC axonal entry into the tec-
tum (this study).

After axonogenesis, nascent RGC axons become confined to the optic fibre layer and con-
verge at the optic disc prior to exiting the eye via the optic nerve head. The process of

exhibit various phenotypes including axons avoiding the tectum and growing along the anterior tectal boundary (B’). (C) Graph showing the proportion of
brains incubated with the NFPC-Fc peptide that display axons avoiding either the anterior or posterior boundary of the tectum. Statistical significance was
calculated against the Con-Fc proportions. * p<0.05, ** p<0.01, 1p = 0.0934, Fisher’s exact test (6 independent experiments). Brains electroporated with the
Con-MOwithin the optic tectum (D) do not exhibit defects in axon pathfinding, as RGC axons grew through the electroporated region into the tectum (D’ is an
inverse greyscale image showing the trajectory of DiI-filled RGC axons). Panel E shows a representative image of a brain electroporated with the NFPC-MO
within the tectum. Perturbation of NFPC binding culminated in phenotypes including looping and projection along the posterior tectal boundary (E’ is an
inverse greyscale image showing the trajectory of DiI-filled RGC axons). Panel F reveals the proportion of brains loaded with the NFPC-MO that exhibit
abnormal projections into the tectum. Statistical significance was calculated against Con-MO proportions. *** p<0.001, Fisher’s exact test (7 independent
experiments). Scale bar inA: 300 μm (A, B, D, E), 75 μm (A’, B’), 50 μm (D’, E’).

doi:10.1371/journal.pone.0141290.g004
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intraretinal guidance of RGC axons towards the optic disc has been shown to be influenced by
adhesion molecules such as L1 and NCAM [33], as well as by both positive signals, such as con-
tact with the end feet of Müller glia [34,35] and existing retinal pioneering axons [36], and neg-
ative signals, including surround repulsion by chemotropic cues such as Slit1 and Slit2 [37]
and by chondroitin sulphate proteoglycans [38]. Moreover, when axons reach the optic nerve
head, they are directed to turn into this region by Netrin-1, which is specifically expressed at
this choice point [18,25]. Our current findings reveal a role for this protocadherin in regulating
RGC axon responses to Netrin-1, but not in intraretinal axon guidance, as RGC axons with
perturbed NFPC function or NFPC protein levels appeared to navigate with fidelity towards
the optic disc. Our previous findings analyzing RGC axons at an individual level revealed that,
although some axons with impaired NFPC function failed to extend an axon, the majority did
extend an axon towards the optic disc, but only a small a proportion of these axons exited the
eye via the optic nerve head [13]. This suggests that the intraretinal guidance of axons does not
require NFPC function. Instead, our present data reveal a role for NFPC in chemotropic
responses to Netrin-1, an attractive guidance cue expressed specifically at the optic nerve head
and implicated in mediating the exit of retinal axons from the eye [24,25]. Our data are consis-
tent with the hypothesis that the failure of NFPC-deficient axons to exit the retina is due to
reduced sensitivity to Netrin-1, although at this stage we cannot rule out the possibility that
other, non-Netrin-1-mediated mechanisms contribute to this phenotype.

Our data also indicate that Netrin-1 induces turnover of NFPC localized to the growth
cone. Previously we have used an in vitro collapse assay to demonstrate that Netrin-1 elicits
ligand-specific desensitization of Xenopus retinal growth cones that is dependent on endocyto-
sis, followed by resensitization that is dependent on local protein synthesis [39]. Our finding
that Netrin-1 induces a decrease in growth cone NFPC that is endocytosis-dependent, followed
by a return to basal levels that is protein synthesis-dependent, points to dynamic regulation of
NFPC levels contributing to the response of the growth cone to Netrin-1. We speculate that the
Netrin-1-induced drop in NFPC levels seen at 10 minutes in vitro causes a temporary loss of
Netrin-1 sensitivity. This, coupled with the previously reported laminin-1-mediated inhibition
of Netrin-1 [18], may switch off/down growth cone attraction to Netrin-1, enabling axons to
move through the attractive intermediate target of the optic nerve head. The subsequent recov-
ery in de novo synthesized NFPC may further play a role in facilitating the next phase of the
growth cone’s journey. This regulation by Netrin-1 is also in contrast to rapid NFPC increases
stimulated by another guidance cue, Sema3A, in the mid-optic tract [14], which offers potential
evidence of the differential regulation of the same mRNA species by various cues along the
pathway for specific functions required locally by the growth cone.

Indeed, Sema3A-induced local translation of NFPC was recently proposed to facilitate the
caudal turn that RGC axons must make to navigate towards the tectum [14]. Using an NFPC
blocking peptide (NFPC-Fc) in an open brain preparation, the previous study further suggested
that NFPC expressed within the substrate of the optic tract was needed to enable turning of
RGC growth cones at this point in the retinotectal pathway. Our findings extend these observa-
tions, indicating that blockade of NFPC function also inhibits RGC axon entry into the tectum,
a process that is normally preceded by a significant drop in axonal growth rate, indicative of
tectal entry representing a key choice-point for navigating axons [2]. Despite intensive study of
retinotectal pathway development, surprisingly little is known about the molecular determi-
nants underpinning the growth of axons into this region. The expression of Sema3A in the pos-
terior and ventroposterior regions of the tectum has been postulated to channel RGC axons
into the tectum [40], and ectopic application of FGF2 or heparin sulfates culminates in mistar-
geting of RGC axons [41,42]. The depletion of NFPC within the substrate of the tectum (NFPC
morpholinos) and with the function-blocking peptide in open brain preparations indicate that
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NFPC is also required for axons to correctly navigate this critical choice point. Whether
Sema3A-mediated changes in tectal NFPC interactions are required for axon targeting remains
an intriguing question.

We observed two main phenotypes following inhibition of NFPC function within the tec-
tum, namely misprojections along the border of the tectum, and looping of axons within the
tectum. Whether these represent a phenotypic spectrum related to differing levels of NFPC
inhibition between RGC axons and the substrate, or whether they are distinct phenotypes that
represent deficiencies in different aspects of RGC behaviour at this choice point is unclear.
However, these findings do suggest that the ability of retinal growth cones to make specific
NFPC-mediated interactions is critical for crossing the tectal boundary and for cessation of
growth within the tectum. Given the strong expression of NFPC within the tectum [13], it will
be interesting to address whether NFPC also plays a role in other aspects of retinal pathway
development, including topographic mapping, target selection and synaptogenesis. Indeed,
previous work has shown that protocadherins are involved in processes including target selec-
tion [10], neuronal survival [43–45] and the development of synapses [11]. Experiments using
knockdown of NFPC function in a temporally controlled fashion, coupled to live imaging tech-
niques will, in the future, enable the contribution of NFPC function to these events to be
investigated.

Supporting Information
S1 Fig. Lipofection of GAP-GFP does not disrupt RGC axon outgrowth in vivo. (A) An
example of an uninjected eye. Immunostaining with acetylated α-tubulin (red) revealed a nor-
mal pattern of axon outgrowth (arrow) that converged on the optic disc (double arrowhead) to
exit the eye. (B) Lipofection with a GAP-GFP construct did not affect the number or the direc-
tionality of axon bundles (arrow) converging on the optic disc (double arrowhead). Exposed
retinae are marked by dashed white lines. Scale bar in B: 30 μm.
(TIF)

S2 Fig. Dominant negative disruption of NFPC activity disrupts RGC axon outgrowth in
vivo. (A) An example of a contralateral, uninjected eye. Immunostaining with acetylated α-
tubulin (red) revealed a normal pattern of axon outgrowth (arrow) converging on the optic
disc (double arrowhead) to exit the eye. (B) Lipofection with the NFΔE construct culminated
in disrupted retinal axon outgrowth, with these retinae exhibiting a significantly reduced num-
ber of axon bundles per unit area of retina in comparison with the GAP-GFP-expressing con-
trols (C; � p< 0.05, Kruskal-Wallis test. Values were normalized against the GAP-GFP-
injected group and the number of retinae analysed are presented within the bars.). However,
the remaining axon bundles (arrows in B) converged on the optic disc (double arrowhead).
Scale bar in B: 30 μm.
(TIF)

S3 Fig. Cultured retinal neurites exhibit chemoattraction to Netrin-1. (A-C) Phase contrast
images of retinal neurites from uninjected (A, B) and mock electroporated (C) retinae exposed
to either a culture medium control (CM; A) or netrin-1 (B, C). (D) Cumulative distributions of
turning angles of each sample group. (E) Mean turning angles of the experimental groups
reveals that, whereas uninjected neurites exposed to CM did not exhibit any turning bias, neur-
ites exposed to Netrin-1 were attracted to this guidance cue. � p< 0.05, Kolmogorov-Smirnov
test. Scale bar in A: 10 μm.
(TIF)
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S4 Fig. Protocol for preparing morpholino-loaded RGC growth cones. (A) Embryonic reti-
nal primordia were electroporated with either a control, FITC-tagged morpholino (Con-MO)
or a FITC-tagged anti-NFPC morpholino (NFPC-MO) using a specifically designed electropo-
ration chamber. Eyes were then removed and cultured in vitro for 24 h. Examples of Con-MO-
loaded (B, red) and NFPC-MO-loaded (C, green) neurites are shown.
(TIF)
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