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Abstract: This work presents a new approach based on a spiking neural network for sound prepro-
cessing and classification. The proposed approach is biologically inspired by the biological neuron’s
characteristic using spiking neurons, and Spike-Timing-Dependent Plasticity (STDP)-based learning
rule. We propose a biologically plausible sound classification framework that uses a Spiking Neural
Network (SNN) for detecting the embedded frequencies contained within an acoustic signal. This
work also demonstrates an efficient hardware implementation of the SNN network based on the
low-power Spike Continuous Time Neuron (SCTN). The proposed sound classification framework
suggests direct Pulse Density Modulation (PDM) interfacing of the acoustic sensor with the SCTN-
based network avoiding the usage of costly digital-to-analog conversions. This paper presents a
new connectivity approach applied to Spiking Neuron (SN)-based neural networks. We suggest
considering the SCTN neuron as a basic building block in the design of programmable analog elec-
tronics circuits. Usually, a neuron is used as a repeated modular element in any neural network
structure, and the connectivity between the neurons located at different layers is well defined. Thus,
generating a modular Neural Network structure composed of several layers with full or partial
connectivity. The proposed approach suggests controlling the behavior of the spiking neurons, and
applying smart connectivity to enable the design of simple analog circuits based on SNN. Unlike
existing NN-based solutions for which the preprocessing phase is carried out using analog circuits
and analog-to-digital conversion, we suggest integrating the preprocessing phase into the network.
This approach allows referring to the basic SCTN as an analog module enabling the design of simple
analog circuits based on SNN with unique inter-connections between the neurons. The efficiency of
the proposed approach is demonstrated by implementing SCTN-based resonators for sound feature
extraction and classification. The proposed SCTN-based sound classification approach demonstrates
a classification accuracy of 98.73% using the Real-World Computing Partnership (RWCP) database.

Keywords: spiking neuron; digital neuron; SNN; SCTN; STDP learning rule; LIF model; MFCC;
sound feature extraction

1. Introduction

In recent years, we are witnessing a shift in technological solutions from the traditional
algorithmic approach to multipurpose deep neural networks (DNNs) neuromorphic ap-
proach. DNN networks are widely applied to sound recognition and image processing [1,2],
presenting a new challenge for low-power and efficient implementation in embedded sys-
tems. These types of applications attempt to resemble the operation of the human brain
by understanding and imitating the process of human sensory perception. The necessity
for low-power and high-performance embedded platforms is increasing [3,4]. Many mo-
bile applications such as the Internet of Things (IoT) are penetrating our life rapidly and
require energy-efficient processing units [5], which most of the current NN-based solutions
lack. This work presents a new approach based on a spiking neural network for sound
preprocessing and classification. The proposed approach is biologically inspired by the
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biological neuron’s characteristic using spiking neurons, and Spike-Timing-Dependent
Plasticity (STDP)-based learning rule. Spiking neural models mimic the biological neu-
rons for information processing purposes [6]. SNN architectures can be used to solve
spatiotemporal problems such as in patterns recognition, optimization, and classification
problems [7]. SNN have been developed with a neurobiologically plausible computational
architecture that incorporates both spatial and temporal data into one unifying model and
can be applied for pattern recognition [8]. Recent studies use machine learning methods to
integrate the dynamic patterns of spatiotemporal brain data contained in EEG and ERP
data. Z. Doborjeh et al. [8] use SNN for evaluation of concurrent neural patterns generated
across space and time from electroencephalographic features representing event-related
potential (ERP). Unlike classical neurons, a spiking neuron (SN) uses spikes for commu-
nication and computations, and therefore has the potential to consume very low power
while enabling efficient implementation in terms of silicon area [9]. Bensimon et al. [10]
demonstrate that the Spike Continuous Time Neuron (SCTN) model is capable of accu-
rately replicating the behaviors of a biological neuron. A rich diversity of behaviors can
be achieved by smart inter-connection of basic neuron blocks. Reordering and connecting
blocks of SCTNs into a full SN-based network allow efficient implementation of a large
class of cognitive algorithms and voice applications. This work suggests the usage of an
innovative energy-efficient hardware-based spiking neuron (SN) presented in [11] as a
basic building block in the design of programmable analog electronics circuits.

The proposed SCTN can be considered as a nonlinear device capable of process-
ing an extensive amount of data efficiently. The close resemblance between SN and a
biological neuron justifies the evaluation of the substitution of the classical NN model
with the SN model. The implementation of SN can be carried out using both analog
and digital circuits [12]. Various kinds of SNN-based models and neuromorphic circuits
have been recently proposed to support the processing of vast streams of information
in real-time [13,14]. A continuous-time spiking neural network paradigm is presented
in [15]. The spike latency takes into account that the firing of a given neuron occurs after
a continuous-time delay. SNN-based classifier consistently outperforms the traditional
Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) neural networks
in a temporal pattern classification task [16]. Although RNN and LSTM models capture the
temporal transition explicitly, they are hard to train for long sound samples due to the van-
ishing and exploding gradient problem [17]. Low-power spiking-based neural networks
are highly suitable to replace RNN and LSTM as the computational engine for time-series
applications utilizing the high correlation between adjacent frames [18], especially if the
series of data contains strong temporal dependencies like in the case of sound and video
applications [14].

STDP is a biologically plausible learning paradigm inspired by the Hebbian learning
principle. STDP is one of the most common activity-driven synaptic weight learning
mechanisms [19]. Following the STDP learning rule, the neuron weights are adjusted
considering the time difference between presynaptic and post-synaptic spikes. According
to this rule, if the presynaptic neuron fires earlier than the post-synaptic one, the synapse
is strengthened. It has been shown that the unsupervised STDP rule can be used for the
detection of frequent input spike patterns [20,21].

This work presents a new building block approach and SCTN-based spiking neural
network for sound preprocessing and classification. The proposed approach is biologically
inspired by the biological neuron’s characteristic using spiking neurons and STDP-based
learning rule. We propose a biologically plausible sound classification framework which
uses an SCTN-based network for detecting the embedded frequencies contained within an
acoustic signal.

Throughout the years many voice features extraction techniques have been
suggested [22,23]. Voice signal identification systems involve the process of converting ana-
log speech waveform into useful features for further processing and classification. Among
the leading voice feature extraction techniques are the Mel Frequency Cepstral Coefficient
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(MFCC) introduced by Davis et al. [24], the Linear Prediction Coefficients (LPC), and the
Linear Prediction Cepstral Coefficients (LPCC). The Hidden Markov Modeling (HMM) is
one of the most common techniques for voice classification [25] used for automatic speech
recognition.

J. Wu et al. present a biologically plausible framework for sound event classifica-
tion [16]. They propose to use an unsupervised self-organizing maps (SOM) network for
representing frequency contents embedded within the acoustic signals and an event-based
SNN for pattern classification. R. Xiao et al. propose a feedforward SNN for sound clas-
sification using the temporal learning rule [26]. The classification is based on extracting
acoustic features from the time-frequency representation of sound (using FFT). They sug-
gest to convert the representative sound features into a spiking train by a simple mapping
rather than using SOM. Then these temporal patterns are classified via SNN using temporal
learning rules.

Contrarily to the previous SNN-based approaches for sound classification, we propose
a framework based on a combined SNN for both preprocessing, feature extraction, and
classification. The feature extraction is carried out using an SCTN-based network avoid-
ing the common external preprocessing stage and time-frequency representation of the
sound. Moreover, we suggest direct interfacing of the acoustic sensor with the SCTN-based
network avoiding the usage of costly analog-to-digital and FFT conversions. This work
also demonstrates an efficient hardware implementation of the SNN network based on the
low-power digital SCTN neuron presented in [10,11].

The rest of the paper is organized as follows. Section 2 describes in detail the pro-
posed SCTN model and the STDP learning paradigm. Section 3 presents the proposed
SCTN building block approach and demonstrates the use of the SCTN to generate a basic
frequency detector and a full resonator. Section 4 describes how the SCTN-based SNN is
applied to sound features extraction and classification. Section 5 describes the experimental
results, and, finally, Section 6 concludes the paper.

2. SCTN-Spike Continuous Time Neuron Model
2.1. The Leaky Integrate and Fire (LIF) Neuron Model

The proposed Spiking Continuous Timing Neuron (SCTN) is a type of continuous-
time representation neuron, whose operation is equivalent to the biological neuron [11].
The SCTN model is based on the common Leaky Integrate and Fire (LIF) model with some
modifications allowing various neuron configuration using seven different leak modes
and three activation functions with a dynamic threshold setting. The various neuron
parameters dictate the type of neuron response to a train of spikes in the time domain. The
LIF neuron model is given by Equation (1).

Vmj(t) = Vmj(t− 1) +
N

∑
i=1

wij · Ii(t)− µj (1)

where Vmj(t) is the membrane potential at time t, Ii(t) is the binary synaptic inputs
(a stream of spikes), and wij represents the corresponding weights. The weight wij is the
strength of the connection from the ith to the jth neuron. For each neuron j, the index
i ranges from 1 to N, where N represents the number of the neurons in the previous
layer. The neuron leakage is described by the constant parameter µj. The proposed LIF
neuron model uses a dynamic threshold as an adaptive mechanism to control the firing
frequency. When the membrane potential (Vm) exceeds the threshold value, the neuron
fires a spike, and then the membrane potential discharges to a resting potential (like a
biological neuron) [6]. This default value is determined empirically. The decision to fire and
generating a spike in the neuron output is carried out according to the following condition:

i f (Vm(t) ≥ Threshold) =⇒ Spike, Vm(t)⇐ Vmreset (2)
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Figure 1 illustrates the mathematical model for the proposed SCTN neuron. The
proposed spiking neuron structure is composed of four main components: (a) an adder
which performs the weighted input summation, (b) a leaky integrator with a time-constant
that is controlled by a “memory” parameter α, (c) a random generator which is used
to implement the sigmoid activation function, and (d) a comparator that checks if the
membrane potential reaches the threshold. The spiking neuron fires a pulse in case the
weighted input summed by the adder exceeds the current random value (i.e., threshold).
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Figure 1. The Spiking Continuous Timing Neuron (SCTN) mathematical model.

The SCTN membrane potential, Vm(t), is given by Equation (3).

Vm(t) =


Vm0, t = 0
(1− 2−LF)(Vm(t− 1) + ∑N

j=1 wj · Ij + φ) + Θ, t ·mod(LP) = 0

Vm(t− 1) + ∑N
j=1 wj · Ij + φ + Θ, t ·mod(LP) 6= 0

(3)

where t ∈ N0, the Leakage Factor (LF), and the Leakage Period (LP) are the neuron
leakage parameters representing the integrator leakage rate and the rate of the integrator
operation, respectively, and Θ and φ are the pre- and post-leakage bias, respectively [10].
The weighted inputs (axons) are accumulated directly into the adder in an iterative process
while adding the membrane potential from the previous iteration. The leakage rate is
controlled by the α parameter. The membrane potential is represented by a dedicated
internal register. A pseudo-random generator is used to generate the nonlinear activation
function. In case the accumulated value (including a bias) of the membrane exceeds the
threshold, the neuron fires a pulse in its output. The proposed SCTN model consumes
less than 10 nW and requires only 700 ASIC 2-inputs gates for implementing a neuron
with 10 synapses inputs [10]. The SCTN neuron architecture is comparable, in terms of
area and power, to the IBM SN model used in the neuromorphic chip (TrueNorth), which
is composed of 1272 gates [27]. Simulations of the proposed digital spiking neuron also
demonstrate its ability to accurately replicate the behaviors of a biological neuron model
accurately [10].

2.2. STDP Learning Module

Different types of bio-plausible learning rules are adapted for SNN training [28,29].
These learning rules are based on synaptic plasticity training applying unsupervised
learning approaches [30]. Among the most commonly used bio-plausible rules are the Spike
Timing Dependent Plasticity (STDP) and the Spike-Driven Synaptic Plasticity (SDSP) [7].
Several hardware STDP implementations have recently been proposed [31–34]. We adapt
the low-power hardware STDP implementation presented in [10] and integrated it in the
new SCTN architecture. Figure 2 shows the hardware implementation of the STDP-based
learning module. The module is composed of three main components: (a) Time event
matrix, (b) STDP weights register, and (c) Post-synaptic delay line. The event-matrix
represents the timing of the events, where each row represents an input synapse. Lw is
stands for the Length of the considered time Window. The presynaptic spike times are
sampled during the time window Lw and stored in an event matrix along with the synaptic



Sensors 2021, 21, 1065 5 of 15

index. When the neuron generates a postsynaptic spike, the time of the postsynaptic
spike is compared with the stored presynaptic spike times, and the time difference is used
to update the weights according to the STDP rule. The time window considers a total
of 2Lw time units (pre- and post-firing the spike at the neuron output). Therefore, the
event matrix is implemented in hardware using an array of shift registers (one for each
input synapse) where each shift-right register is of the length of 2Lw bits. Upon an output
spike, the weights of the synapses are updated in relation to the input spike timing and
according to the STDP learning rule. Synapses that contribute to the generation of an output
spike event should be strengthened. The shifted presynaptic input vector is weighted by
Bu which represents the STDP modification function according to the time difference
between the postsynaptic presynaptic times spike. The synapse weight update function
Wjnew is built using a convolution of the shifted presynaptic input vector weighted by Bu,
where −Lw ≤ u ≤ Lw, and the delayed output spike. Different, more complex STDP
modification rules can be configured using the proposed B register, eliminating the need
for any hardware modification imposed by previous hardware STDP implementation [31].
The STDP learning rule is given by Equation (4).

∆wj = η ∑
k∈Spre

∑
l∈Spost

{
+η+e−|tl−tk |/τ+ , i f tl ≤ tk

−η−e−|tl−tk |/τ− , i f tl > tk
(4)

where η(−/+) is the learning rate and τ+ and τ− are the time scales to control synaptic
potentiation and depression. The magnitude of the learning rate decreases exponentially
with the absolute value of the timing difference. When multiple spikes are fired, the weight
change is the sum of the individual change calculated from all possible spike pairs. Spreset
and Spost are the sets of spikes of the pre- and post-synaptic neurons, respectively, where tk
is the time of the spike k (of the Spreset) and tl is the time of the spike l (of the Spost set).
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Figure 2. Spike Timing Dependent Plasticity (STDP)-based learning model.
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3. Building Block Approach

This section presents the proposed building block approach applied to sound feature
extraction and classification. We suggest considering the Spike Continuous Time Neuron
(SCTN) presented by Bensimon et al. [10] as a basic “building block” in the design of pro-
grammable digital electronics circuits. The proposed approach demonstrates the use of the
SCTN neuron as an efficient alternative to the design of programmable analog electronics
circuits. The SCTN is used as the basic building block to implement the analog-like circuits,
utilizing the unique features of the SCTN neuron and smart inter-connections. Usually,
a neuron is used as a repeated modular element in any neural network structure, and the
connectivity between the neurons located at different layers is well defined. Thus, generat-
ing a modular NN structure composed of several layers with full or partial connectivity.
The proposed approach suggests controlling the specific behavior of each neuron and uses
smart and unique connectivity of each neuron in order to emulate an analog circuit. Unlike
existing SNN-based sound classification solutions for which the preprocessing phase is
carried out using analog-to-digital and FFT conversions of the raw analog data, we suggest
integrating the preprocessing phase into the network. This approach allows referring to
the basic SCTN neuron as an analog module (i.e., a building block), and thus enabling the
design of simple analog circuits based on SNN with unique inter-connections between
the neurons. The proposed approach is applied to sound signal processing demonstrating
efficient ultra-low-power implementation of some common analog circuits used for phase
detection and sound feature extraction and classification. The benefit of using an SNN-
based network for implementing analog circuits is reflected by a generic solution and the
reuse ability by changing the network weights. The building block approach is applied to
sound signal processing demonstrating efficient ultra-low-power implementation of some
common analog circuits used for phase detection, frequency detection, and sound feature
extraction and classification.

3.1. SCTN-Based Phase Shifting

The efficiency of the proposed approach is demonstrated by implementing an SNN-
based preprocessing phase-shifting circuit and frequency detection. Therefore, enabling
a simple and direct sensor interface, saving silicon area, and efficient low-power sound
processing in real-time. We examine and demonstrate the ability of the SCTN neuron
to generate a phase-shifting emulating a common analog filter circuit. Figure 3 shows a
simple first-order RC circuit.

axon synapse

soma

C

R

Vin

Vo

+
+

-

Figure 3. RC circuit filter and its relation/analogy to the SCTN.

The transfer function of the RC circuit is given by

H(jω) =
Vo

Vin
=

1− jωRC
1 + (ωRC)2 (5)
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where the radial frequency is ω = 2π f . For the cutoff radial frequency ω0 =
1

RC
the

magnitude and phase are given by Equations (6) and (7).

H(jω0) |=
1√
2

(6)

arg(H(jω0)) =
−π

4
(7)

Therefore, for an input frequency of ω0, a phase shift of −45◦ is observed. In analogy
with an SN neuron, the charge of the capacitor C may represent the neuron membrane
potential, while the resistor R may represent the leakage rate of the neuron [35]. Each SCTN
cell incorporates a leaky integrator with a time constant that is controlled by a predefined
parameter: α = 1− 2−LF. The SCTN may postpone the incoming signals according to an
expected leakage time constant, i.e., a delay which is given by Equation (8).

Delay = TPulseCycle ·
1

1− α
· (a + LP) (8)

where TPulseCycle is derived from the system clock as

TPulseCycle =
x + 1

2
· (Tsys=clk),−1 ≤ x < 1 (9)

The SCTN delay and the spike rate are derived from Equation (8) and formulated as

τ = TPulses ·
1

1− α
· (1 + LP) (10)

ω0 =
1− α

TPulses · (1 + LP)
(11)

fPulses =
1

TPulses
(12)

where τ denotes the delay, and the analog cutoff frequency f0 is given by

f0 =
fpulses · (1− α)

2π · (1 + LP)
=

fpulses

2LF · 2π · (1 + LP)
(13)

Therefore, for an appropriate choice of the LP and LF parameters (which determine
the resonance frequency), the SCTN has the ability to generate a phase shift of 45 degrees.

3.2. SCTN-Based Phase Shifting

This section presents an SCTN-based resonator circuit which serves as a frequency
detection utilizing the SCTN basic phase shifting feature. The proposed resonator is used
to extract the representing frequency contents embedded within the acoustic signals.

Figure 4 depicts a unique SCTN-based resonator circuit. The resonator circuit is used
to detect the presence of a range of frequencies embedded within the sound signal. The
proposed resonator circuit is composed of 17 SCTNs building blocks arranged in 10 layers.
A PDM binary stream representing the sound signal serves as an input to the resonator
circuit. The first eight layers are composed of eight SCTN neurons (one per layer), where
each neuron performs a phase shift of 45 degrees. A feedback path (connected to the
4th neuron) representing a shift of 180 degrees is connected to the input. The final layer
contains 8 SCTN neurons: the first four neurons are used for blocking negative signals,
while the other four serves as rectifiers configured with binary and identity activation
functions, respectively. In the final stage, the output SCTN neuron sums the four positive
outputs of each detected phase (0–90–180 and 270 degrees). The output neuron fires a
train of pulses as a result of detecting frequencies that are in the range of the resonance
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frequency (in a predefined range of frequencies). The maximum pulse rate is achieved at
the resonance frequency, and the pulse rate is relatively decreased as the frequency moves
away from the resonant mid-frequency.
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Figure 4. The proposed 10-layer resonator architecture.

Figure 5 demonstrates the detection of a predefined resonance frequency within a
chirp signal containing frequencies in the range of 0 to 250 Hz. The SCTN parameters
LP and LF are configured to detect a resonance frequency of f0 = 104.65 [Hz] using
Equation (14) for LF = 5, LP = 73, and system clock Fpulse = 1.536 MHz.

f0 =
1.536 · 106

25 · 2π · (1 + 73)
= 104.65 (14)

Figure 5(right) shows that the peak is achieved exactly at the resonance frequency f0.
In order to detect several frequencies, which represent the sound signal, within a

predefined range, we suggest using a bank of filters (i.e., bank of resonators). Each resonator
is responsible for detecting a single frequency. For example, to detect 20 predefined
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frequencies in the range of [20 Hz, 20 kHz], a bank of 20 filters (composed of 17× 20 = 340
SCTN neurons) is required.
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Figure 6 illustrates the simulation results for a bank of 20 resonators (based on SCTN)
used to detect 20 different frequencies in the audio spectrum. A chirp signal (in the range of
20 to 20k Hz) has been used as an input to each of the 20 resonators. The array of resonators
was tuned to detect the following frequencies: [155; 304; 480; 703; 937; 1242; 1593; 2015;
2484; 3000; 3750; 4500; 5437; 6562; 7875; 9375; 11,062; 13,125; 15,750; 18,750].

Frequency

Frequency

Frequency

Frequency

Figure 6. SCTN-based resonators’ bank (the parameters are tuned to detect 20 predefined frequencies in the audio spectrum).

This approach can be easily applied for extracting the common MFCC coefficients
representing a sound signal. Each resonator can be configured to detect a relatively closed
neighborhood of frequencies around the central detected frequency. The bank of filters can
be adapted to identify different types of soundtracks (e.g., female and male, background,
noises, etc.).
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4. SCTN-Based Sound Feature Extraction
4.1. Classical Sound Preprocessing

Traditionally, a complete sound processing framework consists of the following main
stages: Pulse Density Modulation (PDM), preprocessing, features extraction, and classi-
fication. MFCC is the most widely used feature extraction method for automatic speech
recognition. Figure 7 depicts the stages of classical sound preprocessing and features
extraction. The digital microphones translate their vibration intensity from an audio wave
to digital information. The PDM signal is converted to Pulse Code Modulation (PCM)
representation by a digital Low-Pass Filter (LPF) with downsampling to a sampling rate
that is appropriate to voice processing (typically 3–16 KHz). The PCM samples are then
buffered into 20 [ms] frames and converted to the frequency domain via FFT transform. The
extraction of the MFCC coefficients is achieved by multiplying (in the frequency domain)
the Mel filters [24] and the spectral transform of the signal. This roughly determines the
energy distribution in the frequency domain. Usually, the sound preprocessing stage is
implemented using analog hardware [36].

LPF FFT
MEL 

Filters
MFCC
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Figure 7. Classical sound preprocessing approach.

4.2. SCTN-Based Resonators Applied to Features Extraction

The usage of the SCTN-based resonator for frequency detection can be extended to
extract features representing a sound signal. Each resonator can be reconfigured to detect
a relatively closed neighborhood of frequencies around the central detected frequency.
The proposed approach disassembles the sound signal into its fundamental spectral com-
ponents by detecting the frequencies presented in the audio signal. Figure 8 depicts the
classical approach for MFCC extraction along with the proposed SCTN-based feature
extraction (SN-MFCC).

MFCC-SN Features Extraction

 (SCTN based SNN)

PDM Mic.

Sound

SNN-based 

Classification
Frequency

(a)

(b) (c)

(e)

(g)

(d)

(f)

The Proposed

Approach 

Classical

Approach
MFCC

MFCC-SN

Figure 8. (a) SCTN-based features extraction. (b–g) Classical Mel Frequency Cepstral Coefficient (MFCC) extraction.

Figure 8a shows the proposed SCTN resonator-based filter banks used to extract
the SN-MFCC features, while Figure 8b–g demonstrate the classical MFCC extraction.
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Figure 8b describes the MEL filters; Figure 8c depicts the FFT domain of a typical sound
frame. Figure 8e,g depicts the multiplication of two representative MEL filters shown
in Figure 8d,f by the spectral transform of the signal in Figure 8c. The extracted MFCC
features are used for sound classification using an SCTN-based classifier, although the
extracted SN-MFCC coefficients do not precisely match the classical MFCC.

The SCTN-based classifier is composed of one layer with a dedicated SCTN neuron
per class. The SCTN-based classifier has been trained separately for each class using the
STDP learning rule. The classical MFCC coefficients should be extracted iteratively in
real-time for each sampling frame (typically 20 ms frames with 10 ms overlap). By contrast,
the proposed approach suggests processing the audio signal continuously, avoiding the
need to split the input signal into frames. The input data can be connected directly to a
digital PDM microphones that produces rate coded spikes. Moreover, in contrast to the
frame-based system, as the SCTN-based preprocessing is driven by an external stimulus,
unnecessary continuous frame processing (like silence frames) is avoided.

5. Experimental and Results

The proposed sound classification based on the SN-MFCC extracted features was eval-
uated using the Real-World Computing Partnership (RWCP) standard database [37]. To al-
low fair comparisons with other existing SNN-based sound classification
systems [16,26] we select the same ten classes from the RWCP database (‘cymbals’, ‘horn’,
‘phone4’, ‘bells5’, ‘kara’, ‘bottle1’, ‘buzzer’, ‘metal15’, ‘whistle1’, and ‘ring’). The sound
files are recorded at 16 kHz sampling rate in a noisy background. The SCTN-based clas-
sification network was trained and tested with 40 randomly selected sound samples per
class, where 20 samples have been used for training and 20 samples used for testing. To
evaluate the generalization abilities of the proposed SCTN-based classifier the test data
set includes only new different sound samples. The test data set contains 200 randomly
selected sound samples. A cross-validation, using different randomly partitioning of the
dataset for training and testing, is carried out to test the ability of the proposed approach
to correctly classify new data that was not used in the training process. The training and
testing process was repeated 10 times with different sound samples randomly selected
from the RWCP database. To reduce variability, multiple rounds of cross-validation are
performed using different dataset partitions, and the validation results are averaged over
the 10 rounds.

Figure 9 demonstrates the classification process which is composed of two main stages:
the preprocessing phase and the classification stage. First, the SN-MFCC coefficients are
extracted using the proposed SCTN-based resonator. An array of resonators is tuned to
detect different frequencies in the audio spectrum, where each resonator is configured
to detect a specific frequency (in the range of 20 to 20 kHz). Then, the extracted SN-
MFCC features are used as an input to the SN classifier. Each SN in the output layer is
independently trained, with random weight initialization, to classify one of the ten classes
(selected from the RWCP database) using unsupervised learning and STDP learning rule.

SN1

SN2

SNi

SNn

SN-MFCC feature extraction

Active

Active

Class1

STDP Learning

20 Hz

30 Hz

75 Hz

1.2 kHz

18.7 kHz

PDM Mic.

Sound sample

Class2

Classi

Classn

Figure 9. SN-MFCC based sound classification framework .
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The STDP module has been configured with a relatively small learning rate η+ = 0.005
and η− = 0.004 to ensure robust learning [25], a time constant of η+= η−= 15 ms to ensure
stable competitive synaptic modification [19], and the Lw parameter was set to 16. The
SCTN-based resonators have been configured to detect frequencies in the range of 38 Hz to
15 kHz using varying LP and LF parameters (LF = 4:5 and LP = 1:200). Figure 10 depicts
the derived frequencies as a function of the combination of the LF and LP parameters.
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Figure 10. Resonators’ detection frequencies as a function of LP and LF.

The effect of the number of SN-MFCC coefficients on the classification accuracy has
been investigated using 100, 150, and 200 resonators (each composed of 17 neurons).
Figure 11 depicts the classification accuracy as a function of the number of SN-MFCC
coefficients (for 100, 150, and 200 resonators) and the number of training epochs (for 5,
10, 12, 15, 20, and 25 epochs). An epoch refers to one cycle through the full 200 samples
training dataset. Training the network with more epochs leads to better generalization and
improved classification accuracy. The average test accuracy achieved with 20 epochs is
87.23%, 97.11%, and 98.73% for 100, 150, and 200 SN-MFCC coefficients, respectively.
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Figure 11. Accuracy as a function of epochs for different numbers of resonators.

The classification accuracy is compared with two other existing SNN-based ap-
proaches [16,26] using the same RWCP database. Table 1 depicts the accuracy results of
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our proposed classifier compared to RNN, LSTM [16], and three other SNN-based sound
classification [16,26,38].

Table 1. Classification accuracy comparison (adapted and completed from the work in [16]).

Model Accuracy (%)

RNN 95.35
LSTM 98.40

LSF-SNN 98.50
LTF-SNN 97.50

SOM-SNN 99.60
SCTN-SNN 98.73

Simulation results of the proposed SCTN-based classifier show accuracy of 98.73%,
which is comparable to the accuracy of 97–99.6% demonstrated by the SOM-SNN approach
presented in [16], and outperforms the time-frequency encoding method [26], which shows
the accuracy of 96%. One of the main advantages of the proposed approach is that the
feature extraction is carried out using SCTN-based resonators, avoiding the common
external preprocessing stage and time-frequency representation of the sound. Moreover, we
suggest a direct interfacing of the acoustic sensor with the SCTN-based network avoiding
the usage of costly digital-to-analog conversions.

6. Conclusions

This work presents a new approach based on a spiking neural network for sound
preprocessing and classification. We propose a biologically plausible sound classification
framework that uses an SNN-based network for detecting the embedded frequencies
contained within an acoustic signal. A new SCTN digital neuron is used as a basic building
block for constructing a spiking neural network. We demonstrate the use of an SCTN-based
network as an efficient alternative to the design of programmable analog electronics circuits.
The proposed approach is applied to sound signal processing and classification, suggesting
direct interfacing of the analog sensor with the SNN network. We present an efficient
ultra-low-power implementation of some common analog circuits used for phase and
frequency detection, voice feature extraction, and classification. The SCTN is used as the
basic building block to implement analog-like circuits, utilizing the unique features of the
SCTN neuron and smart inter-connections. Experimental results show high accuracy of
98.73% achieved for sound classification. The benefit of using an SCTN-based network for
implementing analog circuits is also reflected by a generic solution and the reuse ability by
changing the network weights. The proposed approach can be applied in future work for
efficiently extracting the common MFCC coefficients representing a speech signal.

7. Patents

Haiut, M. Neural cell and a neural network. Patent 15/877459, 9 August 2018.
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