
A Novel Approach for Measuring the Burden of
Uncomplicated Plasmodium falciparum Malaria:
Application to Data from Zambia
Valerie Crowell1,2, Joshua O. Yukich3, Olivier J. T. Briët1,2, Amanda Ross1,2, Thomas A. Smith1,2*
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Abstract

Measurement of malaria burden is fraught with complexity, due to the natural history of the disease, delays in seeking
treatment or failure of case management. Attempts to establish an appropriate case definition for a malaria episode has
often resulted in ambiguities and challenges because of poor information about treatment seeking, patterns of infection,
recurrence of fever and asymptomatic infection. While the primary reason for treating malaria is to reduce disease burden,
the effects of treatment are generally ignored in estimates of the burden of malaria morbidity, which are usually presented
in terms of numbers of clinical cases or episodes, with the main data sources being reports from health facilities and parasite
prevalence surveys. The use of burden estimates that do not consider effects of treatment, leads to under-estimation of the
impact of improvements in case management. Official estimates of burden very likely massively underestimate the impact
of the roll-out of ACT as first-line therapy across Africa. This paper proposes a novel approach for estimating burden of
disease based on the point prevalence of malaria attributable disease, or equivalently, the days with malaria fever in unit
time. The technique makes use of data available from standard community surveys, analyses of fever patterns in malaria
therapy patients, and data on recall bias. Application of this approach to data from Zambia for 2009–2010 gave an estimate
of 2.6 (95% credible interval: 1.5–3.7) malaria attributable fever days per child-year. The estimates of recall bias, and of the
numbers of days with illness contributing to single illness recalls, could be applied more generally. To obtain valid estimates
of the overall malaria burden using these methods, there remains a need for surveys to include the whole range of ages of
hosts in the population and for data on seasonality patterns in confirmed case series.
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Introduction

Malaria continues to be a major cause of disability and death in

countries where it is endemic [1]. Accurately estimating the

burden of morbidity due to the disease is critical for guiding

programmatic strategies and resource allocation, and evaluating

the impact of malaria control measures. However, commonly-used

approaches for estimating malaria burden are problematic as a

result of imprecise terminology and estimation techniques that do

not allow for the complexity of the natural history of the disease.

Different issues arise in estimating how much morbidity is due

to malaria from estimating the mortality burden (which accounts

for most of the burden measured in terms of disability-adjusted life

years (DALYs) [2]). This paper considers only morbidity. When

promptly and effectively treated, malaria illness is of short

duration, but if untreated, a single Plasmodium falciparum malaria

infection can last for many months, causing recurring clinical

attacks interspersed with asymptomatic periods [3] during which

parasitaemia is often sub-patent. This can be clearly seen in the

time courses of parasitaemia and fever observed among neuro-

syphilis patients treated with malaria therapy. In these studies, the

full histories of many patients with untreated malaria infections

were recorded following artificial inoculations of malaria parasites

given for the purpose of clearing late stage syphilis infections [4].

Figure 1 shows the time pattern of parasitaemia and fever in a

neurosyphilis patient treated with P. falciparum. In this figure, the

single (untreated) infection gives rise to five periods of high

parasitaemia. The first two of these are each associated with

several bouts of fever indicated by the black bars at the top (see

definitions in Table 1).

This sporadic pattern of clinical symptoms of untreated disease

complicates the definition of clinical incidence. For many

infectious diseases, for instance influenza, each incident infection

leads to one and only one period of illness, or episode. For such

diseases, the burden can thus be estimated from the incidence of

disease and the duration of episodes, with an appropriate

weighting used to convert numbers of episodes into disability

adjusted life years (DALYs) or quality adjusted life years (QALYs).

By contrast, with malaria, one incident infection may lead to

multiple periods of illness (or may be asymptomatic throughout,

though it has been claimed that this is unusual [5]). Malaria

burden is often expressed in terms of the number of episodes, but it
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is not clear whether one episode is intended to refer to (i) all illness

resulting from a single infection event; (ii) one uninterrupted

period of illness; or (iii) all malaria illness within a given period.

Infections that are treated promptly and effectively when they first

lead to symptoms unambiguously contribute one episode to this

total, but when treatment is delayed, or if the infection remains

incompletely untreated, it is unclear how many episodes can result

from a single infection event. This matters because the disability

caused by the disease (and the risk of life-threatening complica-

tions) are clearly less when it is treated promptly, but these benefits

may be invisible, for instance if incident cases or episodes are

counted irrespective of their duration. The term episode clearly

refers to some set of bouts, but just how many and which bouts

make up an episode is not clear. Table 1 proposes a definition that

surmounts this ambiguity.

Statements about incidence of malaria disease are consequently

often vague or misunderstood. For instance, the World Health

Organization (WHO) estimate of 225 million cases in 2009 [6] is

intended to refer to the total number of clinical episodes. The

ambiguity in what is meant by an episode makes interpretation

difficult. In many countries, mostly outside Africa, burden is

reported using passive case detection data, and in WHO statistics,

estimates of morbidity rates for these countries are corrected for

reporting completeness, diagnostic error, and attendance rates

[1,7]. An underlying assumption would seem to be that the burden

of an episode of malaria disease is the same irrespective of when,

or whether the episode was treated.

In most of sub-Saharan Africa, presumptive treatment (without

prior diagnosis) has been the norm, and the number of treatments

is a poor measure of the number of episodes (Table 1) and cannot

be used to estimate disease burden. An increasing number of

countries have adopted a policy of providing parasitological

diagnosis, but this is not yet standard practice continent wide [1].

Instead of using problematic passive case detection data, maps of

P. falciparum prevalence determined from surveys are combined

with information on climate suitability for malaria transmission

and population density in order to classify populations according

to endemicity level. Clinical incidence values are assigned to each

endemicity level based on estimates of the numbers of events

recorded in longitudinal surveys of febrile malaria episodes in

children, detected either actively or passively [8–10]. These

estimates of populations at risk and endemicity-specific estimates

of disease rates are together being used to produce national and

continent-wide estimates of the number of clinical malaria

episodes [11]. Longitudinal studies of malaria must always involve

treating the acute episodes that are discovered, and subsequent to

effective treatment, all the burden of disease potentially caused by

the infection is averted. Treatment also reduces onward transmis-

sion to mosquitoes. In several longitudinal studies [12,13],

dramatic decreases in fever rates over time have been observed,

presumably for these reasons. Intensive research studies are

therefore likely to substantially underestimate clinical attack rates

in the general population.

An alternative to these approaches is to use recalls of illness from

cross-sectional surveys carried out in the community. An

increasing body of data is available from demographic and health

surveys (DHS), multiple indicator cluster surveys (MICS), and

malaria indicator surveys (MIS), which include asking respondents

to provide a recall of illness during the previous two weeks for each

of their children. This paper shows how these data can be used to

obtain improved estimates of the malaria disease burden.

Methods

Data Types
Four types of data were used to illustrate the methods:

Figure 1. Pattern of parasitaemia and febrile illness in a malaria
therapy patient (Patient S-519). #: Parasite density; & day with
fever (core temperature . = 103uF).
doi:10.1371/journal.pone.0057297.g001

Table 1. Definitions used in this paper.

Term Definition

Malaria infection Those parasites descended from a single inoculation of sporozoites#

Incidence of infection The number of new infection events in a population in unit time

Bout of illness An uninterrupted set of days during which a patient is considered, or considers himself or herself to be ill for at least part
of each day

Malaria episode A set of bouts of malaria illness considered by the patient or care giver to be of common malaria aetiology*

Incidence of clinical malaria The rate of new malaria episodes in a population

Point prevalence of clinical malaria The proportion of the population suffering from symptoms caused by malaria at any one time

Period prevalence of clinical malaria The proportion of the population suffering from symptoms caused by malaria at any time during a defined interval.

Malaria burden The morbidity or disability associated with malaria (days with illness, DALYs, or QALYs)

*This definition is intended to capture the way in which the word episode is used, whereby intermittent fever bouts, within a period of continual high parasitaemia
characteristically lasting a few weeks (Figure 1), are likely to be considered to be connected. This introduces ambiguities because patients, care givers, and data analysts
may disagree about which events are part of the same episode.
#It is debatable whether co-inoculated but genetically distinct parasites should be considered part of the same infection.
doi:10.1371/journal.pone.0057297.t001
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1. Daily fever prevalence. For the analysis of bias in recall of

fever, data of Feikin and colleagues [14] for children under five

years of age in Asembo, Bondo District, Kenya were used.

These data comprise recalls of fever, elicited separately for each

day in the reference period of fourteen day duration in a survey

of approximately 25,000 people (Figure 2).

2. Malaria therapy data. Fever patterns in untreated and

inadequately treated malaria patients were analyzed using the

data of 330 neurosyphilis patients treated with P. falciparum in

the National Institutes of Health laboratories in Columbia,

South Carolina and Milledgeville, Georgia in the United States

of America [3]. For each of these patients, the days on which

fever (core temperature . = 39.4uC) occurred were recorded.

3. Malaria Indicator Survey data. Data on history of fever in

the last fourteen days from the 2010 MIS from Zambia [15]

were used. Just over 34% of children under five reported a

fever in the last two weeks. This is period prevalence of fever,

biased by recall. Of these, 34% took an antimalarial drug.

4. Health Management Information System records.
Counts of diagnosed malaria patients from all health facilities

in Luangwa District, Zambia extracted from the national

HMIS database.

Estimation of Recall Bias
Two-week morbidity recalls do not elicit complete information

about illness during the reference period because respondents may

forget or conceal information. The usual survey procedures do not

directly provide any information about recall bias but it can be

estimated when respondents are asked (individually) about illness

on each distinct day during the reference period. This is because

independence of the timing of the survey and the illness justifies

the presumption that variations in fever rates by recall lag reflect

recall bias.

The relative frequencies of fever reports by lag-day in the

Asembo data provide a direct estimate of the recall bias associated

with a specific lag in a recall (Figure 2). Assuming that a fever on

the previous day is reported with 100% sensitivity, an estimate of

the recall probability for a fever i days prior to interview is

r̂ri~Fi=F1 where Fi is the fever prevalence recorded in the survey

for the single day, i days prior to interview. (̂rr0~F0=F1 v1
because surveys are usually carried out early in the day, before all

fevers are yet evident.).

Naively, the probability that a survey respondent reports fever,

conditional on fever having occurred during a two week reference

period might be thought to be �rr~1{ P
14

j~1
1{r̂r14{j

� �
, however,

fever bouts extend over multiple days (Figure 3a), and there may

be multiple bouts during a single reference period (Figure 1), so the

overall recall bias depends on the natural history of the disease. An

estimate of the overall recall probability for a two week period,

allowing for these effects, ~rr, was obtained by applying the estimates

of r̂ri obtained from children in the Asembo study, to simulated

interviews of malaria therapy patients, on the assumption that the

number and pattern of days with fever during an arbitrary

fourteen-day interval was similar in the field to those recorded in

malaria therapy. The full recorded follow-up periods for malaria

therapy patients were divided into fourteen-day intervals during

which there was daily monitoring, leading to a total of 3715

fourteen-day intervals, during 755 of which there were one or

more days with fever. Data were discarded for days that could not

be included in these intervals because of gaps in, or termination of,

the patients’ follow-up periods. For the analysis of recall in the

absence of treatment, each day (j = 1, 2, …, 14) in each of these

intervals was evaluated as though the patient had been interviewed

at j = 14. Each day of fever was assumed recalled with probability

r̂r14{j (obtained from children in the Asembo study) so that the

probability that any fever was recalled in the simulation was

Figure 2. Recall of fever for each day in the 2 weeks prior to home visit, children aged ,5 years, Asembo, Western Kenya. Left hand
vertical axis: percentage of child population for whom fever was recalled; Right hand vertical axis: estimated recall probability. Source: [14].
doi:10.1371/journal.pone.0057297.g002
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~rr~1{ P
14

j~1
1{Ij r̂r14{j

� �
where Ij~1 if there was fever on day j

and Ij~0 if there was no fever on day j.

Estimation of Period Prevalence of Clinical Malaria from
Survey Data

MIS use two-week reference periods to elicit histories of both

illness and of treatment. The signs and symptoms of malaria are

common to those of other diseases, so interviews alone perform

poorly in assigning malaria as the cause of illness. To determine

the proportion of recalled illness that is due to malaria, the results

of parasitological testing are needed in addition to clinical data. In

fourteen day recall surveys, individuals who report malaria fever

are not necessarily parasitaemic at the time of the survey.

However, rapid diagnostic tests (RDTs) based on the presence of

the P. falciparum histidine rich protein 2 (PfHRP2) measure the

period prevalence of malaria infections. As PfHRP2 persists in the

bloodstream for up to a month following parasite clearance

[16,17], PfHRP2 positivity (unlike blood slide positivity) can be

used to detect recalled (as well as current) malaria fevers.

Some RDT-positive fevers are of non-malaria etiology, but have

incidental parasitaemia. The proportion of fevers that are of

malaria etiology (the malaria attributable fraction) can be

estimated from the excess risk of fever among parasitaemic

individuals, and must also be considered in the analysis.

Two approaches were used to obtain estimates of the period

prevalence of malaria attributable fever, taking into account all the

above considerations:

(i) Plug-in model for the period prevalence of malaria

fevers. In this approach, the survey data from Luangwa,

Zambia (Table 2) were used to separately estimate the malaria

prevalence among fever recalls, pe, the period prevalence of

reported fever, pf, and the relative risk of fever associated with

malaria, RR, in each case without accounting for reporting bias,

using formulae given in Table 3. The population attributable

fraction of fever, PAF, and period prevalence of reported malaria

attributable fever, pmf, were then obtained by substituting the

estimates of pe, pf, and RR into further formulae given in Table 3.

The point estimate of pmf thus obtained was then mapped on an

estimate of the period prevalence of malaria fever allowing for

reporting bias, pm, using further equations in the recall probability,

for which the point estimate of ~rr (described above) was substituted

for r (formulae also in Table 3).

This approach is easy to implement but does not allow for the

different amounts of information available for the different

Figure 3. Effect of bout duration on period prevalence in the malaria therapy data. a: distribution of durations of uninterrupted bouts of
fever in the malaria therapy data; b: period prevalence of malaria fever in the malaria therapy patients, as a function of the duration of the period.
doi:10.1371/journal.pone.0057297.g003

Table 2. Survey outcomes and their probabilities (children in Zambia).

RDT
positive

Fever
reported

Treatment
Reported Probability in branching process model (Figure 4)

Frequency in
district survey

Frequency in
national MIS*

No No – P1~ 1{pð Þ 1{nð Þzn 1{rð Þð Þ 355 (62.6%)

No Yes – P2~ 1{pð Þnr 131 (23.1%)

Yes No – P3~p m 1{tð Þ 1{rð Þz 1{mð Þ 1{nð Þzn 1{tð Þ 1{rð Þð Þð Þ 35 (6.2%)

Yes* Yes No P4~p m 1{tð Þrz 1{mð Þ n 1{tð Þrð Þð Þ 46 (8.1%) 686

Yes* Yes Yes P5~p mtz 1{mð Þntð Þ 353

*The report of the national MIS does not distinguish antimalarial drug use depending on RDT result. Since only 16.7% of children with fever were reported to have
received a parasitological diagnosis, we assume for the present analysis that antimalarial drug use was independent of RDT result.
doi:10.1371/journal.pone.0057297.t002
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outcomes. It does not readily provide interval estimates for the

parameters.

(ii) Bayesian analysis of branching process model. The

second approach was to analyse the determinants of both

questionnaire and RDT outcomes as a branching process, as

shown in Figure 4, where the columns ‘RDT’, ‘Fever’, and

‘Treated’ indicate the outcomes recorded at the survey, and the

branches correspond to a classification of respondents according to

whether they are PfHRP2 positive, whether they suffered a

malaria or non-malaria fever in the reference period, whether they

received treatment, and whether the fever was reported at the

survey.

Malaria fevers and non-malaria fevers are not distinguishable at

the individual level in field data, so the ten branches shown in

Figure 4 correspond to the five observable categories of outcomes,

with probabilities P~fP1,P2,P3,P4,P5g given in Table 2. The

branching process analyses these probabilities as functions of the

parameters p, m, n, and t (Table 2). A Markov chain Monte Carlo

method (using WinBUGS v1.4 [18]) was used to obtain interval

estimates for these parameters assuming P to follow a multinomial

distribution. The WinBUGS code for fitting this model is included

as supporting information (Script S1).

To complete the Bayesian model specification Uniform(0,1)
priors were used for p, m, n, and t. The distribution of ~rr estimated

from the malaria therapy data, was used as a prior distribution for

r.

This makes all the parameters in the decision tree identifiable,

conditional on the assumptions that the duration and frequency of

bouts of fever in untreated individuals was the same in the two

datasets; that treatment with anti-malarial drugs is relevant only in

parasite positive individuals; that treatment never occurs in the

absence of illness; and that respondents who fail to report illness

are otherwise indistinguishable from those that report. A further

assumption is that recall bias in treated cases is negligible, but that

untreated fevers are recalled with some probability, r,1.

Estimation of the Number of Days with Illness
Analyses of malaria therapy patients, with simulation of surveys

and treatments (Figure 5), were used to estimate the numbers of

days with illness associated with each recall of fever, conditional on

the proportion of these (in the MIS) reporting treatment, ~tt. For a

series of different daily probabilities of treatment, t0, simulated

treatments were assigned stochastically to each day of fever in the

malaria therapy dataset. The simulated treatments were assumed

to be completely effective, so that in the simulations, the patient

had no more fever once treatment was initiated. (In contrast, the

true treatments administered to the malaria therapy patients,

predominantly at sub-therapeutic doses, were ignored in this

analysis). Simulated surveys were implemented in which the data

for fourteen-day periods were summarized assuming a level of

recall bias determined from the Asembo data.

These simulations provided estimates of the numbers of days

with illness per fever report, the overall level of underreporting, the

proportion of recalls reporting treatment among those reporting

illness, and the value of ~tt, for each value of t0. Each of these

quantities could thus be plotted as a function of ~tt (Figure 5), and by

Table 3. Plug-in model for period prevalence of malaria fever (equations and parameter estimates).

Symbol Description Source or equation
Estimate (95% credible
interval)*

r Probability that fever is recalled# Asembo and malaria therapy data 0.81 (0.78–0.84)

pe Prevalence of malaria among fever recalls
pe~

P4zP5

P4zP5zP2

0.260

RR Relative risk of fever associated with malaria
RR~

(P4zP5)(P1zP2)

(P3zP4zP5)P2

2.12

PAF Proportion of all fever attributable to malaria (i.e. population
attributable fraction of fever)

PAF~
pe RR{1ð Þ

1zpe RR{1ð Þ
0.225

pf Period prevalence of reported fever pf ~P2zP4zP5 0.312

pmf Period prevalence of reported malaria attributable fever pmf ~pf PAF 0.070

rf Proportion of histories of fever reported rf ~rzpf 1{rð Þ 0.869

pm Period prevalence of malaria fever$ pm~pmf =rf 0.081

*Bayesian credible intervals computed assuming Uniform(0,1) prior.
#allowing for reporting bias.
$correcting for reporting bias.
doi:10.1371/journal.pone.0057297.t003

Figure 4. Branching process of events underlying cross-
sectionally recorded outcomes. p is the probability of an RDT
being positive; m is the probability of clinical malaria during any two
week period, conditional on infection; n is the probability of non-
malaria fever during any two week period; t is the probability of
treatment with an antimalarial conditional on being both infected and
febrile during the two-week period; and r is the probability that an
untreated fever is reported.
doi:10.1371/journal.pone.0057297.g004
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reading off the values of each of them corresponding to the value

of ~tt reported in the Zambian MIS, estimates could be made for the

Zambian example, albeit under the assumption that the fever

pattern in young children is similar to that of non-immune adult

malaria therapy patients.

Since the MIS surveys were conducted only at one time of the

year, the incidence estimates also needed to be adjusted for the

effect of seasonal variation in clinical incidence. This was achieved

by multiplying the estimate of the per capita number of days with

malaria fever during the reference period by the ratio of the

incidence of diagnostically confirmed cases in the HMIS during

that period to the annual average incidence (Table 4).

Results

Recall Bias and Duration of Bouts
The daily prevalences of fever reported by Feikin and colleagues

[14] clearly indicate that fevers which occurred a few days prior to

survey are much less likely to be recalled than those which

occurred the previous day, while fever is less likely to be reported

on the day of interview (Figure 2). It is noteworthy that data from

Papua New Guinea [19] show a similar pattern.

If each recalled bout of illness only entailed only day of fever,

then a simple mean of the lag-day specific probabilities, r̂r14{j ,

could be used to estimate the overall recall bias, which would be

substantial. However, bouts of fever (as defined in Table 1)

frequently last several days in malaria therapy patients (Figure 3a),

and if these are not treated, there may be several bouts in one

reference period, so that, while the proportion of days with fever is

5.4%, only 17.8% of two week periods include one or more days of

fever (Figure 3b), instead of 54.0% if all bouts had lasted one day

and were randomly spread over patients and follow-up periods.

Each additional day of fever adds to the probability that the

bout will be recalled, so that when the lag-day specific recall

probabilities for children from the Asembo study are applied to the

patterns of fever occurrence in the malaria therapy data, 612 out

of 755 (81%) fourteen day intervals with fever days are estimated

to have been (hypothetically) recalled as containing one or more

fever bouts, corresponding to 19% underreporting and a value of

r = 0.81 (Table 4). This value of r is used in the estimation of ~tt (see

above).

The probability that fever is recalled is further complicated by

the effects of treatment. While Figure 3 provides a description of

the actual malaria therapy data, simulation of treatments under

the assumption that a treated fever will always be recalled

increases the probability that morbidity will be recalled in the

Figure 5. Analysis of impact of simulated treatment on
morbidity data. The plots were constructed by simulating effective
treatments applied to malaria therapy data (see Methods) with
fourteen-day morbidity reference periods, a: daily probability that a
patient receives treatment that day, given that s/he has a fever that day.
The simulations take into account under-reporting, as estimated from
the Asembo data, and assume an equal probability of commencing
treatment on each day of illness. The arrow corresponds to the estimate
made from the Zambian MIS data. b: mean days with illness per report
of fever; continuous line: days with fever including fever that was not
reported (adjusting for under-reporting estimated from the Asembo
data); dashed line: days with fever during intervals for which fever was
reported (ignoring recall bias).
doi:10.1371/journal.pone.0057297.g005

Table 4. Parameter estimates for branching process model for period prevalence of malaria fever.

Description Estimates (95% credible interval)

r Probability that an untreated fever is recalled# 0.81 (0.78–0.84)

p Period prevalence of malaria infection 0.14 (0.12–0.17)

n Period prevalence of non-malaria fever allowing for reporting bias 0.33 (0.29–0.39)

t Proportion of periods with malaria fever that were treated 0.29 (0.27–0.32)

~tt Proportion of malaria positive recalls where treatment was received 0.34 (0.31–0.37)

m Probability of malaria fever conditional on infection 0.48 (0.29–0.67)

pm Period prevalence of malaria fever allowing for reporting bias 0.069 (0.040–0.101)

#estimated from the Asembo and malaria therapy data.
doi:10.1371/journal.pone.0057297.t004

Measuring Malaria Burden
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simulations, while decreasing the corresponding number of days

with fever (Figure 5).

The proportion of fever recalls mentioning treatment has a non-

linear relationship with the daily probability of treatment, because

recurrent fevers provide multiple opportunities to treat, so even a

modest rate of treatment per day of fever will result in a very high

proportion of recalled fevers being treated. The simulation of

surveys based on the malaria therapy data suggests that the 34% of

fever recalls in the Zambian MIS data that reported treatment

(Table 2) correspond to only about 6.6% treatment per day of

fever (Figure 5a). The proportion of treatments delivered promptly

is not the same as the daily probability of treatment because

prompt treatment (as defined in the MIS questionnaire) may occur

on either the same day, or the day after onset of fever. A 6.6%

daily probability that a fever will be treated consequently

corresponds to a probability almost twice as high as this that

treatment will occur in the first two days, which is comparable

with, though somewhat lower than, the 18.7% of fever reports that

indicated receipt of prompt anti-malarial treatment in the survey,

(te = 0.187).

Period Prevalence of Clinical Malaria
Table 2 gives the number of respondents in the Luangwa district

malariological survey in each of the four classes categorized by

RDT result and fever report. The observed proportions in each

category were used to obtain estimates of the period prevalence of

malaria fever firstly by calculating each of the quantities given in

Table 3, substituting the data from Table 2 (the plug-in approach).

This provided a period prevalence estimate of pm = 8.1% (Table 3).

A second period prevalence estimate ofpm = 6.9% (95% credible

interval 4.0% –10.1%) (Table 4) was obtained using the Bayesian

analysis of the branching process, which also provided interval

estimates of p, m, and n. All these estimates were conditional on the

distribution of r estimated from the Asembo data on recall

probabilities, and on the analysis of total fever days in the malaria

therapy data (Figure 3). The analysis of the branching process

implied that of the 14% of children with evidence of malaria

parasites, about half of them had suffered malaria fevers during the

two-week reference period. Of those who mentioned fevers in the

preceding two weeks, treatment was mentioned by 34%. However,

only 29% of children with fever were estimated to have been

treated at some point in the period, because of bias in the recall of

untreated fevers.

Number of Days with Fever Associated with each Fever
Positive Reference Period

The number of days with fever associated with each reference

period reported to have fever, depends on the treatment rate. As

treatment rates increase, the number of days with fever

corresponding to each report decreases, since an increasing

proportion is averted by the treatments, until in the limiting case

of 100% prompt and effective treatment, each report corresponds

to exactly one day with fever (Figure 5b). In the absence of

treatment, the 755 two-week periods of malaria therapy with at

least one day of fever had a mean of 4.3 days with fever each.

The recalled treatment rate for a positive RDT together with a

fever estimated from the national level data is 34.0% (right hand

column of Table 2). The simulations of treatment using the

malaria therapy data imply that this treatment rate corresponds to

a mean of 3.6 days with recalled illness in each interval for which

fever was recalled (from the results shown as dashed line in

Figure 5b). However, based on the analysis above, 19%

underreporting of untreated fevers is assumed, implying that there

are 4.4 days of fever in the population for every positive fourteen

day reference period (read from continuous line in Figure 5b).

Total Burden of Uncomplicated Malaria for Zambian
Children

Figure 6 shows the seasonality in confirmed malaria cases at all

health facilities in Luangwa District, Zambia, from HMIS records.

The MIS surveys in Luangwa were conducted during peak

transmission season (April-May) and thus the annual burden

estimate needs to be scaled by the ratio of RDT confirmed malaria

fever incidence over the whole year, relative to the incidence

during this period (Table 5). It is assumed that this district is

representative in terms of the degree of seasonality, and the

targeting of the MIS surveys to the peak malaria season. If this

district is representative, this provides an estimate of the average

number of days with malaria fever per person-year in Zambian

children of 2.6 days (95% credible interval: 1.5–3.8) of malarial

fever per person at risk per year (Table 5).

This compares with an incidence estimate of 1.5 million cases in

the year 2009 (confirmed and probable) for the 2.3 million

children under five years old in Zambia given in the World

Malaria Report [20], corresponding to 0.65 cases per capita.

Using the estimate of 2.6 days with fever per capita, this implies,

each recorded case corresponds to about 4 days with fever in the

community. This all seems plausible, though the credible intervals

(which capture most of the uncertainties in the data) do not

capture the full level of uncertainty implied by the assumptions

that patterns of fever in Zambian children may be similar to those

in malaria therapy patients, that recall patterns in Kenya can be

applied to Zambia, and that clinical malaria attacks will always

lead to a positive RDT if the test is applied within fourteen days of

a fever bout.

Discussion

Quantification of malaria in an area can have various

objectives. This paper focuses on the assessment of disease burden,

defined in terms of experience of illness. This is needed for

assessing progress in improving health and for cost-effectiveness

analyses of intervention programs. Disease burden quantification

requires population-based data, and community-based measures

of parasite prevalence and anaemia prevalence, available from

MIS, are recommended as morbidity indicators for national

malaria control programs in the monitoring and evaluation (M&E)

toolkit of the Global Fund to fight AIDS, TB and Malaria

(GFATM) [21]. However, parasite prevalence and anaemia

prevalence are not direct measures of malaria morbidity. They

are multifactorial [22] and may change at different rates than

clinical malaria incidence does [23].

In this paper, fever recalls from MIS surveys are proposed as the

primary source for estimates of malaria morbidity burden. This

approach contrasts with the use of HMIS data as the primary

source for estimates of disease burden. From the clinical

perspective, it may be good enough to identify an ‘‘episode’’ or

‘‘case’’ when an individual presents to a health facility with febrile

illness and detectable parasitaemia. Activity statistics derived

directly from such case registration are useful for commodity

forecasting and managing clinical workloads, and may also be

suitable as outcomes in intervention trials where the goal is simply

to detect a difference between two or more arms, but these are

only a subset of the reasons for quantifying the amount of malaria,

and in particular are not the same as assessment of disease burden.

Other possible objectives include assessment of the level of

transmission (which requires consideration of asymptomatic
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infections as well as clinical attacks [24]), and measurement of the

economic burden of the disease (which needs to consider also the

costs of diagnosing malaria negative patients, of preventive

measures, and indirect costs of illness, including productivity costs

and loss of investment because of concerns about the disease).

If activity statistics (such as HMIS) data are used as the primary

source of data on disease burden, they need adjustments. Firstly,

the calculations must correct for sick individuals who do not report

to the health facility. Making this adjustment is challenging,

because untreated malaria attributable fevers that are invisible in

the statistics have different durations from the treated fevers that

are visible in the statistics. Adjusting for this is especially

challenging when there are changes in access to care, since

improved access reduces disease burden non-linearly while

increasing levels of activity. Additionally, it is not clear how to

adjust activity statistics to allow for the benefits of improvements in

case management that replace failing treatments and reduce the

duration of illness, such as the roll-out of ACT as first-line therapy

across Africa. Lastly, activity statistics do not distinguish changes in

diagnostic accuracy from changes in epidemiology.

Thus, until recently in places highly endemic for malaria, a

febrile patient with a viral infection was generally presumptively

Figure 6. Average number of confirmed cases by month in Luangwa District Zambia 2009–2010. The dashed line corresponds to the
annual average number of cases per month and the double headed arrow to the survey period and the corresponding average incidence.
doi:10.1371/journal.pone.0057297.g006

Table 5. Conversion of estimated period prevalence of malaria fever to estimate of disease burden.

Symbol Description Source or equation Estimate

t0 Daily probability of treatment Read from Figure 5a as a function of ~tt 0.066

te Probability of prompt and effective treatment MIS data 0.187

d Days with malaria fever during reference period
among those who report malaria fever

Read from Figure 5b as a function of ~tt 3.58

�II Annual average incidence of confirmed clinical
malaria at health facility (cases per month)

HMIS data from Luangwa District (Figure 6) 102.3

I Incidence of confirmed clinical malaria at health
facility (cases per month) during period of MIS survey

HMIS data from Luangwa District (Figure 6) 258.0

b Days with malaria fever per person-year at risk
b~

365

14
dpm

�II

I

3.0#

2.6* (1.5–3.7)

#Based on the plug-in model estimate of pm.
*Based on the branching-process model estimate of pm. Figures in parentheses give the 95% credible interval obtained by treating d, �IIand Ias fixed quantities.
doi:10.1371/journal.pone.0057297.t005
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treated for malaria and recorded as a malaria case. Control of

malaria and the introduction of parasitological diagnoses mean

that such patients are now less likely to appear in malaria statistics.

Rather, they are more likely to be classed as respiratory infections.

This is appropriate, insofar as these statistics measure the activity

of the health system, but the introduction of diagnostic tests for

malaria has not resulted in a larger burden of disease due to

respiratory infections. Similarly, the proportion of non-malaria

fever patients with incidental parasitaemia declines when malaria

transmission is reduced. These patients should be treated for

malaria, and hence contribute to activity statistics, but the burden

of disease associated with them should be assigned to the

etiological agent causing the fever, in such cases not malaria, so

that changes in malaria burden estimate should be unaffected by

the number of such patients. In general therefore, the use of

activity statistics to measure burden can give a quite false idea of

the importance of malaria relative to other illnesses and may

misrepresent the relative contributions of preventive and curative

interventions to improvements in public health.

Fever recalls from surveys provide a direct measure of

morbidity, are increasingly widely available, and in some situations

data have been validated as comparative morbidity measures [25].

This paper provides algorithms for converting such data into

annualized malaria-specific disease burden (in days with illness).

These calculations, however, need auxiliary information: some of

this is also gathered as part of standard MIS protocols, specifically

recalls of treatment and parasite prevalence assessed by RDT.

HMIS data, which are needed for scaling the incidence estimates

to adjust for the surveys’ timing in the year, are also widely

collected though often only made available as aggregated annual

statistics. The conversion of fever recalls to days with illness

requires specific data on length and spacing of illness bouts only

available from malaria therapy data, and on recall bias from a

Kenyan field study. The overall approach can be applied to any

site and time-period for which population-based surveys of fever

recall and parasitaemia (by RDT) are available. In the application

to Zambian data, the plug-in and branching process approaches

for analysing the survey data provided similar but not identical

estimates of the period prevalence of clinical malaria. The plug-in

approach is probably easier to understand and implement, though

the Bayesian approach makes more efficient use of the data. The

plug-in approach could easily be adopted as a standard, since this

would involve simply substituting local data for those from Zambia

into the calculations in Tables 3 and 5.

The validity of combining these datasets can be questioned,

especially because of the assumption that the patterns of fever in

African children parallel those in malaria therapy patients.

Superficially, patterns observed in closely monitored Gambian

children [26] were similar to those in malaria therapy but the

available field datasets are too small for any quantitative

comparison. The assumption that RDTs provide good estimates

of period prevalence of infection could also be questioned.

However, the approach does lead to parameter estimates with at

least face validity (Table 3), and unfortunately these are the only

kinds of data available that provide all this information, so

validation against definitive measures of burden is currently not

possible. Despite these shortcomings, estimates of burden, based

on this approach, would very likely be a substantial improvement

on current practice in cost-effectiveness analysis, because they

change in a qualitatively appropriate way in response to either

preventive or curative interventions. This also has implications for

simulation modeling of case management, which are discussed in

the supporting information (Text S1). A next step should be to

carry out this estimation for many more settings and to compare

trends and geographical patterns with those based on current

practice.

Some of the data limitations could be addressed by improve-

ments in survey design. First, cross-sectional surveys of malaria

illness and treatment-seeking need to include questions on history

of fever and measure parasitaemia in all age groups, not just in

children under five: as malaria control efforts are scaled-up and

transmission falls, malaria illness tends to shift into older age

groups [27] due to greater time to first exposure and thus slower

acquisition of immunity. Burden is thus expected to be heavier in

older children and adults, and monitoring systems need to allow

for this reality in order to correctly capture the burden of malaria

illness, both in absolute terms and in terms of change over time.

Second, there is a need for more data like those from Asembo to

estimate recall bias. Ideally, 24-hour recalls would be used, but this

would reduce the size of available databases. Finally, the current

practice of carrying out MIS at approximately the same time

across whole countries means that there are limited data available

on seasonality in either parasitological or clinical indices. Data for

each period of the year are essential for unbiased estimates of

annual burden, and could in principle be obtained by carrying out

rolling surveys, visiting clusters in a random order throughout the

year.

Conclusion
Measurement of malaria burden is fraught with complexity

mainly due to the natural history of the disease and to sub-optimal

health facility utilization which means that treatment is often

delayed or not sought. Definitions of malaria episodes are either

ambiguous or difficult to use because good information about

patterns of infection, recurrence of fever or asymptomatic infection

is rarely available.

This paper suggests that the point prevalence of malaria

attributable disease, or equivalently, the days with malaria fever in

unit time, should be used as a measure of burden. This avoids the

problem of defining a malaria episode, and suggests that burden

can, in principle, be estimated in an unbiased way from data that

are already collected in national MIS, combined with data on

seasonality. The estimates used in this paper of recall bias, and of

the numbers of days with illness contributing to single illness

recalls, could be applied more generally.

It is hoped that this work will stimulate a dialogue on how to

improve measurement of the burden of uncomplicated malaria.

Supporting Information

Figure S1 Mean duration of illness per episode depend-
ing on treatment in malaria therapy patients. The mean

number of fever days per episode (duration of illness) depending on

the probability of treatment of fever and length of the health

system memory for treated episodes (a & d) and untreated

episodes (b & e), and the probability of an episode being treated (c
& f), for daily probability of treatment (a–c), and five-daily

probability of treatment (d–f). Health system memory length

(days): black 5, red 10, green 15, dark blue 20, light blue 25,

magenta 30, yellow 35, grey 40. Smoothing splines were drawn

through scattered points, which were averages of 100 repeated

simulations.

(TIF)

Figure S2 Probability in micro simulation models of an
episode being treated. The probability of an episode being

treated is plotted against the treatment seeking probability per five-

day time step, with a 15 day health system memory. The green line

is copied from Figure S1f and represents the results from the
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malaria therapy analysis on a non-immune population of adults.

Each black line represents the median probability of an episode

being treated for children under five years of age, with a health

system memory of 15 days, out of 10 simulation runs for a given

model variant. Each model variant represents a different set of

assumptions about malaria transmission and epidemiology in

terms of decay of immunity and heterogeneities in exposure, co-

morbidity and/or access to treatment, [28,29]. Simulations were

done of a setting where the entomological inoculation rate was 20

infectious bites per adult per annum, with a total human

population size of 10,000. Each red line represents the median

probability of an episode being treated for the entire population

for all 12 model variants. Two model variants from the original

ensemble [30], R0674 (uncorrelated heterogeneities in access to

treatment and susceptibility to co-morbidity) and R0678 (hetero-

geneity in access to treatment), are excluded because at high

treatment coverage levels, there is an upper limit to the level of

heterogeneity.

(TIF)

Text S1 Simulation modeling of the burden of uncom-
plicated malaria.

(DOC)

Script S1 WinBUGS code for estimating parameters of
branching process.

(DOC)
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