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The human respiratory syncytial virus (hRSV) is the leading cause of pneumonia in infants

and produces a significant burden in the elderly. It can also infect and produce disease

in otherwise healthy adults and recurrently infect those previously exposed to the virus.

Importantly, recurrent infections are not necessarily a consequence of antigenic variability,

as described for other respiratory viruses, but most likely due to the capacity of this virus

to interfere with the host’s immune response and the establishment of a protective and

long-lasting immunity. Although some genes encoded by hRSV are known to have a

direct participation in immune evasion, it seems that repeated infection is mainly given

by its capacity to modulate immune components in such a way to promote non-optimal

antiviral responses in the host. Importantly, hRSV is known to interfere with dendritic cell

(DC) function, which are key cells involved in establishing and regulating protective virus-

specific immunity. Notably, hRSV infects DCs, alters their maturation, migration to lymph

nodes and their capacity to activate virus-specific T cells, which likely impacts the host

antiviral response against this virus. Here, we review and discuss the most important

and recent findings related to DC modulation by hRSV, which might be at the basis of

recurrent infections in previously infected individuals and hRSV-induced disease. A focus

on the interaction between DCs and hRSV will likely contribute to the development of

effective prophylactic and antiviral strategies against this virus.

Keywords: dendritic cells (DCs), DC maturation, antigen presentation, T cell activation, inflammation, recurrent

infection, immune evasion, immunity

INTRODUCTION

The human respiratory syncytial virus (hRSV) is the leading cause of infant pneumonia worldwide
and also elicits significant morbidity in the elderly and children (1–3). Importantly, infants
with partial airway development due to premature birth, airway hyperreactivity, pulmonary
hypertension, cystic fibrosis, Down syndrome, neurologic conditions, congenital heart disease,
and those that are immunosuppressed are at increased risk of developing severe complications
due to hRSV infection, which may even lead to death (4, 5). Nevertheless, individuals that are
otherwise healthy, such as infants 2 months old or older can also be infected with hRSV and suffer
respiratory illness leading to significant morbidity and eventually life-threatening disease, mainly
because of complicated pneumonia (3, 6, 7). Noteworthy, at present there are no vaccines available
against hRSV, yet many are under development and being assessed clinically, although few would
be suitable for direct application on to newborns (8–11).
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An important feature of hRSV is that it is capable of re-
infecting healthy children and adults that have been previously
infected with this virus (12, 13). hRSV can be classified into
two groups (A or B) that mainly differentiate from each other
based on nucleotide variability in the attachment glycoprotein G
(14). Thanks to affordable sequencing costs and high-throughput
sequencing techniques, at present circulating hRSV isolates, can
be further sub-classified into at least 14A genotype groups and
23 B genotypes groups, based on similarities of the G protein
gene (14). Furthermore, improved access to whole genome
sequencing has opened the possibility for molecular classification
and molecular epidemiology studies on hRSV (15). However,
despite nucleotide and antigenic variability in the attachment
G protein of hRSV, recurrent infections with the same virus
can occur at a high frequency within healthy individuals. For
instance, adults that had a previous natural infection with
hRSV and were then exposed to a virus belonging to the
same strain group subsequently manifested several reinfections.
At 26 months, 73% of individuals were shown to have two
or more re-infections, and 47% had three or more infections
(16). Thus, other immune-evasion mechanisms distinct from
antigenic variation are likely at the base of host reinfections with
hRSV. Because relatively few hRSV-encoded genes are known to
directly interfere with the host’s antiviral response in a somewhat
direct manner, one could suggest that the capacity of hRSV to
repeatedly infect the host may derive from its ability to elicit
an adaptive antiviral immune response that is non-optimal for
the host. Indeed, hRSV has been exhaustively described to skew
the host’s antiviral immune response toward phenotypes that
promote exacerbated lung inflammation in response to lung
infection which favor the virus (17–20). Importantly, hRSV
lung infection can induce macrophages and monocyte-derived
macrophages in this tissue to upregulate the surface expression
of PD-L1, which will likely have adverse effects over the function
of T cells (21). Furthermore, hRSV can elicit human neonatal
regulatory B cells to secrete IL-10, which may also result in non-
optimal antiviral T cell responses (22). However, an immune cell
of choice targeted by hRSV seems to be dendritic cells (DCs),
critical immune cells that initiate and regulate antigen-specific
adaptive antiviral immunes responses. Indeed, the phenotype
and function of these cells have been broadly reported to be
modulated during hRSV infection, both in vitro and in vivo. Here,
we review the latest studies that describe the interaction between
hRSV and DCs and how the outcome affects relevant functions
of these cells, which will ultimately impact the establishment of
an effective antiviral response against hRSV in the host.

HRSV GENES AND THE
VIRION STRUCTURE

hRSV is an enveloped, negative-sense, and single-stranded RNA
virus that encodes 10 genes that are translated into 11 proteins
(Figure 1) (23). Its replication and gene transcription occur in

Abbreviations: hRSV, Human respiratory syncytial virus; DCs, dendritic cells; IL,

interleukin, LNs, lymph nodes.

the cytoplasm, thanks to the aid of an RNA-dependent RNA-
polymerase that is encoded within the viral genome by the L gene
(24, 25). For its adequate function, the L protein requires the
viral phosphoprotein P, which associates to this RNA polymerase
(26, 27). Importantly, the replication of the viral genome and the
transcription of its genes are modulated by the hRSV-encoded
factors M2-1 and M2-2, which are generated from a common
mRNA transcript by a ribosome shift that occurs on the mRNA
after producing the M2-1 protein; initiation of M2-2 takes place
at a start codon that overlaps with the M2-1 open reading
frame (ORF) (23, 28). Noteworthy, in the virion and infected
cells, the viral genome is covered by the nucleoprotein N, which
is highly expressed within infected cells (29–31). Covering the
nucleocapsid, yet beneath the envelope is the matrix protein M,
which has been reported to travel to the nucleus of infected cells
during the replication cycle of hRSV to inhibit the transcription
of host genes and was recently described to interact with actin
within infected cells, likely contributing to the transport of virion
components into budding virions (30, 32, 33). Importantly, the
virion envelope is covered on its surface by the attachment
glycoprotein G, which may be dispensable for infection in
some cells (34–36), the fusion F glycoprotein which is a type-I
integral membrane protein that binds nucleolin for cell infection
(37, 38), and the transmembrane protein SH, which forms a
viroporin that transports cationic ions (39, 40). Importantly, to
date, there is accumulating data that describes the molecular
interactions between hRSV structural components, which has
allowed establishing an overall comprehensive scenario of how
the virus’ components are coordinately assembled within infected
cells to favor its replication and exit (30). Finally, the non-
structural (NS) genes NS1 and NS2 that are at the foremost 3′

of the viral genome, are solely expressed within infected cells
(not contained within the virion), and are known to negatively
modulate the cellular antiviral interferon type-I response early
after infection (Figure 1) (41, 42). Importantly, several host
factors that modulate the replication cycle of hRSV, such as
factors involved in the regulation of host transcription, innate
immune responses, regulation of the cytoskeleton, membrane
remodeling, and cellular trafficking have been identified and
confirmed. These factors could eventually be overexpressed
or silenced in host cells to reduce infection or hamper
virus replication during infection to avoid pathology (43–45).
Although many of the abovementioned hRSV proteins have
been studied individually in vitro, only few of them have been
assessed within immune cells or more specifically DCs, which if
performed could eventually reveal relevant immune-evasion or
immune-modulation properties for hRSV-encoded viral factors
and help identify key viral and host factors that modulate the
virus’ replication cycle in these cells.

HRSV INFECTS DENDRITIC CELLS

Dendritic cells (DCs) are immune cells that play vital roles
in initiating and regulating antigen-specific immune responses
against foreign and self-antigens in the organism (46–48). DCs
are strategically located both, at peripheral sites and internal
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FIGURE 1 | hRSV virion structure. The hRSV genome is a negative-sense

single-stranded RNA virus. Its genome is wrapped by the nucleoprotein (N).

An RNA-dependent RNA polymerase (L) is associated to the viral genome in

the virion. Also, within the virion is the viral phosphoprotein (P), which is

required by the L polymerase for its function. Additionally, within the virion are

the viral proteins M2-1 and M2-2, derived from a single mRNA, which

modulate transcription of viral genes and genome replication by the L

polymerase. Beneath the virus envelope is the matrix protein (M), which has

been described to inhibit host gene translation in the nucleus of infected cells.

Three proteins are immersed in the virus envelope: the small hydrophobic (SH)

protein, which forms a viroporin, that transports cations, the attachment

glycoprotein (G) and the fusion protein, which arranges as a trimer on the virion

surface (F). The viral proteins NS1 and NS2 are non-structural and hence, are

not found within the virion.

organs in such a way to sense and capture both, foreign
and self-proteins. If the captured protein is immunogenic or
associated with activating molecules, DCs undergo phenotypic
transformations, and migrate to lymph nodes (LNs) to present
protein-derived peptides to antigen-specific CD8+ and CD4+

T cells in MHC-I and MHC-II molecules, respectively (49–52).
Importantly, DCs express a battery of molecular sensors that
detect pathogen-associated molecular patterns (PAMPs), which
leads in most cases to transcriptional and phenotypical changes
in these cells in a process known as DC maturation (46, 53, 54).
In turn, this process will lead to the activation and modulation
of other immune cells that can help resolve infection (49, 50,
55, 56). If DCs capture virus components DCs, these cells will
ideally encounter, activate and differentiate virus-specific CD4+

T cells into helper cells (Th) that support the production of
antiviral antibodies by B cells, as well as promote the generation
of cytotoxic T cells (CTLs) that eliminate virus-infected cells
(57–59). Given the crucial role of DCs in initiating antigen-
specific adaptive antiviral immune responses, mainly through
the activation and differentiation of T cells, such as CD4+ T
helper cells, numerous viruses and other pathogens have evolved
molecular determinants and mechanisms to interfere with the
function of DCs, in such a way to impair the establishment of
an effective antiviral immune response (60–67).

Noteworthy, hRSV infects DCs in vitro and is known to
interfere with their functions, even though DCs seem not to be an
optimal viral substrate for this virus. Indeed,many in vitro studies
report relatively low virus yields from hRSV-infected DCs, even
at multiplicity of infection (MOI) values that generally lead to
complete infection of epithelial cell cultures (MOI >3) (66, 68–
71). This phenomenon is suggestive of abortive hRSV infection
in a significant proportion of DCs (66, 68, 69, 71, 72). Thus,
it seems that hRSV likely infects DCs as a strategy to target
a pivotal immune component to indirectly favor its infectious
process in the host, namely the infection of epithelial lung cells
that yield high amounts of infective virions, which will expand
themagnitude of the infection within the individual and promote
its dissemination onto others. Interestingly, hRSV may reach
other tissues besides the airways during infection, such as the
central nervous system (CNS) (73, 74).

Although cell surface receptors that lead to hRSV cell
infection have been identified, such as cellular heparan sulfate
glycosaminoglycans that act as attachment factors for the hRSV
G glycoprotein (75, 76), as well as nucleolin (37) and ICAM1 (77)
as ligands for the F fusion protein, the exact mechanism by which
hRSV enters DCs has not been corroborated and could eventually
be different compared to that observed in other cells, such
as epithelial cells (78). Noteworthy, opsonized hRSV particles
(hRSV covered with virus-specific antibodies), which is known
to hamper virus-infection of epithelial cells, were recently shown
to be nevertheless capable of infecting DCs and interfere with
their function, such as activating T cells (Figure 2). Importantly,
this process was shown to be mediated by Fcγ receptors (FcγRs)
expressed on the surface of DCs (79). Because opsonized hRSV
particles retained the same ability as free hRSV to interfere with
DC activation of T cells, this process would favor impaired
DC function in time despite the individual having anti-hRSV
antibodies. Thus, hindered DC function by hRSV would ensue
during each exposure to the virus, likely hampering the capacity
of the host to mount an effective response against this virus.

HRSV-DENDRITIC CELL INTERACTION

Growing amounts of studies have focused on the relationship
between hRSV and DCs increasing our knowledge on the
outcome of this interaction. While some reports indicate that
DCs infected with hRSV can sense viral components, which can
lead to somewhat activating signaling pathways within these cells,
other reports indicate that hRSV determinants interfere with
antiviral signaling pathways within DCs, such as those related
to interferon type-I responses, which is mediated by STAT-1
and STAT-2 (80). Importantly, the activation or inhibition of
distinct intracellular signaling pathways within DCs by hRSV
generally leads to DC outcomes that are overall poorly activating
for T cells, with hRSV-infected DCs displaying poor- or only
partial-maturation phenotypes both, in human and murine DCs
(58, 59, 66, 68, 69, 72, 81).

NS1 and NS2 have been reported as two hRSV factors
that are directly involved in inhibiting the maturation of
human DCs and impairing the secretion of type-I IFNs by
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FIGURE 2 | hRSV modulates dendritic cell function. (1) DC infection with

hRSV can occur even in the presence of antibodies bound to the virus

(opsonized virus), which enter DCs through Fcγ receptors (FcγRs). (2) hRSV is

capable of inhibiting antiviral signaling pathways mediated by STAT-1 and

STAT-2, likely through its NS proteins. (3) The G glycoprotein signals through

L-/DC-SIGN and phosphorylates ERK1/2, which translates into the

upregulation of surface expression of CD40, OX40L, and PD-L2, whereas it

downregulates IFN-α secretion. (4) The hRSV NS1 and NS2 proteins interfere

with type-I interferon secretion. (5) hRSV induces the secretion of

proinflammatory cytokines by DCs. Some mDC subsets (BDCA-1+ and

BDCA-3+) secrete IL-10. (6) hRSV induces autophagy and is processed by

the autophagosome leading to cytokine release and lung inflammation. (7)

hRSV differentially modulates the expression of interferon-stimulated genes

(ISGs), through IFN-dependent and independent pathways. (8) hRSV induces

the activity of demethylases to modulate gene expression, such as IFN-γ,

preventing an antiviral response. (9) hRSV upregulates the expression of

specific host microRNAs. (10) hRSV stimulates the expression of CD80 and

CD86. Additionally, the virus upregulates PD-L1 and CD38 expression on the

DC surface to modulate inflammation in the lungs.

myeloid DCs (mDCs), which can enhance the differentiation of
CD4+ T cells into Th2-phenotypes and promote the generation
of Th2-polarized anti-hRSV immune responses in the host.
Consequently, these immune responses can be detrimental to
the host, as they promote exacerbated inflammation in the
lungs (80, 82). Another hRSV-encoded determinant that has
been reported to alter the maturation of DCs directly is the
surface glycoprotein G, which was described to trigger ERK1
and ERK2 phosphorylation within these cells, mainly through
DC- and L-SIGN molecules on the DC surface. Neutralization of
DC- and L-SIGN induced significant secretion of IFN-α, MIP-
1α, and MIP-1β in plasmacytoid DCs (pDCs) inoculated with
hRSV, suggesting that this virus alters DC maturation through
this signaling pathway thanks to this glycoprotein (Figure 2)
(83). Such intracellular signaling events induced by the hRSV
G glycoprotein in these cells may explain why mice immunized
with a recombinant vaccinia virus (rVV) expressing hRSV G and
subsequently challenged with hRSV displayed lung inflammatory
DCs that expressed increased levels of the programmed cell
death 1 ligand 2 (PD-L2), as well as low CD40 and OX40
ligand (OX40L), when compared to mice inoculated with a
rVV expressing the hRSV F fusion protein, which were also
challenged with hRSV. Noteworthy, the expression or not of

these co-stimulatory molecules on the DC surface was shown to
have profound effects over T cell activation, suggesting that the
hRSV G glycoprotein has some important immune-modulatory
properties, possibly mediated through DCs (84).

Other studies have found that hRSV infection promotes DC
maturation and the secretion of pro-inflammatory cytokines by
these cells, either directly or through the infection of other
cells. For instance, primary human DCs characterized as mDC1,
mDC2 or pDC were found to upregulate phenotypic markers
associated to maturation after hRSV inoculation, which was
dependent on divalent cations suggesting the participation of
C-type lectin receptors in this process (71). Other human DC
subsets studied with hRSV have been BDCA-1+ and BDCA-
3+ mDCs obtained from peripheral blood. Similar to other DC
subsets, these cells were susceptible to infection with hRSV, and
while they expressed increased amounts of CD80 and CD86
in response to this virus as compared to non-infected cells,
they also expressed the inhibitory costimulatory receptor PD-
L1 and secreted IL-10. Furthermore, hRSV-infected BDCA-1+

mDCs produced pro-inflammatory cytokines and chemokines,
namely IL-1β, IL-6, IL-12, MIP-1α, and TNF-α and displayed
a reduced capacity to stimulate T cells (85). Hence, hRSV can
produce significant changes in DCs once infected, namely by
modulating the expression of T cell-activating molecules on their
surface. etSuch modulation was accompanied by the expression
of inhibitory receptors and the secretion of numerous immune-
modulatory cytokines, mostly inflammatory.

Another study reported that depending on the hRSV strain
used; human DCs can respond differentially to this virus
by secreting different kinds of type-I and type-III IFNs, and
transcribe distinct interferon-stimulated genes (ISGs). Although
both serotypes of hRSVA and B induced the expressing of IFN-β,
IFN-α1, IFN-α8, and IFN-λ1-3, only the serotype A2 induced
IFN-α2, -α14, and -α21 (86). Type-I IFN-dependent activation
of ISGs during an hRSV infection was shown to be modulated
by the virus’ ability to downregulate suppressor of cytokine
signaling (SOCS1 and SOCS3) through its RSVG protein, in turn
affecting IFN-β and ISG15 expression (87). Moreover, during
hRSV infection, airway epithelial cells activate cyclin-dependent
kinase 9 (CDK9) and associates with bromodomain 4 (BRD4)
to activate IRF3-dependent IFN-stimulated genes, independent
of IFN-signaling. Altogether, these processes contribute to
increased RSV-induced airway inflammation and disease (88, 89).
Although these findings may have important implications over
disease severity and the outcome of the host’s immune response,
as well as the modulation of immunity, the implications of
different hRSV serotypes in clinical infections and in vitro studies
are somewhat seldom assessed.

IL-33 is a key cytokine involved in Th2 immune responses
and inflammatory airway diseases and is usually secreted in high
amounts by epithelial cells in this tissue (90, 91). Interestingly,
hRSV-infected DCs within the lungs of hRSV-infected animals
have been reported to have elevated levels of IL-33 mRNA and
were suggested to be a relevant source of IL-33 in the lungs of
hRSV-infected mice (92). Noteworthy, blocking TLR3 or TLR7
signaling with antagonists significantly reduced the levels of IL-
33 mRNA produced by DCs, suggesting that IL-33 expression
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in these cells upon hRSV infection is TLR-dependent (92).
Interestingly, a study on the identification of enzymes that alter
the methylation status of the host DNA suggests that the profile
of cytokines secreted by DCs in response to hRSV may be driven
by specific demethylases induced by infection with this virus
(Figure 2). In a study by Ptaschinski and colleagues, it was shown
that hRSV upregulates the expression of Kdm5b/Jarid1b H3K4
demethylase in response to in vitro hRSV infection of DCs and
that inhibiting this factor with siRNA led to a 10-fold increase
in IFN-β production, as well as other cytokines. Furthermore,
mice that had Kdm5b specifically deleted in DCs showed higher
production of IFN-γ and reduced IL-4 and IL-5 secretion after
hRSV infection, as well as lesser lung inflammatory mucus
production in this tissue. Some of these findings were mirrored
in human DCs treated with an inhibitor of KDM5B suggesting
that this factor, which is induced by hRSV can directly inhibit
the expression of type-I IFN and other cytokines within infected
DCs, likely favoring hRSV replication and virus-induced lung
disease (93). This finding calls for further studies assessing the
roles of such DNA-modification enzymes in host cells and how
they are modulated by hRSV infection, potentially unveiling
novel antiviral strategies.

Studies that have assessed the role of autophagy in hRSV-
infected DCs have found that this process is involved in driving
the production of cytokines that lead to lung inflammation
(Figure 2). Indeed, inhibition of autophagy with inhibitors such
as siRNA, or experiments with Beclin+/− mouse-derived DCs,
or exposing Beclin+/− mice to hRSV significantly reduced the
production of cytokines by CD4+ T cells. In these cases, hRSV-
infected lungs displayed increased amounts of mucus secretion,
and cellular infiltrates, unveiling important roles for autophagy
in DCs in response to hRSV infection (94, 95). Additionally,
Beclin-1+/− DCs were shown to express reduced amounts of
MHC class II molecules on their surface and were less effective
at stimulating the production of IFN-γ and IL-17 in co-cultures
with CD4+ T cells, as compared to controls; furthermore, they
promoted the secretion of Th2-cytokines by these T cells. On
the other hand, transfer of hRSV-infected Beclin-1+/− DCs into
the airways of wild-type mice elicited lung disease accompanied
with the production of significant amounts of Th2 cytokines
upon later challenge with hRSV (94, 95). Notably, a recent study
found that hRSV induces Sirtuin-1 (SIRT1) expression in DCs,
which is a NAD(+)-dependent deacetylase that is associated with
the induction of autophagy. In this study, it was found that
SIRT1 exerts antiviral effects against hRSV in vitro and that
using an inhibitor of this enzyme, siRNA o analyzing the specific
effect of SIRT1 knockout in DCs not only attenuated autophagy
in these cells, but these animals manifested exacerbated hRSV-
pathology (96).

When searching for particular markers induced by hRSV
infection in DCs or cytokines elicited by hRSV-infected DCs, a
recent study found that this virus induces CD38 expression in
these cells, which is an ectoenzyme that catalyzes the synthesis of
cyclic ADPR (cADPR). The expression of this enzyme was found
to be dependent on hRSV-induced type-I IFN and inhibitors
of CD38 significantly reduced the expression of type-I/III IFNs,
suggesting that CD38 is regulated by- and influences IFNs in

DCs and thus, modulating this enzyme may be an intriguing
target for improving the host’s response to hRSV infection and
pathology (97).

Despite poor, or relatively low expression of surface markers
associated with the potential capacity of DCs to activate or
promote the activation of T cells, a common feature that has
been repeatedly observed in hRSV-infected DCs is the secretion
of cytokines that may promote the differentiation of T cells into
phenotypes that are not favorable for the effective resolution
of infection, such as IL-6 and IL-10, which lead to Th2 CD4+

T cell responses (66, 81). Concomitantly, cytokines such as
IL-12 that tend to elicit T cells with phenotypes that are
commonly associated with efficient viral clearance, such as Th1
are usually not secreted by hRSV-infected DCs, (66, 68, 69,
98–101). Interestingly, a study reported that the secretion of
different cytokine profiles by hRSV-infected humanDCs depends
on whether these cells originate from neonates or adults. For
instance, DCs derived from blood cord samples secrete more
TGF-β1 than DCs obtained from adult blood in response to
hRSV, suggesting the existence of age-related phenotypes in DCs
that may translate into differential responses to hRSV (further
discussed below) (102).

Interestingly, a somewhat novel approach that is being
undertaken to study the relationship between hRSV and DCs
is analyzing the profile of miRNA expression in these cells
(Figure 2). A recent study found that DC infection with hRSV
elicited the upregulation of a specific miRNA, namely let-7b
(103). This study is complemented by another report that found
that hRSV infection induces significant expression of three
miRNAs, namely hsa-miR-4448, hsa-miR-30a-5p, and hsa-miR-
4634 in human DCs (104). Interestingly, this latter study also
performed comparative analyses of miRNA profiles between DCs
infected with hRSV and a related virus, namely the human
metapneumovirus, and found that both viruses induced the
expression of elevated levels of hsa-miR-4634. Elucidating the
contribution of these miRNAs in DCs in response to hRSV
remains to be determined.

DENDRITIC CELL PHENOTYPE AND
MIGRATION UPON HRSV INFECTION
IN VIVO

Although the study of DC infection with hRSV in vitro has
provided valuable insights on the consequences that hRSV
infection has over these cells, studying the effects of hRSV over
DCs at the site of infection is likely key for understanding the
contribution of this interaction to airway disease. They are also
important as they help determine if the results obtained in vitro
mirror what occurs in the respiratory tissue. Interestingly, several
studies have addressed the question of how DCs respond to
lung infection with hRSV, yet only a few have directly assessed
whether the analyzed DCs are actually infected with hRSV, or if
the observed effects are driven by viral antigen or other factors in
the virus-infected environment. Evidence for the participation of
hRSV-infected DCs in the exacerbated inflammatory response to
hRSV has been reported by the instillation of hRSV-infected DCs
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directly into the airways, which produced a pathological Th2-
type response in mice (105). Regarding how DCs are infected
by hRSV in vivo, a study by Ugonna et al. explored in an
in vitro setting whether cells present in the respiratory tissuesmay
contribute to hRSV access to DCs. Interestingly, by analyzing
the interrelationship between DCs and epithelial cells, and their
reciprocal infection in co-culture transwell assays they found
that macrophages on the apical surface of differentiated epithelia
helped hRSV infect DCs in the basal chamber, suggesting
that lung macrophages may have a potentially relevant, and
previously unknown role in DC infection with hRSV (106).
However, this remains to be assessed and demonstrated in in vivo
settings. Furthermore, other reports have analyzed whether cells
that are usually adjacent to DCs in the infected tissues may
influence the outcome of DCs. Interestingly, one study found that
hRSV-infected rat airway epithelial cells elicited DC activation,
increasing MHC-II and CD86 surface expression, as well as
enhancing T cell proliferation in mixed lymphocyte reactions.
Noteworthy, this activation was dependent on thymic stromal
lymphopoietin (TSLP), a pleiotropic cytokine implicated in
inflammatory diseases, which was secreted by hRSV-infected
airway epithelial cells (Figure 3) (107, 108). On the other hand,
airway DCs incubated with inflammatory mediators secreted by
hRSV-infected lung epithelial cells was shown to induce their
differentiation into functional DCs capable of activating T cells
characterized by a type-I IFN antiviral response. Nevertheless,
these DCs only had a partial mature phenotype, as they were
unable to up-regulate CD80, CD83, CD86, and CCR7, and
were unresponsive to TLR triggering, suggesting that the airway
epithelium elicits DCs with a somewhat suppressive phenotype,
even under inflammatory conditions induced in the lungs after
infection with hRSV (109).

Given the existence of diverse types of DCs in the lung
tissue, different studies have focused on analyzing the effects of
hRSV over distinct subtypes of DCs in the respiratory tissue
and their contribution to hRSV-associated lung pathology (110).
Early studies on the dynamics of DCs in vivo in the lungs of
hRSV-infected animals showed that pDCs accumulate in this
tissue and secrete type-I IFNs, thus contributing to limit viral
replication and the extension of pathology induced by hRSV
infection (111, 112). Interestingly, other subsets besides pDCs,
such as conventional DCs (cDCs) also accumulate in the lungs
of hRSV-infected animals (113, 114). Noteworthy, together with
increased accumulation of DCs in the lungs, an increase in the
amount of these cells in the associated LNs also occurs, with DCs
exhibiting varying phenotypes at this site (114–118). However, in
most cases, it is unclear whether the analyzed DCs are infected by
hRSV, or if their migration is influenced by other factors within
the infected tissue, such as hRSV antigens or cytokines elicited in
the infected tissue.

Importantly, differences in the phenotype of DCs obtained
from the lungs of hRSV-infected animals have also been assessed
based on the age of the individual, by analyzing these cells
in the lungs of neonates and adults. One such study found
that while CD103+ DCs dominated the response to hRSV in
neonates, CD11b+ DCs were underrepresented in this group
both, in number and function as compared to adult animals.

For instance, pDCs from neonate animals display limited type-
I IFN responses during hRSV infection, as compared to adult
pDCs (119). Noteworthy, the transfer of adult pDCs into neonate
animals reduced the Th2-biased immunopathology produced
by hRSV which was elicited after a subsequent challenge with
hRSV, further evidencing significant differences between DCs
obtained from these different age-groups in response to hRSV
infection (120). In line, with this notion, another study found
that neonatal CD11b+ mDCs expressed increased levels of the
IL-4 receptor IL-4Rα, as compared to adult DCs and that
specifically deleting this cytokine receptor from CD11b+ mDCs
significantly decreased hRSV-induced immunopathophysiology.
Concomitantly, overexpression of IL-4Rα on the surface of
CD11b+ DCs of adult animals and transferring them into
adult mice elicited hRSV-induced immunopathology. Finally, an
important finding in this study was also the fact that increased IL-
4Rα expression in DCs was associated with reduced maturation
of DCs during hRSV infection (121). Interestingly, another
study found that age-dependent DC responses against hRSV
could be modified through the use of TLR agonists, such as
agonists for TLR4 or TLR9 at the time of infection. By using
such agonists, a significant change in the response of hRSV-
specific CD8+ T cells could be observed, evidenced as a shift
in the immunodominance of the antigens to which these T
cells responded when activated by neonate DCs. The shifted
response found resembled more that was observed in adults,
which is associated with less severe disease (122). Overall,
the findings outlined above suggest particular and distinctive
features between lung DCs from neonates and adults after hRSV
infection, at least in the mouse model, and could be considered in
the future for potential therapeutic and prophylaxis approaches
in neonates and adults.

Another area of intense research regarding the interaction
between hRSV and DCs is the migration of these cells, as hRSV
lung infection may result in alterations on the of migration
pattern of different subsets of DCs from the lungs to LNs.
Interestingly, an in vitro study found that human monocyte-
derived DCs infected with hRSV failed to downregulate CCR1,
CCR2, and CCR5 from their surface, which is required for
DCs to effectively migration to LNs. Indeed, these infected DCs
migrated significantly less in chemokine gradients in in vitro
assays. Furthermore, hRSV-infected DCs failed to upregulate
CCR7 on their surface, which is known to promote the migration
of antigen-exposed DCs to LNs for presenting antigens to T
cells (123). Nevertheless, these findings need to be corroborated
in hRSV-infected individuals. Even though cDCs accumulate
in the lungs of hRSV-infected animals as mentioned above
(113, 114), it has been reported that monocyte DC precursors
are depleted during infection from this tissue. Importantly, this
phenomenon has been suggested to favor opportunistic lung
infections by pathogens, such as bacteria (116). Notably, two
major subsets of lung tissue cDCs have been shown to transport
hRSV RNA to the LNs, namely CD103+/CD11blow/CD11c+ and
CD103−/CD11bhigh/CD11c+ cDCs and present hRSV antigens
to T cells on MHC-I and MHC-II molecules (118). Interestingly,
a study that was mentioned in the section above which analyzed
the effects of TLR agonists over DCs infected with hRSV showed

Frontiers in Immunology | www.frontiersin.org 6 April 2019 | Volume 10 | Article 810

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tognarelli et al. RSV Subversion of DC Function

FIGURE 3 | hRSV modulates dendritic cell migration and induces inflammatory profiles in T cells. (1) Epithelial cells infected with hRSV produce TSLP, which elicits

MHC-II, CD80, and CD86 expression in lung DCs. (2) hRSV-infected DCs fail to downmodulate the surface expression of the chemokine receptors CCR1, CCR2 and

CCR5, which is needed for effective DC migration to lymph nodes. Additionally, CCR7, which favors DC migration to the LNs, is not upregulated on the surface of

hRSV-infected DCs. (3) Nevertheless, during infection hRSV-infected DCs migrate to the LNs to interact with T cells. hRSV-infected DCs secrete IL-4, IL-6, and IL-10

and promote the differentiation of CD4+ helper T cells toward a Th2 phenotype. (4) The hRSV N protein expressed on the DC surface mediates impaired

immunological synapse assembly. The signaling events led by host proteins that interact with N are unknown. (5) hRSV induces PD-L1 expression on the DC surface

which signals negatively within inflammatory T cells.

that the treatment with these molecules increased the numbers
of CD11b+ and CD103+ DCs migrating from the lungs to
draining LNs in neonates, likely supporting an improved antiviral
response thanks to DCs with adult-like phenotypes migrating to
this site for optimal T cell activation (122).

Although some studies suggest a positive role for lung cDCs
during hRSV infection, other reports indicate that these cells may
play detrimental functions for the host during hRSV infection
(111, 113, 115). These effects have been evidenced, for example
by blocking the chemokine CCL20 in hRSV-infected animals or
knocking-out its associated receptor (CCR6), which significantly
reduced the presence of cDCs in the airway tissue without
affecting pDCs. These scenarios overall translated into improved
outcomes of hRSV infection, suggesting that a balance between
pDCs and cDCs in the lungs is likely associated with hRSV-
induced pathology (114, 124). The finding supports this notion
that depletion of pDCs from the lungs of animals significantly
increases pulmonary disease after a challenge with hRSV (112).
Concomitantly, activation of pDCs in the lungs of hRSV-infected
animals was shown to limit the replication of hRSV in the airways
and decrease hRSV-associated pathology (114). Thus, pDCs, as
well as cDCs in the airways, are considered to interplay limiting
hRSV replication and regulating inflammation (111, 112, 114).
However, whether the findings described above in the mouse
model hold in humans remains to be determined. Interestingly,
some observations performed in animal models have been
mirrored in patients, such as individuals experiencing hRSV

bronchiolitis having significantly higher numbers of cDCs than
pDCs in the blood, suggesting an imbalance in the proportion
of DC subtypes in children with bronchiolitis, as compared to
healthy individuals after hRSV infection (125).

MOLECULAR MECHANISMS INVOLVED IN
THE REDUCED CAPACITY OF
HRSV-INFECTED DCS TO ACTIVATE
T CELLS

A substantial effect of hRSV over DC function is its ability
to reduce the capacity of hRSV-infected DCs to effectively
activate CD4+ and CD8+ T cells (Figure 3). Although this
phenomenon has been reported in vitro and is not necessarily
echoed in vivo in humans or animal models, a relationship
between the in vitro observations and potential in vivo effects
likely exists in terms of non-optimal T cell activation taking place,
as a result of DC infection with hRSV (66, 68, 72, 126). Given
that the reported phenotype of hRSV-infected DCs is generally
associated to weak or incomplete maturation, it is somewhat
expected that the activation of T cells by infected DCs will
not be optimal and may lead to less potent, or inadequately
differentiated or polarized hRSV-specific T cells. Interestingly,
some studies have identified particular hRSV factors that are
involved in hampering the capacity of DCs to activate T cells. For
instance, a report published in 2008 that studied the interaction
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betweenDCs and hRSV suggested that hRSV factors driving poor
T cell activation by hRSV-infected DCs were membrane-bound
and interfered with the establishment of the immunological
synapse (IS) between T cells and hRSV-infected DCs in vitro,
which is essential for productive T cell activation (49, 66). This
notion was reinforced by the fact that supernatants from hRSV-
infected DCs enhanced the activation of T cells in the presence
of plate-bound activating anti-CD3 and anti-CD28 antibodies
(66). However, another study suggested that soluble factors
secreted by hRSV-infected DCs were involved in impaired T cell
activation by hRSV-infected DCs (68, 99). It is possible thus that
both, membrane-bound and soluble factors secreted on to the
extracellular media, or at the DC-T cell immunological synapse
negatively modulate the activation of T cells, given that the is
highly susceptible to modulation by factors of both natures (49).

A membrane-bound hRSV factor that has been reported to
mediate negative effects over T cells is the hRSV F fusion protein,
which expressed on the surface of epithelial cells was shown to
inhibit T cell activation in vitro (127). However, the effect of the
hRSV F protein has not been assessed in the context of DC-T
cell interactions. Still, a study that assessed the role of the hRSV
N nucleoprotein in mediating detrimental effects over the DC-T
cell interaction found that this protein was present on the surface
of hRSV-infected DCs and could directly mediate the inhibition
of T cell activation (128). An interesting finding in this study was
the fact that the hRSVN protein was shown to be able to interfere
with the establishment of productive immunological synapses
between T cells and cognate ligand mounted on lipid bilayers
(128). Importantly, the identification of the hRSV N protein on
the surface of infected cells had not been previously reported for
this virus. Another hRSV factor known to hamper the capacity
of DCs to activate T cells is NS1, which has been found to
negatively modulate the capacity of human DCs to activate both,
CD4+ and CD8+ T cells (129). Additionally, NS1 has also been
reported to favor the differentiation of DCs toward phenotypes
that promote the activation of CD4+ T cells that secrete IL-4, yet
by a mechanism that is independent of its capacity to modulate
IFN-I signaling (129).

Again, depending on whether DCs inoculated with hRSV
originate from neonate or adult animals, a study by Thornburg
et al. reported differences in the capacity of such hRSV-infected
DCs to activate autologous T cells, with DCs from adult mice
eliciting IFN-γ, TNF-α, and IL-12 secretion in co-cultures and
neonate DCs (from blood cords) eliciting IL-1β, IL-4, IL-6, and
IL-17 release (102). Furthermore, neonatal CD103+ DCs have
been shown to promote the proliferation of T cells differently,
as compared to adult CD103+ DCs, namely by eliciting the
expansion of T cells against distinct antigens, defining different
hRSV antigenic hierarchal profiles. The differences observed with
DCs from animals of different ages in this and other studies,
suggest that neonatal DCs overall display limited T cell co-
stimulatory properties when compared to adult DCs, which could
eventually relate to infants being more susceptible to severe
disease than adults after hRSV infection (119). Another report
found two phenotypically and functionally distinct populations
of CD103+ DCs in the lungs of neonatal mice following hRSV
infection, and that those that were CD103lo were functionally

limited at activating hRSV-specific T cells, while those that
were CD103hi were capable of potently activating T cells (130).
Whether such differences mirror the adaptive immune responses
to hRSV in vivo in both adults and infant humans, remains to
be determined.

Although several studies have reported impaired T cell
activation by hRSV-infected DCs in vitro, in vivo studies
reveal that hRSV-specific T cells are expanded in the organism
after infection, yet they generally display pro-inflammatory
phenotypes that likely contribute, or are the root of exacerbated
lung damage during hRSV infection (131–133). Thus, reduced
activation of T cells in vitro seems to translate in vivo as the
activation of virus-specific T cells with detrimental phenotypes
that respond to an hRSV lung infection. Yet, a role for hRSV-
infected DCs has also been described in regulating or controlling
pathogenic T cells during infection. Analyses of human and
murine lung DCs report that these cells express PD-L1 and
that this molecule is critical for suppressing the activity of
inflammatory T cells (Figure 3). This finding suggests a vital role
for the PD-L1/PD-1 axis in DC-T cell interactions for limiting the
inflammatory response of T cells to hRSV (134). Nevertheless,
the results of this study contrast with those of another report
that found that hRSV inhibited the capacity of pDCs to produce
a regulatory T cell response to inhaled antigens, eliciting an
alteration in their immunotolerogenic potential (135).

Because of the key role of DCs in mounting and regulating
immune responses to viruses such as hRSV, novel vaccines are
needed to strategically seek and target these cells in a specific
manner. A recently described approach that directly involves
DCs consists on a DNA vaccine encoding the ectodomain of
the hRSV F protein fused to a single-chain variable fragment F
(scFv) that directly targets the viral antigen to DEC205 on the DC
surface. This viral protein is then phagocytosis by DCs through
this receptor and processed for antigen presentation to T cells.
Interestingly, this strategy has been reported to elicit high levels
of anti-hRSV antibodies with neutralizing capacity and induce
F-specific CD8+ T cells that elicit a Th1 response in mice (136).

CONCLUDING REMARKS

Over the last years, new studies have revealed novel features of
the DC-hRSV interaction, providing unanticipated outcomes in
DCs after infection with this virus and helping identify different
host and viral factors that participate in these processes. Because
DCs play pivotal roles in initiating and regulating antigen-
specific immune responses to infections, it seems relevant that
particular focus should be given to these cells both, before and
after interacting with hRSV. Indeed, these cells are needed for
establishing an effective antiviral immune response in the lungs
to promote viral clearance, while altogether avoid exacerbated
inflammation of the airways. The fact that hRSV can repeatedly
reinfect the host without the need of varying its antigens calls for
special attention to the steps that determine the founding events
of the host antiviral response, in such a way to train the immune
system to withstand the negative immune-modulatory properties
of this virus or counteract its potent Th-skewing effects. In both
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cases, a protective immune response elicited against hRSV, such
as one that could be induced by a vaccine, should be strong
enough to bear subsequent viral reinfections that will push to
revert this outcome and elicit scenarios that are favorable for the
virus. Overall, significant efforts should be invested in identifying
viral and host factors that hamper hRSV-infected DCs, or
bystander DCs in the infected tissue from promoting effective
antiviral immune responses against this virus. Importantly,
promoting positive hRSV-DC interactions during re-infections,
after virus-specific immune components have already been
polarized toward detrimental phenotypes by hRSV may be
more complicated than promoting an effective immune response
before primary infection. Indeed, shifting a pre-existing antigen-
specific immune profile has proven somewhat challenging in
the context of other diseases, such as cancer and autoimmunity,
although the antigens involved in these pathologies are seldom
known, which is not the case for hRSV.

Finally, some questions that remain open regarding the roles
of DCs in hRSV infection are: How can we enable hRSV-infected
DCs to elicit effective antiviral immune responses during primary
infection and re-infections against this virus? Are there hRSV
factors, or hRSV-induced factors elicited during reinfections that
revert, through their effects over DCs, otherwise effective primary

anti-hRSV immune responses? Do the different circulating hRSV

A and B genotypes affect the outcomes of hRSV-infected DCs
equally? What are the roles of hRSV-infected and non-infected
DCs in the lungs of hRSV-infected individuals? Do the findings
reported in the mouse model hold in humans? Hopefully,
answers to these and many other questions regarding DCs and
their interaction with hRSV will provide novel insights that
will help limit the burden and mortality associated with the
epidemiology of this important respiratory virus.
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