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Abstract
Mexico City has one of the highest incidences of acute lymphoblastic leukemia (ALL) globally, with patients showing 
low survival, and high relapse rates. To gain more insight into the molecular features of B-ALL in Mexican children, we 
isolated CD10 + /CD19 + precursor B lymphoblasts from four bone marrow and nine peripheral blood samples of B-ALL 
patients using a fluorescence-activated cell sorting protocol. The global gene expression profile (BM vs PB) revealed 136 
differentially expressed genes; 62 were upregulated (45.6%) and 74 were downregulated (54.4%). Pearson’s correlation 
coefficient was calculated to determine the similarity between pre-B lymphoblast populations. We selected 26 highly 
significant genes and validated 21 by RT-qPCR (CNN3, STON2, CALN1, RUNX2, GADD45A, CDC45, CDC20, PLK1, AIDA, HCK, 
LY86, GPR65, PIK3CG, LILRB2, IL7R, TCL1A, DOCK1, HIST1H3G, PTPN14, CD72, and NT5E). The gene set enrichment analysis 
of the total expression matrix and the ingenuity pathway analysis of the 136 differentially expressed genes showed that 
the cell cycle was altered in the bone marrow with four overexpressed genes (PLK1, CDC20, CDC45, and GADD45A) and 
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a low expression of IL7R and PIK3CG, which are involved in B cell differentiation. A comparative bioinformatics analysis 
of 15 bone marrow and 10 peripheral blood samples from Hispanic B-ALL patients collected by the TARGET program, 
corroborated the genes observed, except for PIK3CG. We conclude the Mexican and the Hispanic B-ALL patients studied 
present common driver alterations and histotype-specific mutations that could facilitate risk stratification and diagnostic 
accuracy and serve as potential therapeutic targets.

Keywords ARACNE · FACS · TARGET · Pediatric precursor B-ALL · PIK3CG · SMIM10LB2

1 Introduction

Leukemia is the most common childhood malignancy globally. The treatment outcome of acute lymphoblastic leuke-
mia (ALL) has improved steadily over the last 50 years [1]. In developed regions of the world, the 5-year survival is > 90% 
and the cure rate is 85%. However, in developing countries such as Mexico, Jiménez-Hernández et al. [2] observed a 
low survival rate (64%) and a relapse rate of 26.2%. Additionally, the Global Cancer Observatory (GLOBOCAN 2020) [3] 
reports that Mexico has high age-standardized incidence rates per sex (6.0 for males and 4.9 for females per 100,000). 
Furthermore, Mexico City has one of the highest ALL incidences in the world (5.76 per 100,000), similar to that of Hispan-
ics living in the USA [4]. Therefore, in addition to the classification of risk in new cases diagnosed with ALL using clinical, 
cytogenetic, immunological, and molecular variables, several studies on the molecular oncology of ALL and the mestizo 
genetic diversity in Mexico have been conducted to determine the complex and heterogeneous clinical and biological 
features of this hematological malignancy in Mexican children [5], who also have a poor response to conventional therapy. 
Thus, in order to gain further insight into the molecular features of pediatric B-ALL in this group and considering that 
most of the gene expression profiles of B-ALL have been conducted using mononuclear cells (lymphocytes B and T and 
monocytes) from patient samples, we performed a global gene expression analysis of a sample of flow-sorted CD10 + /
CD19 + precursor B (pre-B) lymphoblasts from peripheral blood (PB) or bone marrow (BM) samples of B-ALL patients, to 
prevent contamination with other mononuclear or non-leukemic cells. As Staal et al. have reported, the choice of tech-
nique and purification influence the identification of potential diagnostic markers [6] so this strategy allowed us to obtain 
more accurate data from both leukemic pre-B lymphoblast populations on the context of the disease. Bioinformatics 
tools were used to determine the cellular processes and signaling pathways involved in the differentially expressed genes 
(DEGs) of these leukemic cells. Additionally, in order to compare and corroborate our results and taking into account 
that Mexican children have 85% of Hispanic descent, a comparative bioinformatics analysis was performed using data 
from BM and PB samples of Hispanic B-ALL patients collected from the TARGET public database. The results allowed us 
to draw sound conclusions about the similarities and differences between both groups of patients and underlies once 
more the importance of the PI3K/Akt/mTOR pathway in B-ALL and points out specific cell cycle proteins as therapeutic 
targets for this pediatric malignancy.

2  Materials and methods

2.1  Patient samples

This study included 11 pediatric patients (< 16 years old) newly diagnosed with pre-B ALL by examining the morphol-
ogy of and immunophenotyping cells from PB samples or BM aspirates. The samples were stratified into two sub-
groups: high risk (0–12 months or > 10 years old; leucocyte count > 50 ×  109/L) or standard risk (1–10 years old; leukocyte 
count < 50 ×  109/L). As it is unethical to perform bone marrow aspiration in a healthy child, it was not possible to include 
a normal (or healthy) bone marrow control. Thus, in this study, bone marrow was compared to peripheral blood (BM vs. 
PB). Additionally, the detection of chromosomal rearrangements ETV6-RUNX1, E2A-PBX1, BCR/ABL, and MLL4/AF4 was 
conducted for each patient according to Bekker et al. [7]. Nine PB samples and four BM aspirates were collected from the 
patients before remission induction therapy. The study was approved by the institutional research and ethics commit-
tees (R-2011–785-064) of the Instituto Mexicano del Seguro Social (IMSS-Mexico). Written, signed, and dated informed 
consent was obtained from the parents/guardians of each patient in accordance with the Declaration of Helsinki.
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2.2  Extraction and purification of CD10 + /CD19 + pre‑B lymphoblasts

Three to five milliliters of PB or BM from the patients were collected using Vacutainer tubes containing EDTA (BD, Franklin 
Lakes, NJ, USA). Immediately after, the samples were separated using Histopaque-1077 (Sigma Aldrich, St. Louis, MO, 
USA) and mononuclear cells were carefully collected according to the manufacturer’s instructions.

2.3  Immunophenotyping

The extracted mononuclear cells resuspended in isotonic phosphate-buffered saline solution (PBS) were stained with 
Pacific Blue (PB)-conjugated anti-CD45 (HI30), phycoerythrin (PE)-conjugated anti-CD34 (561), fluorescein isothiocyanate 
(FITC)-conjugated anti-CD10 (HI10a), and allophycocyanin (APC)-conjugated anti-CD19 (HIB19) (Biolegend, San Diego, 
CA, USA). They were incubated for 30 min at 4 °C and then analyzed and purified by fluorescence-activated cell sort-
ing (FACS) using a FACSAria II flow cytometer (BD Biosciences, San Jose, CA, USA). Lymphocytes were identified by side 
scatter and forward scatter properties, and  CD45+,  CD10+,  CD34+, and  CD19+ were selected to finally obtain CD10 + /
CD19 + pre-B lymphoblasts. The purity of all samples was 90–95%, and they were centrifuged at 5000 rpm for 3 min and 
washed with PBS before RNA isolation.

2.4  RNA isolation

Total RNA was extracted using TRIzol reagent and resuspended in RNase-free water (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s instructions. Samples with an A260/280 ratio ≥ 1.8 were selected and stored at − 70 °C 
until use.

2.5  Microarray Analysis

RNA integrity was evaluated using an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). Only sam-
ples with an RNA integrity number (RIN) > 7.5 were included. HuGene-1_0-st-v1 arrays were used to compare the gene 
expression (BM samples vs. PB samples) of flow-sorted CD10 + /CD19 + pre-B lymphoblasts. Microarray analysis was 
conducted for each BM and PB sample according to the manufacturer’s protocol (Affymetrix Inc., Santa Clara, CA, USA).

2.6  Bioinformatics analysis

Microarray data (.cel files) were analyzed with Transcriptome Analysis Console (TAC 4.0) software from Affimetrix (Fold 
Change ≥ 1.7 or ≤ -1.7, p-value ≤ 0.05) and Limma protocol and default parameters. DEG data were analyzed using Ingenu-
ity Pathway Analysis (IPA, 3.0) (QIAGEN Inc., https:// www. qiage nbioi nform atics. com/ produ cts/ ingen uity- pathw ay- analy 
sis). Additionally, the total expression matrix from TAC was used to perform a gene set enrichment analysis (GSEA) with 
the Broad Institute free online tools (http:// softw are. broad insti tute. org/ gsea/ index. jsp) employing gene-set as permuta-
tion type and default parameters. DEG data were used to create a heatmap with the online tool HeatMapper using the 
clustering method centroid linkage and distance measurement with Pearson’s correlation coefficient [8].

2.7  Algorithm for the reconstruction of accurate cellular networks (ARACNE) analysis

An MS Excel table was prepared by summarizing all data including calculated Log2 fold-change ratios (BM samples vs. PB 
samples) for each gene and normalized fluorescence data. The normalized fluorescence data per sample were processed 
by ARACNE; the analysis consisted of calculating the mutual information (MI) between pairs of genes to identify possible 
interactions [9]. The ARACNE plugin available for Cytoscape v3.1.1 was used [10]. Network calculation was performed 
using the Aracne Complete Mode, with the variable bandwidth mutual information algorithm, data processing inequality 
(DPI) tolerance of 0, and six mutual information steps. Different MI threshold values were tested, from 0.6 to 0.9.

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
http://software.broadinstitute.org/gsea/index.jsp
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2.8  Real time analysis

One hundred and fifty nanograms of total RNA from each PB and BM sample were reverse transcribed in a 20 µL reac-
tion following the manufacturer’s specifications (Invitrogen, Carlsbad, CA, USA). The relative expression of 26 DEGs was 
performed by real-time quantitative PCR (RT-qPCR) using a 7300 Real Time PCR System and 96-well optical reaction 
plates (Applied Biosystems, CA, USA)] and the oligonucleotide primers of AIDA, CALN1, CDC20, CDC45, CNN3, GADD45A, 
GPR65, HCK, IL7R, LILRB2, LY86, PIK3CG, PLK1, RUNX2, STON2, TCL1A, CD72, DOCK1, HIST1H3G, NT5E, PTPN14, CCNB2, CD86, 
HDAC9, HIST1H2B1, and HIST1H3F (Prime Time® IDT, San Diego, CA, USA). The amplification of each template was per-
formed in triplicate in one PCR run. The data were analyzed using the Livak method: Amount of target =  2−ΔΔCT. The 
quantification of β2-microglobulin mRNA was performed as an endogenous control.

2.9  Comparative bioinformatics analysis of Hispanic B‑ALL patient samples from the public Therapeutically 
Applicable Research to Generate Effective Treatments database (TARGET)

To corroborate the experimental results of this expression profiling, a second bioinformatics analysis was performed using 
data from a public database. Using the cBio-Portal platform [11–13], we downloaded sequence data (RNAseq-FPKMs) 
from pediatric patients with B-ALL collected as part of the TARGET program of the National Cancer Institute (NIH) Office 
of Cancer Genomics (OCG) [14, 15]. The data were selected according to the following inclusion criteria: patients under 
16 years old, Hispanic race, cell of origin: B precursor (pre-B), collected from either BM or PB at diagnosis, and before 
remission induction therapy; only a total of 25 samples met the inclusion criteria (15 BMs and 10 PBs). The data were 
compared (BM samples vs. PB samples) through a differential expression analysis (DEA) using the IDEAMEX. iDEP.92 tools 
and heatmaps, enrichment analysis, and signaling pathway analysis were performed using the iDEP.92, ShinyGO v0.66, 
Pathview, and GSEA tools. The significance value was p ≤ 0.05; the rest of the values were used by default. The KEGG and 
Gene Ontology (GO) databases were used for all analyses [16–20].

3  Results

A FACS protocol was implemented to purify CD10 + /CD19 + pre-B lymphoblasts from the BM or PB of pediatric pre-B 
ALL patients. Strikingly, total RNA concentrations from less than 4 ×  106 CD10 + /CD19 + pre-B lymphoblasts could not 
be detected using the NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA) or by the Bioanalyzer 
to evaluate RNA integrity. Consequently, only the BM and PB samples with at least 4 ×  106 or more CD10 + / CD19 + pre-B 
lymphoblasts purified by FACS were selected for total RNA isolation for their high concentrations, purity, and integrity 
for the global gene expression analysis and validation of significant genes by RT-qPCR. Therefore, after multiple assays, 
the final sample size was 13.

Global expression profiling of CD10 + /CD19 + pre-B lymphoblasts sorted by FACS (Fig. 1) from nine PB and four BM 
samples from 11 patients newly diagnosed with pre-B ALL (Table 1) was performed using the Affymetrix HuGene-1_0-st-
v1 chip. The hierarchical clustering analysis of data from all patients revealed 136 DEGs; 62 were upregulated (45.6%) and 
74 were downregulated (54.4%). Pearson’s correlation coefficient was calculated to determine the association between 
the PB and BM samples and among the DEGs. The resulting heatmap, with PB samples on the left and BM samples on 
the right, showed differences between both CD10 + /CD19 + pre-B lymphoblast populations (Fig. 2). Some of the upregu-
lated genes (upper half of the image) were involved in cell cycle and chromatin remodeling and were expressed in BM 
(red), but not in PB (blue) CD10 + /CD19 + pre-B lymphoblasts; in contrast, the downregulated genes (lower half of the 
image), some of which were involved in B cell differentiation, were not expressed in BM (blue) CD10 + /CD19 + pre-B 
lymphoblasts. Namely, BM CD10 + /CD19 + pre-B lymphoblasts proliferated and did not differentiate and PB CD10 + /
CD19 + pre-B lymphoblasts did not proliferate outside as they did inside the hematopoietic niche. In line with this, and 
as a consequence of the methodological procedure that required high RNA concentrations that could be detected 
by the instruments, all BM samples showed high blast percentages (95–100%) and four PB samples (IDs 1, 4, 5, and 9) 
showed very high WBCs (> 50 ×  109/L), which corresponded to a high proliferation in the BM and subsequent release into 
the bloodstream. Notably, the ETV6-RUNX1 chromosomal rearrangement was detected in only one female patient (ID 
12) who relapsed and eventually died. The rest of the samples did not show translocations, but a female patient (ID 1) 
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relapsed and died. Interestingly, a male patient (ID 4) with hyperleukocytosis (WBC: 529  109/L) did not relapse and has 
been monitored on a regular basis. The GSEA and IPA results (p-value ≤ 0.05; SF 1, SF 2 and SF 3) made it possible to fur-
ther elucidate the biological cell functions and/or pathways involved and allowed the selection of the 26 top significant 
genes to be validated by RT-qPCR. We obtained similar results in the expression levels of 21 genes when microarray data 
were compared to those of RT-qPCR (Table 2; Fig. 3). In agreement with Knaack et al. [21], who performed a pan-cancer 
modular regulatory network analysis of six human cancers and concluded that they share a common regulatory network, 
we found that the validated DEGs were involved in the cell cycle (CDC20, PLK1, GADD45A, and CDC45), immune response 
(TCL1A, GPR65, LILRB2, LY86, CD72, and NT5E), chromatin remodeling (HIST1H3G), and vesicle trafficking (STON2 and CNN3) 

Fig. 1  Immunophenotyp-
ing. FACS scatter plots of 
peripheral blood (PB) or bone 
marrow (BM) white phase 
cells from patients diagnosed 
with B-ALL stained with 
CD45-PB, CD34-PE, CD10-FITC, 
and CD19-APC antibodies. A 
Pre-sort scatter plot showing 
CD45 as an anchor antibody 
and CD34 for leukocyte gat-
ing. B Post-sort scatter plot 
showing CD10 + /CD19 + pre-B 
lymphoblasts



Vol:.(1234567890)

Research Discover Oncology (2022) 13:28 | https://doi.org/10.1007/s12672-022-00480-7

1 3

Ta
bl

e 
1 

 D
at

a 
an

d 
cl

in
ic

al
 v

ar
ia

bl
es

 o
f p

at
ie

nt
s 

ne
w

ly
 d

ia
gn

os
ed

 w
ith

 B
-A

LL
 in

cl
ud

ed
 in

 th
is

 s
tu

dy

B-
AL

L 
B-

Ac
ut

e 
Ly

m
ph

ob
la

st
ic

 L
eu

ke
m

ia
, D

x 
D

ia
gn

os
is

, W
BC

 W
hi

te
 B

lo
od

 C
ou

nt
, N

CI
 N

at
io

na
l C

an
ce

r I
ns

tit
ut

e,
 P

B 
pe

rip
he

ra
l b

lo
od

, B
M

 b
on

e 
m

ar
ro

w
, N

D
 n

ot
 d

et
ec

te
d

*  Th
is

 p
at

ie
nt

 p
ro

vi
de

d 
BM

 a
nd

 P
B 

sa
m

pl
es

**
 Th

is
 p

at
ie

nt
 p

ro
vi

de
d 

BM
 a

nd
 P

B 
sa

m
pl

es

Sa
m

pl
e 

ID
Si

te
Pa

tie
nt

 ID
G

en
de

r
Ag

e 
at

 D
x 

(m
on

th
s)

W
BC

 a
t D

x 
(×

 1
09

)/
 L

N
CI

 ri
sk

 g
ro

up
Ch

ro
m

os
om

al
 

re
ar

ra
ng

em
en

t 
at

 D
x

Ch
ro

m
os

om
al

 
re

ar
ra

ng
em

en
t 

at
 D

x

Ch
ro

m
os

om
al

 
re

ar
ra

ng
em

en
t 

at
 D

x

Ch
ro

m
os

om
al

 
re

ar
ra

ng
em

en
t 

at
 D

x

Ea
rly

 re
la

ps
e

D
ea

th

ET
V6

-R
U

N
X1

E2
A-

PB
X1

BC
R/

AB
L

M
LL

4/
AF

4

1
PB

1
F

12
3

92
.3

H
R

N
D

N
D

N
D

N
D

YE
S

YE
S

2
PB

2
M

60
30

SR
N

D
N

D
N

D
N

D
N

O
N

O
3

PB
3

M
60

40
SR

N
D

N
D

N
D

N
D

N
O

N
O

4
PB

4
M

47
52

9
H

R
N

D
N

D
N

D
N

D
N

O
N

O
5

PB
5

M
84

53
.1

H
R

N
D

N
D

N
D

N
D

N
O

N
O

6
PB

6*
M

18
7

10
.2

4
H

R
N

D
N

D
N

D
N

D
N

O
N

O
7

PB
7*

*
M

64
19

.2
8

SR
N

D
N

D
N

D
N

D
N

O
N

O
8

PB
8

M
48

35
.1

7
SR

N
D

N
D

N
D

N
D

N
O

N
O

9
PB

9
M

13
2

12
3.

4
H

R
N

D
N

D
N

D
N

D
N

O
N

O

BL
A

ST
 a

t 
D

x 
(%

)

10
BM

6*
M

18
7

98
H

R
N

D
N

D
N

D
N

D
N

O
N

O
11

BM
10

F
15

6
99

H
R

N
D

N
D

N
D

N
D

N
O

N
O

12
BM

11
F

16
8

10
0

H
R

D
ET

EC
TE

D
N

D
N

D
N

D
YE

S
YE

S
13

BM
7*

*
M

64
95

SR
N

D
N

D
N

D
N

D
N

O
N

O



Vol.:(0123456789)

Discover Oncology (2022) 13:28 | https://doi.org/10.1007/s12672-022-00480-7 Research

1 3

Fig. 2  Global gene expres-
sion microarray. Heatmap 
of CD10 + /CD19 + pre-B 
lymphoblasts from peripheral 
blood (PB; n = 9) and bone 
marrow (BM; n = 4) samples 
of patients newly diagnosed 
with B-ALL. Data of the 136 
differentially expressed genes 
(DEG): 62 upregulated (red) 
and 74 downregulated genes 
(blue) were used to create a 
heatmap with the HeatMap-
per tool using the clustering 
method centroid linkage and 
distance measurement with 
Pearson’s correlation coef-
ficient
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and were either part of or encoded for important kinases upstream and downstream major signaling pathways for B cell 
differentiation (RUNX2, PIK3CG, IL7R, and HCK). Furthermore, it is noteworthy that most of these genes were found to be 
mainly associated with the PI3K/Akt/mTOR, MAPK, and JAK/STAT signaling pathways. On the other hand, the ARACNE 
analysis (MI threshold values ranging from 0.6 to 0.9) inferred a network with AIDA (SF 4), one of the validated genes, 

Table 2  Differentially expressed genes (DEG)

Top significant upregulated and downregulated genes in flow-sorted CD10 + /CD19 + pre-B lymphoblasts from PB and BM samples of B-ALL 
patients and validated by RT-qPCR

BM Bone marrow, PB Peripheral blood, B-ALL B-Acute lymphoblastic leukemia

Gene symbol Description Microarray Fold 
change (> 1.7 
or < 1.7)

p ≤ 0.05 RT-qPCR 
Fold 
change

p ≤ 0.05

CNN3 Calponin 3, acidic 4.8 0.0248 5.79 0.0354
STON2 Stonin 2 3.72 0.0275 5.85 0.0015
CALN1 Calneuron 1 3.43 0.0349 6.57 0.0074
RUNX2 Runt-related transcription factor 2 2.65 0.048 4.16 0.0499
DOCK1 Dedicator of Cytokinesis 1 2.41 0.03 3.9 0.044
GADD45A Growth arrest and DNA-damage-inducible, alpha 2.36 0.0361 10.17 0.0015
CDC45 Cell Division Cycle 45 2.23 0.05 3.6 0.0284
HIST1H3G Histone cluster 1 H3 Family Member G 2.1 0.05 1.27 0.001
CDC20 Cell division cycle 20 1.98 0.0048 2.53 0.0283
PLK1 Polo-like kinase 1 1.9 0.0017 2.35 0.032
PTPN14 ProteinTyrosine Phosphatase, Non-Receptor Type 14 1.94 0.024 24.17 0.036
AIDA Axin interactor, dorsalization associated − 2 0.0093 − 2.49 0.0286
HCK HCK proto-oncogene, Src family tyrosine kinase − 2.06 0.0171 − 2.46 0.0444
LY86 Lymphocyte antigen 86 − 2.28 0.031 − 4.22 0.0333
CD72 Cluster of Differentiation 72 − 2.42 0.012 − 2.48 0.0452
GPR65 G protein-coupled receptor 65 − 2.95 0.044 − 2.37 0.001
PIK3CG Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma − 3.16 0.0284 − 2.44 0.0378
LILRB2 Leukocyte immunoglobulin-like receptor, subfamily B, member 2 − 3.41 0.0157 − 2.47 0.024
IL7R Interleukin 7 Receptor − 3.95 0.05 − 2.86 0.0284
NT5E 5’-Nucleotidase Ecto − 5.13 0.031 − 2.58 0.0303
TCL1A T-cell leukemia/lymphoma 1A − 9.22 0.0429 − 8.9 0.0284

Fig. 3  Validation of microarray data by RTqPCR. Comparison of the expression levels of selected genes determined by microarray analysis 
and real time PCR. The relative expression was determined by the  2−ΔΔCTmethod and the average of the values or peripheral blood (PB) sam-
ples was used as a calibrator. The RT-qPCR data are expressed as the mean/SD of three independent analyses. Black bars represent microar-
ray values and gray bars represent RT-qPCR values
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and three more genes: STAP2, FGF19, and SMIM10L2B, a long non-coding RNA (lncRNA). AIDA showed similar results at MI 
threshold values 0.7 and 0.8. Additionally, the ARACNE analysis (MI threshold value 0.7) inferred associations for two of 
the cell cycle genes observed in this study; PLK1 was associated with OR11H7 (SF 5), an olfactory receptor, and CDC45 was 
associated with KCNQ1DN (SF 6), which is also affiliated with the lncRNA class. Figure 4 summarizes the most important 
observations of the global gene expression profiling.

The comparative bioinformatics analysis of 25 samples (15 BM vs. 10 PB) of Hispanic pediatric patients diagnosed 
with B-ALL collected in the TARGET database, corroborated the findings of our microarray expression profile of pre-B 
CD10 + /CD19 + lymphoblasts of Mexican patients. The IDEAMEX tool was used for the DEA (BM vs PB) of RNA seq data 
(RNAseq-FPKMs), and the heatmap showed 4,316 upregulated and 3,359 downregulated genes (Fig. 5A), the signaling 
pathway cluster indicated that the former were mainly in the cell cycle (9e–12) and the latter in the PI3K-Akt pathway 
(7e–04) (Fig. 5B). The iDEP tool generated a heatmap with four gene clusters (Fig. 6A) and a network cluster that showed 
the cell cycle (2e–04) in cluster I, the hematopoietic cell lineage (9e–13) in cluster II, cancer pathways (3e–04) in cluster 

Fig. 4  Gene signatures. A Upregulated cell cycle genes (PLK1, CDC20, GADD45A, and CDC45) that increase cell proliferation in flow-sorted 
 CD10+/CD19+ pre-B lymphoblasts from BM, but not from PB samples. B Downregulated genes* (IL7R and PIK3CG) that inhibit differentiation 
or development in flow-sorted  CD10+/CD19+ pre-B lymphoblasts from BM samples. C ARACNE inferred network for AIDA, a downregulated 
gene in this study. It is noteworthy that SMIM10L2B is an lncRNA not reported in pre B-ALL before. * In blue
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III, and the Ras 8 (6e–03), MAPK (3e–04), and PI3K-Akt (3e–03) signaling pathways in cluster IV (Fig. 6B). Figure 7 shows 
the correlation heatmap of the RNA-seq data of the BM vs. PB samples. Finally, using the iDEP, ShinyGO, Pahtview, and 
GSEA tools, we performed an enrichment and signaling pathway analysis. Figure 8 shows the cell cycle pathway where 
the signature of the upregulated genes, revealed through microarray analysis and validated by RT-qPCR (CDC20, CDC45, 
PLK1, and GADD45A), showed that these genes were overexpressed in the TARGET samples. Figure 9 shows the pathway 
network where the Ras and PI3K-Akt pathways were related to genes IL7R and PIK3CG from our gene expression profile 
that were downregulated.

4  DISCUSSION

It is known that in ALL, B cell progenitors stop differentiating, remain immature lymphoblasts in the bone marrow, and 
appear in lymph nodes and the spleen after proliferation. Indeed, cell proliferation and the inhibition of apoptosis are 
classic events in leukaemogenesis [22]. In agreement with the GSEA results that showed an enrichment of cell cycle 
genes (SF 1), PLK1, CDC20, GADD45A, and CDC45 ended up being overexpressed in pre-B lymphoblasts from the BM of 
the patients studied (Figs. 2 and 4). PLK1 has central roles in the transition from G2 to M-phase and is considered a proto-
oncogene because it activates the PI3K/Akt/mTOR signaling pathway in ALL and other hematological malignancies [23]. 
Its expression in leukemia cells is regulated through a PI3K- and p38-dependent pathway [24]. According to the PLK1-
mediated cell cycle advance, it is possible that the overexpression of this gene is favoring proliferation and pre-B cell 
malignant transformation. Surprisingly, our ARACNE analysis inferred an association between PLK1 and OR11H7 (SF 5), 
an olfactory receptor expressed in the HK-2 human proximal tubule cell line that is probably involved in the regulation of 
renal physiology [25]. We also observed an increase in the expression of CDC20, which activates the anaphase-promoting 
complex/cyclosome (APC/C) in the cell cycle. A high level of CDC20 expression is significantly correlated with decreased 
survival in most cases of human solid tumors [26]. Herein, we reported an upregulation of CDC20 in pre-B ALL, which may 
inhibit mitotic arrest and promote premature anaphase by deregulating the APC activation and resulting in genomic 

Fig. 5  Differential expression analysis. A The IDEAMEX tool was used for the DEA (BM vs PB) of RNA seq data from samples of Hispanic B-ALL 
patients collected in the TARGET database. The resulting heatmap shows 4,316 upregulated (red) and 3,359 downregulated (blue) genes. B 
Signaling pathway cluster showing upregulated genes in the cell cycle and downregulated genes in the PI3K-Akt pathways
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instability. Aneuploidy impairs proliferation in hematopoietic stem cells; among the genes involved in this process are 
those regulating the mitotic checkpoint, DNA damage response, and recombination, as might be the case in the pre-B 
ALL patients studied here. Likewise, genomic alterations may disrupt many pathways at once; for instance, Simonetti 
et al. [27] observed high levels of PLK1, an overexpression of CDC20, and, along with RAD50, a three gene signature for 
AML, which indicates a multistep process involving different cell cycle phases. This experimental evidence agrees with 
our results for pre-B ALL, as the mitotic regulators PLK1 and CDC20 were overexpressed in pre-B lymphoblasts from BM, 
suggesting that such specific genomic alterations in the cell cycle are also present in ALL and result in abnormal prolifera-
tion. The third mitotic regulator upregulated in our study was GADD45A, associated in vivo with signaling mediated by 
p38 mitogen-activated protein kinases (MAPKs) [28]. Although GADD45A is one of several growth arrest and pro-apoptotic 

Fig. 6  Enrichment analysis. A Heatmap generated through the iDEP.92 tool showing gene clusters I, II, III and IV. B Network cluster showing 
significant pathways: Cell cycle (cluster I). Hematopoietic cell linage (cluster II). Cancer pathways (cluster III). Ras 8, MAPK, and PI3k-Akt sign-
aling pathways (cluster IV)
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genes, experimental evidence has suggested that it also functions in hematopoietic cell survival and exhibits an anti-
apoptotic role. D´Angelo et al. [29] demonstrated that the in vivo constitutive activation of GADD45A in leukemic blasts 
promotes neoplastic hematopoietic cell survival, which probably occurs via p38 kinase and Bcl-xl. The overexpression 
of GADD45A in BM pre-B lymphoblasts in this study might support cell survival through simultaneous pathways accord-
ing to the cellular context. The fourth mitotic regulator was CDC45, which is required for DNA replication. Vaisvilas et al. 
[30] reported a patient with a de novo 6.6 Mb duplication in a chromosomal region containing the CDC45 gene, which 
resulted in pre-B ALL. They concluded that the overexpression of genes, such as CDC45, in the duplicated region respon-
sible for the cell cycle, might have contributed to the formation of the leukemic clone in the bone marrow. In addition, 
the ARACNE analysis inferred an interaction between CDC45 and KCNQ1DN (SF 6), an lncRNA related to Wilms’ tumor 
or nephroblastoma, the most common pediatric renal cancer affecting children 3–5 years old [31]. Furthermore, it has 
recently been found that KCNQ1DN is notably decreased in renal cell carcinoma (RCC) tissues and cell lines. It represses 
RCC cell growth and cell cycle progression by inhibiting c-Myc expression. KCNQ1DN also inhibits the transcriptional 
activity of the c-Myc promoter [32].

As with PLK1, CDC20, and GADD45A, CDC45 showed high expression levels in the BM pre-B lymphoblasts in our analy-
sis. Furthermore, our comparative bioinformatics analysis of data from Hispanic B-ALL pediatric patients collected from 

Fig. 7  Correlation heatmap of RNA seq data of the TARGET BM vs. PB samples
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the TARGET database, corroborated the overexpression of PLK1, CDC20, GADD45A, and CDC45 and also agrees with the 
results of Ma et al. [33] who conducted a pan-cancer study of pediatric cancers, including 689 B-ALL patients enrolled in 
the Children’s Oncology Group trials. This was expected because, as these authors found, the cell cycle is one of the 21 
biological pathways disrupted by common driver alterations in pediatric cancers and because the patients in our study 
were indirectly selected for methodological reasons and had high WBCs. Taken together, these results could be useful 
in stratifying and subclassifying patients diagnosed with B-ALL and, as Simonetti et al. suggest for AML, they point out 
the mitotic machinery as a potential therapeutic target.

Our analysis also revealed that among the genes with low expression levels in the BM pre-B lymphoblasts, IL7R 
and PIK3CG (Figs. 2 and 4) could account for the inhibition of B cell differentiation. IL7R signaling activates the JAK/
STAT signaling and PI3K/Akt/mTOR pathways, which are among the histotype-specific driver alterations in leukemias 
[33], and is necessary for the normal development and maintenance of both B and T cells and crucial for leukemo-
genesis; activating gain-of-function mutations in IL7R have been well described in B-ALL. However, in humans, IL7R 
inactivating mutations result in severe T-cell lymphopenia with normal, yet non-functional, numbers of B-cells [34]. 
In addition, the Cancer Cell Line Encyclopedia (CCLE) IL7R mRNA expression (RNAseq) graph shows a low value [35]. 
This is in agreement with our analysis, where IL7R exhibited almost the same low expression level reported by the 
CCLE. Although alternative pathways to activate PI3K/Akt/mTOR exist, an IL7R decrease would clearly impair B cell 
development and the proper function of these pathways. The second most significantly downregulated gene was 
PIK3CG. PI3K signaling regulates numerous biological processes, thus its deregulation results in decreased cell pro-
liferation and increased cell death [36]. Moreover, the pharmaceutical inhibition of the PI3K/AKT pathway leads to 
decreased cell proliferation in pre-B ALL [37]. Nonetheless, PI3K can also be activated by G protein-coupled receptors 
(GPCR) through direct interaction with PIK3CG (catalytic PI3K isoform p110 gamma) dimers and Ras proteins, which 

Fig. 8  Cell cycle showing the signature of upregulated genes revealed through microarray analysis and validated by RT-qPCR (CDC20, 
CDC45, PLK1, and GADD45A) also overexpressed in the TARGET samples of Hispanic B-ALL pediatric patients
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are implicated in various aspects of immune function and regulation. Additionally, PIK3CG is required for early B cell 
development and contributes to its maintenance, proliferation, and transformation [38]. Thus, the low expression 
of PIK3CG and IL7R could partially account for the arrest of the normal development of B cells in BM pre-B lympho-
blasts. On the other hand, it is noteworthy that resistance to anticancer chemotherapy occurs in part because the 
bone marrow environment promotes cell adhesion-mediated drug resistance in leukemia cells and triggers pro-
survival signaling (e.g., the PI3K/AKT pathway) that allows leukemia cells to withstand chemotherapy. If PIK3CG is 
indeed involved in drug resistance in leukemia cells, it is reasonable to hypothesize that the low expression levels 
we observed would not generate chemotherapy resistance. Of all the patients included in this study, only two died, 
while the rest did not have resistant pre-B lymphoblasts and survived. Interestingly, the analysis of Hispanic B-ALL 
patients from the TARGET database corroborated the downregulation of IL7R, which is considered a common driver 
mutation of ALL [33, 39], but not that of PIK3CG. Our results showed that these B-ALL patients expressed low levels of 
PIK3CA, PIK3CB, and PIK3CD, which are Class I PI3Ks, such as PIK3CG, PIK3R1, and PIK3R2. Likewise, Ma et al. observed 
PIK3CA and PIK3R1 as the most frequent mutations in the PI3K and RAS pathways in leukemias. In contrast, Gyurina 
et al. reported the relative expression of PIK3CG in bone marrow pre-B lymphoblasts from ALL and pointed out that 
the PIK3/AKT pathway plays a key regulatory role in BCP-ALL [33, 40].

Fig. 9  Pathway analysis. The DEG from the TARGET (BM vs PB) samples were analyzed through PATHVIEW and an enrichment analyisis was 
done using the KEGG database. The resulting pathway network shows the Ras and PI3k-Akt pathways, related to genes IL7R and PIK3CG 



Vol.:(0123456789)

Discover Oncology (2022) 13:28 | https://doi.org/10.1007/s12672-022-00480-7 Research

1 3

AIDA was also downregulated in the expression profile analyzed in this study. This protein is localized in the cytosol, 
microtubules, and cytokinetic bridge. The C2 domains in AIDA proteins are important to understand the interaction 
between the microtubular and microfilament cytoskeleton and cellular membranes. Calmodulin is a cytoskeletal interac-
tion domain associated with the AIDA-C2 domains. These findings relate AIDA to CALN1, another validated gene in this 
study (Table 2) that possesses C2 domains as AIDA, implicating their possible interaction in the cytoskeleton and vesicle 
trafficking functions in pre-B ALL. Surprisingly, the ARACNE analysis revealed that two of the genes associated with AIDA 
(STAP-2 and FGF19) are involved in the JAK/STAT pathway that regulates cell division, survival, differentiation, and the 
immune system [41]. STAP-2, the hub of the network inferred by ARACNE, is an adaptor protein that modulates STAT3 
and STAT5 transcriptional activity [42]. STAP-2 is expressed in lymphocytes and plays a crucial role in the immune system 
by controlling cytokine signal transduction and modulating both innate and adaptive immune systems [43]. FGF19, the 
second gene found to interact with AIDA, has a high affinity for FGFR4. FGFR are required for the biological activities of 
FGF; the activated FGFR phosphorylate specific tyrosine residues that mediate interaction with the JAK/STAT, PI3K-AKT, 
and RAS-MAPK pathways [44]. Su et al. [45] observed that the levels of FGF-19 in AML patients before chemotherapy were 
significantly higher than those in a control group. Although FGF19 was not among the DEGs of our global expression 
analysis, thus was not validated by RT-qPCR, our ARACNE results revealed that it was involved in pre-B ALL. SMIM10L2B, 
the third gene in the ARACNE network, is a long non-coding RNA (lncRNA). lncRNAs participate in normal B-cell differ-
entiation, but their deregulation is involved in the development of B-cell malignancies, such as ALL. lncRNA expression 
profiling during B-cell development has been performed in several studies that report cell-type specific expression pat-
terns at various stages of B-cell development [46, 47]. The observation of lncRNA SMIM10L2B in this study is surprising, 
because it has not yet been reported in BM tissue or as part of the signature of lncRNAs involved in B-ALL observed in 
recent studies [48]. More research is needed to further understand its role and significance in this blood cancer type.

In conclusion, our global gene expression profiling of FACS-sorted CD10 + /CD19 + pre-B lymphoblasts from BM and 
PB and bioinformatics analysis through TAC, GSEA, and IPA revealed a four-gene signature of mitotic regulators (PLK1, 
CDC20, GADD45A, and CDC45) that drives the proliferation of these leukemic cells and a two-gene signature (IL7R and 
PIK3CG) with low expression that accounts in part for the inhibition of pre-B lymphoblast differentiation in the BM. 
Although the sample size of this study was small, as B-ALL patients with low WBC were not eligible for the FACS protocol 
we implemented, we believe that it provided pure BM and PB CD10 + /CD19 + pre-B lymphoblast samples without other 
contaminating white cells or non-leukemic cells. It is noteworthy that ETV6-RUNX1, a driver alteration of ALL [49] was 
the only chromosomal rearrangement detected, and only one patient eventually died. Bekker et al. [6] determined its 
prevalence (7.4%) in the bone marrow samples of 240 B-ALL patients and suggested that the aggressiveness of ALL in 
Mexican children could be due to the occurrence of this and other major gene rearrangements.

The group of four cell cycle genes observed in our global expression profile was corroborated through a comparative 
analysis of the TARGET database samples. Although this important pathway has many other genes (> 200), which are also 
overexpressed in ALL, this group seems to be important, because three of the genes have also been observed in acute 
myeloid leukemia (AML); herein, we reported their overexpression at different points of the cell cycle in the context of 
pre-B ALL. This suggests that this evidence could be used to stratify and subclassify B-ALL patients with high WBC and, as 
has been suggested in the case of AML, it points out these mitotic machinery proteins as potential therapeutic targets in 
pre-B ALL. Of the two downregulated genes, IL7R was corroborated by our comparative analysis, but PIK3CG was not. The 
low levels of PIK3CG might be a characteristic feature of Mexican pediatric B-ALL patients and underline the importance 
of the PI3K-mTOR pathway as a therapeutic target.

We found similarities and differences between the group studied and other Hispanic patients. The reasons for the 
high incidence, early relapse, and low survival rate of Mexican pediatric B-ALL patients deserve further investigation and 
might be explained not only by molecular oncology features but also by environmental variables.
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