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Ovarian cancer is one of three major malignancies of the female reproduc-

tive system. DNA methylation (MET) is closely related to ovarian cancer

occurrence and development, and as such, elucidation of effective MET

subtype markers may guide individualized treatment and improve ovarian

cancer prognosis. To identify potential markers, we downloaded a total of

571 ovarian cancer MET samples from The Cancer Genome Atlas

(TCGA), and established a Cox proportional hazards model using the

MET spectrum and clinical pathological parameters. A total of 250 prog-

nosis-related MET loci were obtained by Cox regression, and six molecular

subtypes were screened by consensus clustering of CpG loci with a signifi-

cant difference in both univariate and multivariate analyses. There was a

remarkable MET difference between most subtypes. Cluster 2 had the

highest MET level and demonstrated the best prognosis, while Clusters 4

and 5 had MET levels significantly lower than those of the other subtypes

and demonstrated very poor prognosis. All Cluster 5 samples were at a

high grade, while the percentage of stage IV samples in Cluster 4 was

greater than in the other subtypes. We obtained five CpG loci using a

coexpression network: cg27625732, cg00431050, cg22197830, cg03152385,

and cg22809047. Our cluster analysis showed that prognosis in patients

with hypomethylation was significantly worse than in patients with hyper-

methylation. These MET molecular subtypes can be used not only to eval-

uate ovarian cancer prognosis, but also to fully distinguish the tumor stage

and histological grade in patients with ovarian cancer.

Ovarian cancer is a disease of high heterogeneity with

varying molecular phenotypes, pathogeneses, and

prognoses, and its morbidity is ranked number 3

among all malignant gynecological tumors. However,

ovarian cancer is not easily detected at an early stage

since the ovaries are located deep in the pelvis, and

by the time of diagnosis, distant metastases are

observed in 70% of cases. Most patients experience

recurrence within 2 years, and there is a lack of effec-

tive therapies for recurrent ovarian cancer, so ovarian

cancer ranks first in terms of gynecological tumor

mortality. Therefore, precision therapy is urgently

needed.

Epithelial ovarian cancer is the most common

pathological type of ovarian cancer, and it accounts

for 80–95% of ovarian malignancies. There are five

histological subtypes: high-grade serous adenocarci-

noma, endometrioid adenocarcinoma, clear cell adeno-

carcinoma, mucous adenocarcinoma, and low-grade

serous adenocarcinoma [1–5]. In a large, prospective,

phase III clinical study, Kommoss et al. [6] showed

that histological grading is necessary in the prognostic

evaluation of early ovarian cancer, but it has no such

significance in advanced ovarian cancer.

By combining the clinicopathological and molecular

biological characteristics of ovarian cancer, Shih et al.
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classified epithelial ovarian cancer into types I and II.

Type I mainly includes low-grade serous carcinoma and

low-grade endometrioid carcinoma, and most cases

have an early age of onset and good prognosis. Type II

mainly includes high-grade serous carcinoma, high-

grade endometrioid carcinoma, and undifferentiated

carcinoma, and most cases have rapid onset and poor

prognosis. Type I epithelial ovarian cancer is signifi-

cantly correlated with BRAF, KRAS, and PTEN muta-

tions, while type II epithelial ovarian cancer is

associated with p53 mutations and also very frequently

with BRCA1 and BRCA2 mutations. This dualistic the-

ory reflects different biological behaviors and clinical

prognoses of tumors, and such differences are especially

remarkable between low- and high-grade serous ovarian

carcinomas. However, the application of this dualistic

theory in nonserous ovarian carcinoma is limited. For

instance, despite being type I, clear cell carcinoma has

many biological behaviors similar to type II epithelial

ovarian cancer. It is profoundly important to realize

precision molecular typing of ovarian cancer for better

clinical treatment and prognosis monitoring [7].

As a result of continuous human genome sequencing

technology improvements and biomedical analysis

technology advancements, new trends involving tar-

geted molecular therapy and prognosis evaluation

based on the molecular typing of malignant tumors

have emerged. Targeted molecular therapy has been

successfully applied in several tumors, including ER(+)
and HER2(+) breast cancer and epidermal growth fac-

tor receptor (EGFR)-mutated lung cancer [8–11], thus
demonstrating great progress in precision medical

treatment. Using k-means clustering, Tothill et al. [12]

detected the gene expression spectrum of 285 cases of

endometrioid and serous tumors originating from the

ovary, peritoneum, and uterine tube, finally identifying

six molecular subtypes, four of which (high intersti-

tium-reactive, high immunity, hypomethylation trix-re-

active, and interstitial low immunity) are features of

high-grade serous ovarian carcinoma and can be used

to predict prognosis.

Based on gene expression, The Cancer Genome

Atlas (TCGA) and Tothill et al. [13] divided high-

grade serous carcinoma into four subtypes: immunore-

active, differentiated, proliferative, and interstitial.

Moreover, Kommoss et al. [14] showed that in patients

with high-grade serous ovarian carcinoma of the pro-

liferative and interstitial molecular subtypes, beva-

cizumab can improve progression-free survival to

different degrees; however, this study was limited to

the molecular typing of the gene expression spectrum.

In addition to gene changes, epigenetic changes, such

as DNA methylation (MET), play an important role in

cancer occurrence. Epigenetic inheritance refers to

hereditary changes that occur under the precondition of

no DNA sequence changes, including histone modifica-

tion, DNA MET, RNA editing, and gene silencing. Sev-

eral pathways are involved in ovarian cancer occurrence

and growth, including DNA repair, cell apoptosis, cell

cycle regulation, and protooncogene and tumor sup-

pressor gene changes. Epigenetic changes in these path-

ways may play essential roles in ovarian cancer

development, and the detection of MET signals is help-

ful for early diagnosis [15,16]. DNA MET mainly

occurs in CpG islands; CpG expression can be inhibited

by the hypermethylation of tumor suppressor gene pro-

moters and enhanced by the decreased demethylation

probability of protooncogenes. The different regulatory

effects of protooncogenes and tumor suppressor genes

contribute to cancer occurrence [17–20]. The tumor sup-

pressor gene involved in ovarian cancer exists in a

hypermethylated state, and an important molecular

foundation for cancer occurrence is changes in this

gene’s MET level [21–22].
Hu and Zhou [23] built a DNA MET interaction

network for ovarian cancer, breast cancer, and glioma

and confirmed that the number of DNA MET loci

was associated with prognosis; however, no DNA

MET molecular typing of ovarian cancer was per-

formed.

In the present study, univariate and multivariate

Cox proportional hazards models were established by

analyzing Illumina Infinium® HumanMethylation27

(San Diego, CA, USA) data in the TCGA database

and combining the samples’ MET level and clinical

data. Subsequently, six molecular subtypes associated

with ovarian cancer prognosis were screened by con-

sensus clustering of MET spectra with a significant dif-

ference in both models, and patients with ovarian

cancer were classified using these subtypes. Further,

five CpG hypomethylation loci related to poor ovarian

cancer prognosis were obtained by constructing a

weighted gene coexpression network. These loci are of

great significance for the clarification of ovarian cancer

pathogenesis, and they can be used as effective tumor

markers to provide a reference for determining clinical

prognosis and individualized treatment.

Methods

Preprocessing of ovarian cancer expression

datasets and preliminary screening of DNA MET

loci

TCGA [24] GDC API was utilized to download the latest

clinical follow-up information and RNA-Seq data. Illumina
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Infinium® HumanMethylation27 BeadChip (Illumina 27K)

microarray was acquired from UCSC Cancer Browser.

Samples with complete clinical data and methylation spec-

trum data were selected. CpG loci with NA (Not Available)

> 70% in all samples were deleted. The impute-KNN of R

package was used to fill the missing value of methylation

spectrum. The unstable genomic methylation loci were fur-

ther removed, involving CpGs and single nucleotide loci on

sex chromosomes, as well as CpG loci that were not anno-

tated to the gene promoter region [25]. We divided the

datasets into two queues: a training set coupled with a test

set. The standards for the subgroups included the follow-

ing: (a) Samples were assigned to the training set and the

test set randomly; and (b) the data of the two groups

should be similar, including age distribution, clinical stage,

follow-up time, and mortality ratio.

Univariate survival analysis of MET loci in the

training set

The research objective was to determine the molecular

subtypes of ovarian carcinoma as prognostic determi-

nants. Therefore, CpG loci, which had an important

impact on survival, were utilized as a classification fea-

ture. First and foremost, a univariate COX proportional

hazards model was established based on the methylation

level of each CpG loci, age, tumor grade, and stage, cou-

pled with survival data by coxph function of the R pack-

age survival. Subsequently, we introduced the significant

CpG loci obtained from the univariate model into the

multivariate COX proportional hazards model, and took

the significant age and clinical attributes in the univariate

model as covariables. Ultimately, the CpG loci, which

were still significant, were employed as classification fea-

tures [25]. For each CpG island, the multivariate COX

proportional hazards model formula was described below:

hðt,xÞi¼ h0ðtÞexpðβmethymethyiþβageageþβstagestageÞ:
(1)

In the formula, ‘methyi’ is the carrier of the CpG locus

methylation level in the sample. ‘Age’ and ‘stage’ describe

the age and clinical characteristics of the patients, respec-

tively. ‘βmethy’, ‘βage’, and ‘βstage’ are regression coefficients.

The P-values of the COX regression coefficient was

adjusted by Benjamini–Hochberg error detection rate. Vari-

ous comparing processes were carried out.

Screening of molecular subtypes by the

consensus clustering of methylation profile with

a significant difference in both univariate and

multivariate analyses

Consensus ClusterPlus in the R package [26] was utilized

for consensus clustering according to the method

described by Zhang et al. [25] The subgroups of epithelial

ovarian tumors were identified based on the most variable

CpG loci. The algorithm is described as follows. First,

double sampling of some items and features from the

data matrix was conducted, in which each subsample was

divided into several groups (max.) using a user-specific

clustering algorithm (k-means, hierarchical clustering, or

custom algorithms). The paired consensus value (defined

as the proportion of clustering running for the combina-

tion of two items) was calculated and stored in the ki
consensus matrix. Second, the final coherent sheaf cluster-

ing for each ki was completed using the distance of 1-

consensus value and pruned into ki group through cut-

ting, which is known as consensus clustering. The algo-

rithm determined the ‘consensus’ clustering by measuring

the stability of the clustering results applied to random

data subsets from given clustering methods. In each itera-

tion, 80% of the tumors were sampled, and a k-means

algorithm with the Euclidean squared distance measures

was utilized:

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

k¼1

xk�ykð Þ2:
s

(2)

There were k = 2−10 groups, and these results were

compiled for 100 times. The cluster consensus and item

consensus results were obtained with Consensus Clus-

terPlus.R package. The graphical output results included

the heat map of consensus matrix, cumulative distribution

function (CDF) diagram, and Δ region diagram. The crite-

ria of clustering number included relatively high consistency

within the cluster, relatively low coefficient of variation,

and insignificant increase in the area under the CDF curve

(AUC). The CV (%) was calculated based on the formula

below:

CVð%Þ¼ ðSD=MNÞ�100, (3)

where SD is the standard deviation, while MN is the

average value of the samples. We selected category

number as the area under the CDF curve, and there

was no significant change. The consensus clustering

heat map was generated using the R package pheat-

map.

Clustering analysis of the methylation expression

profile and analysis of the clinical characteristics

of screened molecular subtypes

The stable clustering results were selected, and the methyla-

tion profile was analyzed by clustering analysis. The dis-

tance between the MET loci was calculated using the

Euclidean distance. Furthermore, the distribution of vari-

ous molecular subtype samples was analyzed with respect

to prognosis, stage, grade, and age.
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Gene annotation of MET loci

As for the genes corresponding to the gene promoter

regions annotated by the selected CpG loci, the transcrip-

tion factor enrichment analysis was performed by the

online tool g:profiler [27].

WGCNA coexpression analysis of CpG loci

Based on the modification beta value of selected CpG loci,

the coexpressed CpG loci were mined by WGCNA coex-

pression algorithm. The distance between CpG loci was cal-

culated using the Pearson correlation coefficient. The R

package WGCNA was used to construct weighted coexpres-

sion network and select a soft threshold of 4 to filter the

CpG coexpression modules. The results showed that the

coexpression network conformed to the scale-free network.

That is to say, the log(k) of node k presented in the con-

nection is negatively correlated with the log(P(k)) of the

probability of node k, with a correlation coefficient larger

than 0.8. In order to ensure a scale-free network, we chose

β = 4. The next step was to convert the expression matrix

into an adjacency matrix, and then transform the adjacency

matrix into a topological matrix. Based on TOM, we uti-

lized average-linkage hierarchical clustering method to clus-

ter genes. The minimum number of genes in each lncRNA

network module was set at 30 according to the standard

merged dynamic tree cutting. After determining the gene

modules with the dynamic cutting method, we calculated

eigengenes of each module in turn. The modules were clus-

tered, and the adjacent modules were merged into new

modules.

Construction of prognosis models and data

validation of independent test set

Unsupervised clustering analysis was conducted on the

CpG methylation profile selected in the previous step. The

similarity between samples was calculated by using the

Euclidean distance. The samples were then divided into two

groups according to the methylation level of CpG loci. The

prognosis differences between the two groups were further

analyzed. The methylation profile of 286 samples in the test

set was used for validation.

Results

Selection of 250 characteristic MET loci

The Illumina Infinium® HumanMethylation27 Bead-

Chip microarray contained 613 samples, with 571 sam-

ples being screened using MET detection. The missing

data imputation of the MET spectrum was performed

using the Impute function in the R software package,

and 25 154 MET loci were selected following the

exclusion of the unstable genomic MET loci. The 571

samples were assigned to either a training set (n = 285)

or a validation set (n = 286). The clinicopathological

information of the training and validation sets is

shown in Table 1.

The MET loci and survival data were analyzed using

a univariate Cox proportional hazards regression

model with P < 0.05 as the threshold. A total of 967

loci demonstrated a significant difference in prognosis

(Table S1). The 20 loci with the most significant differ-

ences are shown in Table 2.

The prognostic significance of age had a log-rank P-

value of 5.93e-06, while that of stage was 0.0379. The

significant MET loci were selected using a univariate

Cox model followed by multivariate Cox proportional

hazards regression model analysis, with stage and age

as covariates. Finally, 250 significant MET loci were

obtained (Table S2).

Screening six molecular subtypes by consensus

clustering of the MET loci

Consensus clustering of the MET loci with a signifi-

cant difference in both the univariate and multivariate

analyses was performed using the Consensus Clus-

terPlus function in the R software package to screen

the molecular subtypes. The similarity between sam-

ples was calculated using the Euclidean distance, the

clustering was performed with the k-means function in

R, and 80% sampling was conducted 100 times using a

double-sampling method. The optimal cluster number

was determined by cluster dependency factors (CDFs).

Different colors were used in the CDF curve to repre-

sent different cluster numbers (Fig. 1A). The area

under the curve (AUC) was larger at 6 and 7 clusters,

and the clustering effect was better. Further

Table 1. The clinical pathological information in the training set and

validation test.

Validation set Training set

Stage

Stage I 5 11

Stage II 15 12

Stage III 222 215

Stage IV 41 45

Grade

G1 3 3

G2 38 31

G3 238 243

G4 0 1

Age

≤ 60 171 147

> 60 115 138
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observation of the CDF delta area curve (Fig. 1B)

showed that at 6 clusters, the AUC demonstrated

stable clustering results. k = 6 was selected, and 6

molecular subtypes were obtained.

Cluster analysis of the MET expression spectra of

the 6 molecular subtypes

The composition and number of samples in the 6 clus-

ters were evaluated using the consensus matrix. The

color gradient was from white to blue, indicating the

consensus of progression. In the matrix permutation,

the same clusters were made mutually adjacent. Even-

tually, a color-coded heat map was created, with dark

blue blocks arranged on a diagonal white background

(Fig. 2A); the heat map showed that 285 tumor sam-

ples were assigned to these 6 clusters. Furthermore,

cluster analysis was performed on the 250 MET spec-

tra; the distance between the MET loci was calculated

using the Euclidean distance, and a heat map was gen-

erated by the pheatmap function in R using clinico-

pathological stage and histological type as notes

(Fig. 2B).

The pairwise comparison of the various subtypes

was performed using a t-test, and the results revealed

that most MET loci had a low beta value. There was a

significant difference in MET level among most sub-

types; the MET level in Cluster 2 was remarkably

higher than in the other 5 subtypes, while the MET

levels in Clusters 4 and 5 were evidently lower than in

the other subtypes (Table S3).

Analysis of the clinical characteristics of the six

molecular subtypes

We further analyzed the distribution of the six molecu-

lar subtypes with respect to prognosis, stage, grade,

and age (Fig. 3). There was a significant difference in

prognosis among the six subtypes; the prognosis was

best in Cluster 2, worst in Cluster 5, and poor in Clus-

ter 4 (Fig. 3A), indicating that the prognosis of the

hypomethylation subtypes was inferior to that of the

hypermethylation subtypes. The samples in Cluster 5

were all stage III, and the percentage of stage IV

Table 2. The top 20 loci with the most significant difference in

prognosis.

CpGs P-value HR Low 95% CI High 95% CI

cg25781123 1.42E-05 144.7952 15.31263 1369.173

cg01278291 1.68E-05 0.013765 0.001955 0.096903

cg21291896 2.93E-05 1.24E+13 8 962 882 1.72E+19
cg08946332 5.46E-05 0.21193 0.099747 0.450282

cg13804316 8.51E-05 213 979.4 469.6279 97 496 703

cg16179125 9.40E-05 8.255374 2.862145 23.81123

cg13060646 0.000201 4.08882 1.945923 8.591523

cg03750606 0.000282 31.81681 4.916032 205.92

cg15341340 0.000317 3 559 149 966.7441 1.31E+10
cg08013810 0.00033 0.087427 0.023115 0.330674

cg06797533 0.000383 4.351053 1.932616 9.795869

cg21022435 0.000396 0.00496 0.000263 0.093416

cg22916109 0.000475 1.07E+11 69831.7 1.65E+17
cg10415235 0.00048 6.56E+08 7370.126 5.83E+13
cg05955301 0.000514 8.98125 2.60262 30.99294

cg16016036 0.00056 0.243586 0.109202 0.543343

cg23486067 0.000569 20.19834 3.654797 111.6267

cg25634666 0.00057 0.255673 0.117688 0.555439

cg17332016 0.000602 104 162.1 141.5735 76 636 837

cg03190825 0.000654 15.75275 3.227124 76.89485

Fig. 1. (A) Cumulative distribution function curve; different colors reflect different cluster numbers; the horizontal axis represents the

consensus index; the vertical axis represents the CDF; and a larger AUC indicates better clustering. (B) CDF delta area curve of consensus

clustering indicating the relative change in the area under the CDF curve for each category number k as compared to k − 1; the horizontal

axis represents the category number k, and the vertical axis represents the relative change in the area under the CDF curve.
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samples in Cluster 4 was significantly higher than in

the other subtypes (Fig. 3B). All the samples in Cluster

5 were grade 3 (Fig. 3C, Table S4), suggesting that the

hypomethylation subtypes were mostly high-grade in

clinical pathology. The age of the patients of Cluster 5

was remarkably greater than the age of the patients of

the other subtypes, and the age of onset was 70–-
80 years (Table S5), while the mean age of the patients

of Cluster 2 was the lowest (Fig. 3D), indicating that

the age of the patients with the hypomethylation sub-

types was generally higher than the age of the patients

with the hypermethylation subtypes. The above find-

ings suggest, to a certain degree, that these DNA

MET subtypes could be used to predict prognosis,

tumor stage, and pathological grade in patients with

ovarian cancer.

Gene annotation and function analysis of the 250

MET loci

A total of 285 genes corresponded to the gene pro-

moter regions annotated by the 250 CpG loci, and

these genes were subjected to transcription factor

enrichment analysis using the online tool g:Profiler. It

was found that 42 genes were significantly enriched to

transcription factor EC (TFEC) (log-rank P = 0.0107;

Fig. 4A). The role of TFEC in cancer progression has

been studied to a limited extent; thus, to further

explore the biological functions in which TFEC may

be involved, TFEC-coexpressed molecules in the

cBioPortal database were elucidated. The 300 mole-

cules with the most positive and negative correlations

according to Spearman’s correlation were selected.

Functional enrichment analysis was performed using

the Database for Annotation, Visualization, and Inte-

grated Discovery (DAVID) 6.7 and visualized using

the GOplot function in the R software package.

Finally, the five biological processes with the most

significant functions were chosen: GO:0006955—
immune response, GO:0050776—regulation of immune

response, GO:0006954—inflammatory response,

GO:0045087—innate immune response, and

GO:0007165—signal transduction. TFEC may pro-

mote ovarian cancer occurrence and progression by

influencing these biological functions (Fig. 4B).

Screening five CpG loci by WGCNA

Using the weighted gene coexpression network analy-

sis (WGCNA) algorithm, the 250 significant CpG

Fig. 2. (A) Clustering heat map of samples at consensus k = 6. Different colors reflect different cluster numbers; the color gradient is from

white to blue, indicating the consensus of progression. (B) Clustering results of 250 MET loci, clinical stage, and histological grade in six

clusters of samples; red represents high expression, and blue represents low expression.
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loci were mined. Evaluation of the scale-free model

was performed at different soft thresholds; a larger

value and lower mean connectivity both indicated

better compliance with the scale-free distribution.

Finally, β = 4 (Fig. 5A,B) was selected, and the set-

tings of height = 0.25, deepSplit = 3, and minMod-

uleSize = 10 were chosen. A total of seven modules

were obtained (Fig. 5C); the gray module is the set

of genes that could not be clustered in other mod-

ules. The statistics of the genes in the various mod-

ules are shown in Table 3. The 250 CpG loci were

assigned to the seven modules. Pearson’s correlation

coefficient between the ME of each module and the

sample characteristics was calculated; a higher corre-

lation coefficient indicated that the module was more

important. In Fig. 5D, the row represents the eigen-

genes of each module, and the column represents the

feature information of the samples. The greatest cor-

relations can be seen between the yellow module and

Cluster 2 (R = 0.68, log-rank P = 7e-40), the brown

module and Cluster 3 (R = 0.51, log-rank P = 1e-20),

and the black module and Cluster 5 (R = 0.61, log-

rank P = 6e-30).

Since Cluster 2 demonstrated the best prognosis of

all the clusters, all the CpG loci in the yellow module,

which mostly correlated with Cluster 2, were selected,

and the interaction network was constructed according

to their weighted relationships (Fig. 6A). In this

network, the CpG loci with a network centrality > 10

were cg27625732, cg00431050, cg22197830, cg03152385,

and cg22809047. Furthermore, the expression relation-

ships among the 22 CpG loci were calculated, and a

significantly higher correlation was found among 8

(cg27625732, cg00431050, cg22197830, cg03152385,

cg22809047, cg00328227, cg06851207, and cg01777397)

(Fig. 6B). Finally, the five CpG loci in the intersection

that had a strong correlation between each other and

a centrality > 10 in the weighted network were chosen

Fig. 3. (A) Prognosis differences among the six subtypes of samples; different colors represent different molecular subtypes; the horizontal

axis reflects the survival time, and the vertical axis represents the survival rate. (B) Percentages of samples of different clinical stages in the

six subtypes. (C) Percentages of samples of different grades in the six subtypes; the horizontal axis represents different molecular

subtypes, and the vertical axis represents the percentage. (D) Age distribution of the patients of the samples in the six subtypes; the

horizontal axis represents different molecular subtypes, and the vertical axis represents age.
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as the characteristic MET loci of the Cluster 2 samples

(Table 4).

Cluster analysis of the five CpG loci

Unsupervised cluster analysis was performed on the

MET spectra of the five selected CpG loci, and the

similarity between the samples was calculated using

the Euclidean distance. Figure 7A shows that the sam-

ples were divided into two groups according to the

Fig. 5. (A) Evaluation of the scale-free model at different soft thresholds; a larger value indicates better compliance with the features of the

biological network. (B) Mean connectivity at different soft thresholds; the horizontal axis represents the soft threshold, and the vertical axis

represents the mean connectivity. (C) Gene dendrogram and module colors; different colors represent the genes in different modules. (D)

Module–feature correlation; the row represents the eigengenes of each module, and the column represents the feature information of the

samples. Red to green represents a high to low correlation coefficient. The digit in each grid indicates the correlation coefficient between

gene modules and the corresponding features, and the digit in the bracket represents the P-value.

Fig. 4. (A) Transcription factor enrichment results of genes corresponding to the gene promoter regions annotated by 250 CpG loci; green

represents the transcription factors, pink represents the genes annotated by MET loci, and purple represents MET loci. (B) Chord diagram

showing the top 5 enriched GO clusters for genes associated with TFEC. In each chord diagram, enriched GO clusters are shown on the

right and genes contributing to enrichment are shown on the left. Positively correlated molecules are displayed in red, and negatively

correlated molecules are displayed in blue. Each GO term is represented by one colored line.

Table 3. The CpG loci in different modules.

Module Count

Black 12

Blue 34

Brown 22

Green 16

Red 14

Turquoise 49

Yellow 22
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MET level of the five CpG loci: Cluster 1 (hypomethy-

lation group) and Cluster 2 (hypermethylation group).

The prognosis difference between these two groups

was further analyzed (Fig. 7B), and it was found that

the prognosis in the hypomethylation group was signif-

icantly poorer than in the hypermethylation group.

Fig. 6. (A) Weighted interaction network of 22 CpG loci in the yellow module; the circle represents CPG loci, the connection line between

two circles represents the interaction relationship, and a redder color indicates a larger node degree. (B) Correlation coefficient clustering of

22 CpG loci; a more purple color indicates a smaller correlation coefficient, and a redder color indicates a larger correlation coefficient.

Table 4. The annotation of five CpG loci.

CpG Chrom Start End GeneSymbol Feature_Type

cg03152385 chr16 15 094 739 15 094 740 RP11-72I8.1 S_Shore

cg27625732 chr9 1.29E+08 1.29E+08 TBC1D13 N_Shore

cg22197830 chr5 1.35E+08 1.35E+08 TXNDC15 N_Shore

cg22809047 chr2 1.01E+08 1.01E+08 AC016738.4 Island

cg03152385 chr16 15 094 739 15 094 740 RRN3 S_Shore

cg00431050 chr10 1.02E+08 1.02E+08 ELOVL3 N_Shore

cg22809047 chr2 1.01E+08 1.01E+08 RPL31 Island

Fig. 7. (A) MET spectrum clustering results of the five CpG loci. (B) Prognosis difference between the hypermethylation and

hypomethylation groups formed by clustering. The horizontal axis represents the survival time (months), the vertical axis represents the

survival rate, red indicates the hypomethylation group, and blue indicates the hypermethylation group.
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Model validation using the test dataset

The MET spectra of the five CpG loci from the 286

samples in the test dataset were extracted and analyzed

by hierarchical clustering (Fig. 8A). The results

showed that the MET spectra of the five CpG loci

were obviously clustered into two groups: Cluster 1

and Cluster 2. The MET level of the Cluster 1 samples

was significantly higher than that of the Cluster 2 sam-

ples. The prognosis difference between Clusters 1 and

2 (Fig. 8B) was further analyzed, and it was found

that the prognosis in the hypermethylation group was

remarkably better than in the hypomethylation group,

which was consistent with the results of the training

set.

Analysis flowchart

A flowchart of the mining of subtype markers for

ovarian cancer prognosis based on methylation data is

shown in Fig. 9. The R packages covered in this article

are listed in Table S6.

Discussion

In recent years, an increasing number of studies have

focused on exploring the molecular typing of epithelial

ovarian cancer to promote the realization of personal-

ized treatment and improve the survival rate. How-

ever, molecular typing achievements remain in the

initial phase. Cancer occurrence is associated with

genetic changes, and epigenetic abnormalities are also

contributors. DNA MET is the major epigenetic modi-

fication mode of genomic DNA; it is an important

means of regulating genomic functions [28] and is clo-

sely associated with ovarian cancer occurrence,

progression, treatment, and prognosis. DNA MET-

based molecular typing and subtype markers are of

great significance for guiding personalized treatment

and prognostic evaluation in patients with ovarian

cancer.

Fig. 8. (A) Expression spectrum clustering results of the five CpG loci. (B) Prognosis difference between the hypermethylation and

hypomethylation groups formed by clustering. The horizontal axis represents the survival time (months), the vertical axis represents the

survival rate, red indicates the hypomethylation group, and blue indicates the hypermethylation group.

Fig. 9. Flowchart of all the analysis.
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In the present study, 571 ovarian cancer MET sam-

ples were downloaded from the TCGA database, 250

MET loci related to ovarian cancer prognosis were

screened by Cox regression analysis, and six molecular

subtypes were selected by clustering with k-means.

There was a significant difference in MET loci among

most subtypes. The highest MET level and best prog-

nosis were observed in Cluster 2; Clusters 4 and 5 had

remarkably lower MET levels than the other subtypes

and very poor prognosis. This suggests, to a certain

degree, that the prognoses of patients with a

hypomethylation subtype were worse than those of

patients with a hypermethylation subtype. All the sam-

ples in Cluster 5 were high-grade, and the mean age of

the patients in Cluster 5 was higher than in the other

subtypes. The percentage of stage IV samples in Clus-

ter 4 was significantly greater than in the other sub-

types. The above findings suggest that these molecular

subtypes can be used not only to evaluate ovarian can-

cer prognosis, but also to fully distinguish the tumor

stage, histological grade, and age of these patients to

guide subsequent treatment.

DNA MET molecular typing also plays a very

important role in the diagnosis, treatment, and prog-

nosis of other tumors. Zhang et al. [25] screened nine

molecular subtypes by cluster analysis of DNA MET

data in 669 patients with breast cancer, and the DNA

MET mode was reflected in varying races, ages, tumor

stages, subject states, histological types, metastatic

states, and prognoses. In comparison with PAM50

subtypes using gene expression clustering, DNA MET

subtypes are more precise and can be used for the pre-

cision treatment of specific histological subtypes of

breast cancer.

Jurmeister et al. [29] constructed a DNA MET map

using whole-genome MET data from 600 cases of pri-

mary pulmonary, colorectal, and upper gastrointestinal

adenocarcinoma and successfully distinguished

between pulmonary enteric adenocarcinoma and meta-

static colorectal cancer.

Williams et al. [30] measured MET levels in different

histological subtypes of 154 cases of child germ cell

tumors using the Illumina Infinium® HumanMethyla-

tion450 BeadChip, identifying four molecular subtypes.

The MET level in the germ cell tumors was low, and

these molecular subtypes provided information regard-

ing their etiology.

Also using the Illumina Infinium® HumanMethyla-

tion450 BeadChip, Wu et al. [31] detected the DNA

MET state in 482 and 421 CpG loci in 10 samples of

Ewing’s sarcoma, 11 samples of synovial sarcoma, and

15 samples of osteosarcoma. Moreover, they developed

and validated a whole-genome DNA MET classifier to

identify osteosarcoma, Ewing’s sarcoma, and synovial

sarcoma. MET-based molecular typing is of great sig-

nificance for diagnosing, recognizing, and treating

morphologically overlapping solid tumors.

Taskesen et al. [32] integrated the gene expression

and DNA MET spectra of 344 samples of acute mye-

loid leukemia (AML) and established a regression

model using Lasso. The results indicated that the sub-

type prediction of AML cytogenetics and molecular

abnormalities could be significantly improved.

A study by Rodrı́guez-Rodero et al. [33] demon-

strated that thyroid carcinoma subtypes have pro-

moter-differentiated MET features, and molecular

typing could be realized using abnormal DNA MET

expression. Undifferentiated thyroid carcinoma was

characterized by abnormal promoter hypomethylation,

while differentiated papillary and follicular thyroid

carcinoma was characterized by promoter hypermethy-

lation.

To further explore the functions of the 250 screened

MET loci, gene function annotation of the loci was

performed, and 42 genes were found to be significantly

enriched to TFEC. The TFEC gene is located at

7q31.2 and encodes a polypeptide with a length of 347

amino acids that is mainly localized in the nucleus and

cytoplasm. According to a study by Chung et al. [34],

TFEC is an activating transcription factor (ATF) for

the nonmyosin heavy chain II-a gene. At present, evi-

dence for the involvement of TFEC in cancer progres-

sion is limited; however, TFEC, microphthalmia-

associated transcription factor (MITF), transcription

factor EB (TFEB), and transcription factor E3 (TFE3)

are important members of the family of microph-

thalmia transcription (MIT) factors, and recent studies

have proven that changes in these transcription factors

are related to melanoma, sarcoma, and renal cell carci-

noma. With a similar structure to TFEB, TFEC may

play an important role in regulating genes related to

autophagy and lysosomes [35].

Gene regulation is complex; to investigate the effects

of TFEC and its relevant factors on tumor occurrence

and progression, function enrichment analysis was per-

formed, and these genes were found to be remarkably

enriched to the following biological functions:

GO:0006955—immune response, GO:0050776—regula-

tion of the immune response, GO:0006954—inflamma-

tory response, GO:0045087—innate immune response,

and GO:0007165—signal transduction. Currently,

there are no reports of TFEC in ovarian cancer; thus,

further investigation is needed.

Finally, five CpG loci (cg27625732, cg00431050,

cg22197830, cg03152385, and cg22809047) were

screened via WGCNA. The results showed that
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hypomethylation of these five CpG loci was associated

with poor ovarian cancer prognosis. The gene anno-

tated by the cg22809047 locus was RPL31, and Mar-

uyama et al. [36] have shown that in comparison with

benign prostate tissues, RPL31 is overexpressed in

prostate cancer. In RPL31 siRNA-treated LNCaP and

BicR cells, there is an increase in the protein expres-

sion of the tumor suppressor p53 and its targets, p21

and MDM2. In addition, cell growth and cell cycle

inhibition by RPL31 could be recovered by p53

siRNA treatment. RPL31 could be used as the molec-

ular treatment target for advanced prostate cancer,

and we presume that RPL31 could also be used as a

target for ovarian cancer treatment. ELOVL3 was the

gene corresponding to the gene promoter region anno-

tated by the cg00431050 locus. ELOVL3 is a member

of the family of elongases of very long-chain fatty

acids (ELOVL), which includes seven members

(ELOVL1–7). The proteins encoded by ELOVL1–7
genes are involved in the elongation of fatty acid

chains of different lengths, and they play an important

role in regulating the biological synthesis of lipids,

fatty acid metabolism, and certain metabolic diseases.

There are limited studies of ELOVL3 involvement in

tumors, while ELOVL2 involvement in tumors has

been widely described. A study by Kang et al. revealed

that patients with breast cancer with low ELOVL2

expression have poor prognoses. ELOVL2 expression

has been correlated with the malignant phenotype of

breast cancer, and its downregulation induces lipid

metabolism reprogramming; thus, ELOVL2 is a novel

prognostic biomarker [37]. We suggest that ELOVL3

expression may also be involved in ovarian cancer

occurrence and progression by inducing lipid metabo-

lism reprogramming.

Zhang et al. [38] investigated the molecular typing

of serous ovarian cancer using the multi-omics data of

DNA MET and protein, miRNA, and gene expres-

sion, mainly discussing the relationship between molec-

ular typing based on RNA sequencing data and that

based on other omics data. They screened nine molec-

ular subtypes based on RNA sequencing data; these

subtypes had significant overlap with the molecular

subtypes of other omics, but the functional analysis

results showed that the subtypes based on an omics

dataset could not be completely substituted by other

omics data.

In the present study, the significance of MET in the

molecular typing of ovarian cancer was analyzed using

MET data, and the markers of subtypes closely related

to ovarian cancer prognosis prediction were further

screened. A MET data-based ovarian cancer prognosis

prediction model was subsequently developed to

provide a reference for clinical trials and researchers.

The study by Zhang et al. and our study had different

focal points, despite both involving molecular typing.

Ovarian carcinoma subtyping based on MET pro-

files has been reported in a TCGA seminal article [39],

and four subtypes were identified as significantly asso-

ciated with differences in age, BRCA inactivation

events, and survival based on consensus clustering of

variable DNA MET data. The cluster associated with

the worst prognosis was characterized by hypomethy-

lation and associated with old age, which is in accor-

dance with the present findings; however, our

approach was different from that of the TCGA paper.

First, the samples included in the TCGA paper were

489 cases of high-grade serous ovarian cancer, while

the present paper included 571 cases of methylated

ovarian cancer, including different clinical stages and

grades. Our sample size was larger, and the results

were more abundant. Second, a multivariate Cox pro-

portional hazards model was used to show that 250

CpG loci were significant predictors of prognosis, and

six molecular subtypes were clustered based on the

methylation level at these 250 CpG loci. Clusters char-

acterized by hypomethylation were associated with

worse prognosis, stage, and grade, as well as older age.

Third, WGCNA was applied to identify the five most

significant CpG loci, and hypomethylation of these five

loci was demonstrated to be associated with worse out-

comes. Nevertheless, the present study has certain limi-

tations. Only internal validation was performed on the

MET prognostic loci, and no suitable external datasets

were obtained. Thus, our study results need to be fur-

ther validated with a larger sample size.

Conclusion

We identified six molecular subtypes using ovarian

cancer MET data in the TCGA database and showed

that DNA MET molecular typing could accurately

support the distinction of tumor stage and pathologi-

cal grade in ovarian cancer. The specific CpG loci and

genes can be used in clinical practice as biomarkers for

individualized treatment and ovarian cancer prognosis

prediction.
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