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Abstract

Background: In order to perform a 3D reconstruction of electron microscopic images of viruses,
it is necessary to determine the orientation (Euler angels) of the 2D projections of the virus. The
projections containing high resolution information are usually very noisy. This paper proposes a
new method, based on weighted-projection matching in wavelet space for virus orientation
determination. In order to speed the retrieval of the best match between projections from a model
and real virus particle, a hierarchical correlation matching method is also proposed.

Results: A data set of 600 HSV-1 capsid particle images in different orientations was used to test
the proposed method. An initial model of about 40 A resolutions was used to generate projections
of an HSV-I capsid. Results show that a significant improvement, in terms of accuracy and speed,
is obtained for the initial orientation estimates of noisy herpes virus images. For the bacteriophage
(P22), the proposed method gave the correct reconstruction compared to the model, while the
classical method failed to resolve the correct orientations of the smooth spherical P22 viruses.

Conclusion: This paper introduces a new method for orientation determination of low contrast
images and highly noisy virus particles. This method is based on weighted projection matching in
wavelet space, which increases the accuracy of the orientations. A hierarchical implementation of
this method increases the speed of orientation determination. The estimated number of particles
needed for a higher resolution reconstruction increased exponentially. For a 6 A resolution
reconstruction of the HSV virus, 50,000 particles are necessary. The results show that the
proposed method reduces the amount of data needed in a reconstruction by at least 50 %. This
may result in savings 2 to 3 man-years invested in acquiring images from the microscope and data
processing. Furthermore, the proposed method is able to determine orientations for some difficult
particles like P22 with accuracy and consistency. Recently a low PH sindbis capsid was determined
with the proposed method, where other methods based on the common line fail.

Background crucial information for understanding the assembly and
Three-dimensional (3D) reconstruction of virus particles  infectivity mechanism. The structural determination
like SARS (Severe Acute Respiratory Syndrome) and HSV ~ begins with acquisition of projection images in an elec-
(Herpes Simplex Virus) using electron microscopy yields  tron-microscope. A major part of data processing is aimed
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Different defocus images with their spatial frequency resolution. Figure | -a shows a typical image taken at 0.8 pm
defocus with JEOL 400 kV electron cryo-microscope with a LaBé gun. This image has low contrast but contains a detectable
signal above noise at a relatively high spatial frequency out to /7 A-! (b). The image contrast can be enhanced by setting the
defocus value to a larger value (i.e. 2.6 Um as shown in c). However, such an image contains much lower resolution data as
shown in (d), the detectable signal is present out to spatial frequency (1/12A-!). In order to obtain a high-resolution recon-
struction, we would use images taken at condition similar to that of (a).

at determining the direction of projection for each particle
image (2D projection of virus) so that a 3D reconstruction
can be computed. The first step in a virus reconstruction is
the detection and selection of the individual particle
images from a large area of an electron micrograph.

There are different criteria to determine the particle orien-
tation. One criterion is based on the computational search
of the common lines in the computed Fourier Transforms
of individual or multiple particle images [1]. An improve-
ment of the Fourier Common Line algorithm [2] has been
proposed, but a significant amount of the low contrast

particle images are still discarded, partly because of the
impossibility of obtaining a reliable estimate of their ori-
entations. Another criterion for the particle orientation
estimate is to find the correlation match between the raw
images with many projections from a 3D model [3].
Regardless of the criterion used, finding the orientation
determination for a particle image such as that in Fig. 1a
is difficult because of its extremely low contrast.

One approach is to take two consecutive pictures of the
same particles one close-to-focus (Fig. 1-a) and another
farther from focus with a higher contrast (Fig. 1-c) from
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which the initial orientations are easily determined [4,5].
The initial orientations are then assigned to the corre-
sponding particles in the close-to-focus images for struc-
tural refinement (henceforth, called focal pair method).
In a high resolution structure determination, one would
require over 6000 particles of data for 8.5 A resolutions
[6]. If a focal pair is required, one would need over 12,000
particles and hence it is a labor-intensive process of data
recording, digitization and archiving. In this paper, we
propose a method for determining the initial orientations
of the particles from low contrast (close-to-focus) images
without necessity for a second set of highly defocused
images. In this technique, we use the wavelet transforma-
tion in a multi-resolution analysis [7,8] to enhance the
contrast of the image and the hierarchical weighted pro-
jection matching to accelerate the processing. The wavelet-
transformed images have the same size as the original
images. Wavelet decomposition separates the low-resolu-
tion information, called "approximation", from the high
resolution information, called "details". This method
computationally generates an image equivalent to the far-
from-focus picture taken by the microscope and separates
images containing details and noise. The technique pro-
posed here is a model-based approach in wavelet space,
which we call Hierarchical Wavelet Projection Matching
(HWPM).

Results

A data set of 600 HSV-1 capsid particle images in different
orientations was used to test the HWPM method. The
defocus range of herpes particles was chosen to be close to
focus between 1.7 pm and 0.4 pm. An initial model of
about a 40 A resolution [4] was used to generate projec-
tions uniformly covering the asymmetric triangle of the
icosahedrally symmetric HSV-1 capsid particle [4,5]. A
grid sampling of 0.5° in each direction of the asymmetric
triangle of icosahedral particles was used. The number of
projections obtained with this grid was relatively high
(2616 projections). First, the 2616 projections were
grouped into 200 classes, each class containing about 13
projections.

A match of the particle into the best 3 of the 200 classes
was obtained using the wavelet correlation coefficient
(wecf) criterion. Next, the particle was compared to the 39
projections of the best three classes, and the correct orien-
tation was that of the projection giving the highest wccf.
The hierarchical implementation wavelet projection
matching reduced the time at least by a factor of 10 com-
pared with the classical projection matching method. In
the example of 600 particles, by using HWPM it took
approximately 3 hours to determine the orientations,
instead the 33 hours it took with the classical matching
algorithm. Both algorithms were running on the SGI Ori-
gin-2000 supercomputer using 10 processors.

http://www.biomedcentral.com/1472-6807/5/5

At this point, each particle had been assigned the orienta-
tion of the closest projection. A quality factor was assigned
to each orientation, which was the wavelet correlation
coefficient. Particles having high wccf coefficients were
selected for reconstruction of a first 3D model of the virus.

Refinement of initial orientations obtained by HWPM
was realized by the same iterative refinement process used
in focal pair method [5]. This refinement process uses
both local and global refinement. Local-refinement
refines orientations against a set of projections from the
3D density map. In global refinement, all the raw particle
orientations are refined against each other, without using
projections from the 3D model. A potential merit of glo-
bal refinement is the absence of possible bias arising from
the 3D model.

In order to assess the accuracy of the orientations
obtained with the HWPM. A comparison with the focal
pair method (Fig. 5.a), which is currently the most appro-
priate method for low contrast virus images was accom-
plished. The following steps were executed. First the initial
orientations of the far-from focus particles were deter-
mined by using the cross-common line method between
real particles and a set of projections obtained from the
low resolution model. Next, a global refinement process
was realized in order to determine the initial orientation.
The same software as in [4] was used with the same initial
parameters. The parameters used in this software were the
minimum radius and maximum radius limiting the reso-
lution and the sampling step size of 4.67A/pixel. The min-
imum valid radius ensured that the minimal radius was
computationally accurate when the two common lines
angles were close and also to avoid the biasing of the ori-
entations of particles by the very low frequency compo-
nents. This parameter choice for herpes at the above
sampling step was 5 pixels. The maximum radius was cho-
sen to limit the maximum resolution expected from the
reconstruction, here in the initial orientation the maxi-
mum radius corresponding to a resolution about 40 A.
Then an assignment of the particle orientations from the
far to focus to the close to focus is realized. Next, an itera-
tive refinement process to the close-to-focus data was
accomplished as described in [5]. A 3D reconstruction
using the best 300 HSV-1 particle orientations was per-
formed for each method. Fig. 5.a and Fig. 5.b show sur-
faces density contour, displayed at one standard deviation
above the mean density [9], obtained respectively from
focal pair method and HWPM method. Both structures
show a similar visual resemblance. In order to assess the
reliability of the 3D density maps and the quality of
particles orientations obtained from each method, the
Fourier Shell Correlation (FSC) criterion, which is the
most robust criterion [10,11], was employed. The FSC was
calculated between 2 independent reconstructions from
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Figure 5
Comparison between 3D reconstruction obtained from both methods. Reconstruction of the B-capsid of the herpes

simplex virus type-1: in (a) the initial orientations are determined from the second picture and then refined using the first pic-
ture. In (b) Initial orientation is determined from the wavelet-projection matching algorithm with one refinement iteration
using the common line program. Both iso-surfaces are displayed at | standard deviation above the mean.
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FSC between 2 independent reconstruction for each method. Green and blue lines show the correlation as function
of the spatial frequency using 300 particles from the Focal pair method and HWPM respectively. Using the 0.5 correlation
point criterion to assess the resolution of the 3D structure, the dotted line gives a resolution of 32 A and thin line gives a res-
olution of 24 A. The purple line shows a reconstruction using 500 particles where the orientation is obtained from the HWPM
method the estimated resolution using 0.5 correlation point shows 14.5A. The red line shows the 2 times expected FSC for

Gaussian noise.

the same set of orientations for each method. The effective
resolution assessment of the 3D structure obtained from
each method is estimated at FSC correlation value of 0.5,
which correspond to 45° phase difference.

Fig. 6 shows three different plots. The green curve shows a
resolution of 32 A of the reconstruction using the best 300
particles with orientations obtained from the focal pair
method. The blue curve shows a resolution of 24 A of the
reconstruction using 300 particles with orientations
obtained from the HWPM method. This result shows that
the resolution of the structure obtained from the HWPM
is higher than the one using the orientations from the
focal pair method. Therefore, the orientations obtained
from HWPM method are more accurate. Furthermore,
HWPM method uses only one set of close-to-focus data
instead of the two sets used by the focal pair method. The
purple curve shows a resolution of about 14.5 A of the
reconstruction using 500 particles with orientations
assigned by HWPM. The red curve plots twice the expected
FSC for Gaussian noise. A less stringent criterion to assess

the resolution as the intersection between the FSC curve
and the curve plotting the 2 times expected Gaussian
noise.

HWPM was tested on a P22 empty shell capsid which was
circular and whose shell is very thin (~40 Angstrom).
Twenty micrographs of the P22 empty shell capsid with
defocus range [0.5 to 2 um| were used for testing purpose.
The total number of particles is 1340, each image has a
size ofq300 x 300 pixels, and the dimension of each pixel
is 2.8 A.

Concerning the initial orientations determinations using
HWPM method, an initial model of around 20 A resolu-
tions was used to generate projections which uniformly
covered the asymmetric triangle of the icosahedrally
symmetric model. A grid sampling of 2° in each direction
of the asymmetric triangle of icosahedral symmetry was
used to obtain an initial orientation, targeting a structure
of 30 A. The number of projections obtained with this grid
was about 200 projections. A match of the particle with
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Figure 7

Surface visualization of P22 empty shell capsid. For
surface visualization of P22 empty shell capsid, three views
were taken at the 5 fold direction and surfaces were dis-
played at 1.5 standard deviations above the mean. Top image
is the original surface from Zhang [13], the lower left image is
the reconstruction obtained from ICL, the lower right image
is the reconstruction obtained from the proposed method.

the projections was obtained by using the wccf criterion.
The correct orientation was selected as the one of the pro-
jection giving the highest wccf. The better half of the ori-
entations projections (650) according to wccf criterion
was chosen for final reconstruction.

The initial orientations for the same set of data were deter-
mined using the Improved Common Line (ICL) method,
with the same input parameters for the software described
in [2]. ICL use one single micrograph and does not use
focal pair technique. The best half of the particles orienta-
tions (650) was chosen, according to the phase residual
criterion, in the 3D reconstruction of the P22.

Fig. 7 shows three surface views of the P22 empty shell
capsid. The Top image shows the original surface [12,13].
The lower right image shows the surface obtained by
HWPM, which shows a very similar view to the original
structure. The resolution assessment of the structure, by
Fourier shell correlation criterion, gives a resolution of
14.5 A. The lower left surface shows the result obtained by
ICL method. The surface view of the reconstruction
obtained from the ICL of the P22 empty shell capsid is dif-

http://www.biomedcentral.com/1472-6807/5/5

ferent from the original P22 capsid. Fig. 7 proves the inac-
curacy of some of the initial orientations obtained from
the ICL method for such a smooth virus.

Discussion

During the last thirty years the common lines methods
were a great method to resolve icoshedral particles up to
7-8 A [6]. Recently, a method using polar transformation
and projection matching were used for the purpose of ori-
entation determination [3], but this last method is not
suitable for the high resolution of large virus because the
resulting transformed images, could be double the size of
the original image. The proposed method combines the
projection matching of wavelet denoising for an initial
determination of particle orientation, with the common
lines method for refinement to a higher resolution. It is
clear that HWPM method works only if the initial low res-
olution model of the particle is already known. This
method is very interesting if we need to add more particles
to an existing intermediate resolution reconstruction in
order to increase the resolution. Particles having high res-
olution information are very noisy [9,14]. The best that
we can get using the ICL method is less than 40 % of good
orientations, for defocus values between 1.9 pum and 1.2
pm, for the P22 capsid [2]. Usually, very high resolutions
use defocus values which go much lower than 1.2 pm as
in the HSV data, or the current P22 data which goes to 0.5
pm. The 40% rate of correct orientations would certainly
become smaller if we used data at closer defocus. The
study accomplished on high resolution for HSV recon-
struction showed that using a close-to-focus single micro-
graph with CL method was not effective, because a small
number of orientations were found to be correct [9], for
this reason a focal pair method was used for 8.5 A
structure[9].

At high resolution reconstructions, the number of parti-
cles needed increases drastically, and the data with a sig-
nal-to-noise ratio valid up to the targeted resolution, tend
to be very noisy. For an 8.5 A structure of HSV-1 it took
about 6000 particles for a final reconstruction. Fora 6.5 A
structure resolution, the estimated value was about
50,000 particles using the same electron microscope [14].

To further increase the resolution of the HSV virus to 6.5
A or higher (4 A), the focal pair method would be
impracticable. The focal pair method, for intermediate
resolution up to (8 A) for big viruses like HSV, works well
for orientations determinations. The number of particles
selected for the final reconstruction about 40% of the
original number of particles (taking into account the far-
focus and close-focus micrographs). It is necessary to
emphasize that results from both methods are very similar
in terms of visual resemblance. But, there are two advan-
tages of HWPM over the focal pair method. First, focal
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Figure 2

Woavelet decomposition of a virus at level 2. Level 2
decomposition of wavelet uses bi-orthogonal base. This
transformation is applied on a projection of phi |13 model
downloaded form the Proteins data bank and then recon-
structed to 10 A,

pair method uses as much as double the data used for the
HWPM. Second, the quality of the density maps shows
that HWPM gives a better resolution for the same number
of particles (figure 6). This proves a better accuracy of ori-
entations determinations obtained by the HWPM.

One of the more obvious advantages of the HWPM for
orientation accuracy appears in two examples of real
reconstructions. The first is for the P22 capsid, the ICL
method does not give a good initial orientation, and the
refinement of the orientations does not help to converge
toward the right orientations. The probable reasons why
the ICL method did not work properly for the P22 capsid
are: first the P22 capsid has a smooth surface (the thick-
ness of the shell is about 40 10\); second most of the data
are very close-to-focus with defocus range of 0.5 pm to 1.3
pm. The data was noisy and had a very low contrast. The
ICL method was able to give 40% of good orientations for
the defocus range between 1.9 and 1.2 pm, here the data
was closer to focus, which reduced the percentage of good
orientations to less then 22%.

http://www.biomedcentral.com/1472-6807/5/5

The application of the HWPM to the P22 empty shell cap-
sid gave the expected structure (Fig. 7). The wavelet
denoising in the HWPM not only helped in reducing the
noise and enhancing the contrast of the particles, but also
used the entire information from the image (instead of
using several lines) which is enhanced accuracy for highly
noisy particles.

Another example of real data reconstruction is the VP5-
VP19C recombinant. After long investigation using CL
and ICL algorithms, the classical projection matching
scheme was also tested in order to determine the orienta-
tions, but unfortunately all those methods failed. The
wavelet filtering and matching was used during the classi-
fication step of the recombinant particle VP5-VP19C
[15,16], which significantly improved the quality of the
class averages [16-18] and enabled the determination of
the structure of that particle. A study [16] shows the
superiority of the wavelet projection matching over the
Gaussian filtered projection matching.

The third examples for low PH sindbis: Three years of
investigation using CL and ICL methods failed to obtain
the correct density map of the low PH sindbis capsid
which is subject to conformational changes and an altera-
tion of the symmetry. Recently the proposed method
(HWPM) was tested on low PH sindbis and the correct
structure was finally observed and analyzed [19].

Wavelet multi-resolution analysis and processing
improves particle detections [8], classification [15,16],
and orientation determination on a variety of electron
microscopy images which are highly noisy and have an
extremely low contrast. This prove that wavelet techniques
are adequate in the 3 main steps of 3D virus reconstruc-
tion and in the classification step of single particle recon-
struction [16,17].

Conclusion

This paper describes the development and implementa-
tion of a new method for orientation determination for
low contrast images of virus particles. This method is
based on wavelet filtering, which enhances the contrast of
the particles and reduces the noise, and on weighted pro-
jection matching in wavelet space. A hierarchical imple-
mentation of this method increases the speed of
orientation determination. Results show that, HWPM
have been able to determine accurately more than 85% of
the orientations of low-contrast particles. Compared to
the focal pair method (for orientation determination
from low contrast data) the HWPM reduced the amount
of data required in a reconstruction by at least 50 %. In
addition the accuracy of the orientations obtained by the
proposed method is higher than those obtained by focal
pair method [9]. This improved accuracy is shown clearly
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Classification scheme of projections into classes. Classification of projections using (2 of the 3) Euler angles for viruses
having lcosahedral symmetry like the herpes virus. Only an asymmetric triangle is needed in the case of an Icosahedrally sym-
metric virus instead of the whole plan in the case of an asymmetric object. Each rectangle represents a class of projections. The
closest projection to the center of the rectangle, represents the center of the class. This figure represents the classification of

2600 projections into 300 classes.

by the resolution assessment in Fig. 6. The estimated
number of particles needed for a 6.5 A reconstruction of
the HSV-1 capsid was about 50,000 [14]. By using the
HWPM method, only half as much data was necessary.
The proposed method could save 2 to 3 man-years
invested in acquiring images from the microscope and
data processing. Another advantage of this method is the
ability to give accurate orientations for some particles hav-
ing conformational changes or alteration of symmetry as
seen for VP5-VP19C recombinant and recently with the
low PH sindbis capsid.

Methods

Choice of wavelet Base

The choice of wavelet filter bases depends on the signal.
Signals coming from different sources have different char-
acteristics. For audio, speech, image and video signals the

best choices of wavelet bases are known. The best choice
for electron microscopic images is not clear. The problem
is to represent typical signals with a small number of con-
venient computable functions.

An investigation to choose the best wavelet bases for elec-
tron microscopic images was performed here. During this
study, simulated and real electron microscopy images
were used. The majority of the wavelets basis existing in
Matlab-5 software [20-24] was tested. The criterion used
to determine the best wavelet base was the one which
optimizes the signal to noise ratio in a broad spectrum of
spatial frequencies. The bi-orthogonal wavelets basis [25-
27] especially the 3.5 basis in Matlab-5 yielded the best
average signal to noise ratio in the range of the spatial fre-
quency (1/100 - 1/8 A1) relevant to data analysis.
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Schematic diagram of the HWPM method. Schematic diagram of the HWPM method: The first step is the wavelet
decomposition of each of the particles, and projections and then classification of projections into 200 classes. The final step is
to determine the correlation by using the centers of classes and then using all members of the best 3 classes to get the best

orientation estimates.

Wavelet Projection Matching (WPM) Principle

The principle of the wavelet decomposition is to trans-
form the original raw particle image into several
components: one low-resolution component called
"approximation" [21], which is mainly used in this

method, and the other components called "details" (Fig.
2).

The approximation component is obtained after applying
a bi-orthogonal low-pass wavelet filter in each direction
(horizontal and vertical) followed by a sub-sampling of
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each image by a factor of 2 for each dimension. The details
are obtained with the application of a low-pass filter in
one direction and a high-pass filter in the other, or a high-
pass filter in both directions. The noise is mainly present
in the detail components. A higher level of decomposition
is obtained by repeating the same filtering operations on
the approximation. The wavelet correlation coefficient
between two wavelet-transformed images, for a given
level, is :

i=p-1
weef =Wi.Ap OA# S Wi.DiJ Dy (1)
i=1

Where W, to Wp are weights given for each components
of the wavelet correlation, p is the number of components
of wavelet decomposition. A;, A, are the approximations.
® denote the correlation between two components
images. Dy;, D,; are the details (Fig. 2). This implementa-
tion starts first by a wavelet filtering which is performed
by thresholding [21,28,29] of the details components in
order to reduce the noise effects in the correlation match-
ing. Higher weight is given to the approximation
component to further reduce the noise effect in the deci-
sion. The weights given in this implementation are 0.75
for the approximation and 0.25 for the details.

Orientation determination with Hierarchical WPM
(HWPM)

Initial orientation determination is based on model-
based projection matching approach [3]. The level of
wavelet decomposition depends on the dimension of the
virus and the sampling rate. For herpes simplex virus type-
1 (HSV-1) B-capsid, which has a diameter of 1250 A with
asampling of 2.1 A/pixel, a level two of wavelet decompo-
sition (Fig. 2) is appropriate for the initial orientation esti-
mate, because of the contrast enhancement and the
consideration of computational speed. The method starts
by generating the wavelet decomposition at level two for
each projection and raw image. In order to have accurate
orientation estimation a small angular grid (figure 3) to
generate projections from the initial model is needed, and
this results in a large number of projections. The classical
projection matching, which consists of comparing the
wavelet-transformed raw images with every projection, is
very slow even when using multiple processors on a par-
allel computer. In order to significantly increase the speed
of processing, a hierarchical implementation is per-
formed. This consists of grouping projections into classes
of similar orientations [30]. Fig. 3 shows the classification
scheme applied for the icosahedral viruses, only an asym-
metric triangle representing the possible orientations for
icosahedrally symmetric object [4] is considered.

The choice of the number of classes is optimized to give
the best tradeoff between speed and accuracy. The classifi-

http://www.biomedcentral.com/1472-6807/5/5

cation gives a uniform distribution of projections into the
classes. The next step is to compare each wavelet-trans-
formed raw image with the closest projection to the center
of each class, and then rank the classes in terms of wccf
(Fig. 4). The final step is to compare the raw image with
all the projections of the three classes given the highest
wecf coefficients. Next, the orientation of the projection
yielding the highest wccf will be assigned to the raw image
as the correct orientation. The software is written in C++
(a parallel version of the software has been written to run
on the SGI Origin-2000 supercomputer).
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