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Abstract

Background: Identification of co-regulated genes is essential for elucidating transcriptional
regulatory networks and the function of uncharacterized genes. Although co-regulated genes
should have at least one common sequence element, it is generally difficult to identify these genes
from the presence of this element because it is very easily obscured by noise. To overcome this
problem, we used conserved information from three closely related species: Bacillus subtilis,
B. halodurans and B. stearothermophilus.

Results: Even though such species have a limited number of clearly orthologous genes, we
obtained 1,884 phylogenetically conserved elements from the upstream intergenic regions of 1,568
B. subtilis genes. Similarity between these elements was used to cluster these genes. No other a
priori knowledge on genes and elements was used. We could identify some genes known or
suggested to be regulated by a common transcription factor as well as genes regulated by a
common attenuation effector.

Conclusions: We confirmed that our method generates relatively few false positives in clusters with
higher scores and that general elements such as -35/-10 boxes and Shine-Dalgarno sequence are not
major obstacles. Moreover, we identified some plausible additional members of groups of known co-
regulated genes. Thus, our approach is promising for exploring potentially co-regulated genes.
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Background
Transcriptional regulatory networks are important for con-

trolling many biological phenomena, such as development

and cell proliferation. Even in bacteria, elucidation of such

networks or identification of co-regulated genes (regulons) is

essential for understanding many cellular processes. Because

co-regulated genes are likely to function for the same

purpose, identifying them can also provide hints on gene

function. The microarray technique, which enables us to

monitor the expression levels of thousands of genes in paral-

lel, appears very powerful for identifying co-regulated genes

and several articles on this technique have been published

[1-3]. Even if we can ignore experimental artifacts, however,

it is not always easy to set experimental conditions to identify

differential expression patterns of uncharacterized genes.

Thus, it would be desirable to develop some computational

methods that can supplement such experimental techniques.

In recent years, several computational approaches to identi-

fying co-regulated genes have been reported. Because tran-

scription is regulated by transcription factors that bind

DNA in a sequence-specific manner, comparison of gene

upstream regions could, in principle, identify co-regulated

genes. Thus, a classical and most widely used method for
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predicting co-regulated genes is to search upstream regions

for sequence segments similar to known binding sites for

transcription factors [4-6]. This approach is, however,

applicable only when information on binding sites is avail-

able. Furthermore, as DNA sequences recognized by a single

transcription factor are only about 6-10 base pairs (bp) long

and are not strictly conserved, many false-positive matches

would be unavoidable.

One way to overcome this difficulty is to use conservation

information across species. New members of co-regulated

genes have been predicted on the basis of conservation of

hypothetical transcriptional regulatory sites between several

eubacteria such as Escherichia coli and Haemophilus

influenzae [7-9]. A similar approach was also applied to the

analysis of four archaeal candidate regulons [10]. In that

approach, the heuristic that many binding sites are quasi-

palindromic was also used. McGuire et al. have exploited the

possibility of using conservation in a wider range of species

[11,12]. To reduce false-positive hits, candidate genes were

prescreened using a priori knowledge such as their function,

the metabolic pathway they belong to, and their functional

coupling predicted from conserved operons, protein fusions

and correlated evolution. Techniques for detecting con-

served elements in noncoding regions across species have

also been studied [13-15].

For bacterial genes, McCue et al. developed an elaborate

algorithm for detecting potential binding sites in sets of

upstream regions of orthologous genes [16]. Their method

also assumes the palindromic nature of binding sites. Thus,

it is evident that such a method would fail to detect non-

palindromic binding sites, of which there are many. It is also

questionable whether the molecular mechanisms of tran-

scription in distantly related bacteria have been well con-

served and whether each orthologous transcription factor

recognizes exactly the same consensus pattern in each

species. Furthermore, the problem of detecting conserved

elements is not simple; we should carefully observe each

case of conservation and optimize parameters to detect as

many known binding sites as possible.

In this paper, we used three closely related genome

sequences to predict co-regulated genes of Bacillus subtilis.

Our method consists of two parts; first, we identified phylo-

genetically conserved elements (PCEs) in the upstream

intergenic regions of B. subtilis genes; then they were clus-

tered according to the similarity of PCEs in their upstream

region. In addition, each of the obtained clusters, predicted

to be co-regulated, was examined in terms of existing knowl-

edge of regulons and functional information from down-

stream genes. The species used for this analysis are:

B. subtilis [17], B. halodurans [18], and B. stearother-

mophilus (genome sequence incomplete; see Materials and

methods). We selected these sequences for three reasons.

First, the interpretation of the comparison of upstream

regions of orthologous genes would be more straightforward

because their regulatory mechanisms are also likely to be

conserved. Second, we have constructed a database (DBTBS)

of B. subtilis promoters and transcription factors by litera-

ture survey [19,20]. Therefore, it is easier to check the pre-

dictions and optimize parameters. Third, an international

project on functional genomics, including transcriptome

analysis, of B. subtilis is ongoing [21]. Thus, our predictions

have more chance of being tested experimentally. Here we

report the results of our prediction of co-regulated genes in

B. subtilis without any prior knowledge or assumption. The

extensive evaluation of these results is also described.

Results and discussion
Detection of PCEs and their verification
We could analyze the upstream regions of 1,568 B. subtilis

genes. For 675 of them, orthologous genes were found in

both B. halodurans and B. stearothermophilus, for 706 in

B. halodurans only, and for 187 in B. stearothermophilus

only. The genome sequence of B. stearothermophilus is still

incomplete; its length was 3,286,068 bp on 21 February

2001. If we assume that the genome of B. stearother-

mophilus is about the same size as that of B. subtilis, the

data roughly correspond to three-quarters of all genes.

Within the upstream regions of these 1,568 genes, we identi-

fied 1,884 PCEs. For comparison, we generated five pseudo-

genomes of scrambled upstream regions; for this we took all

upstream regions of these genes and randomly placed them

in front of randomly chosen genes. Then, the same PCE

identification procedure was applied to each pseudo-

genome. In these cases, we can basically regard detected

PCEs as spurious. On average, 793 spurious PCEs were iden-

tified (the standard deviation is 26.7). Figure 1 shows the

histogram of scores calculated against these PCEs. The score

of spurious PCEs is relatively low, suggesting that their

length is relatively short. We estimate that over half of the

1,884 PCEs are meaningful and that this ratio becomes

higher for longer PCEs. These PCEs were also compared

with known binding sites for transcription factors using the

DBTBS database [19,20] and literature survey. Table 1 sum-

marizes the result for each known transcription factor. In

total, 52 of 122 known binding sites overlapped with the

PCEs. For some transcription factors such as GltR, ComA

and IolR, the orthologous genes themselves could not be

identified, whereas orthologous genes of most genes regu-

lated by some factors, such as DegU and GerE, could not be

found. On the other hand, 6 of 11 known binding sites of

CcpA overlapped with PCEs.

Clustering of PCEs and its verification 
Using the clustering process, 188 clusters were obtained

which contained many known or possible co-regulated genes

(see below). To estimate the number of false positives, we

performed the same clustering procedure five times against
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Figure 1
Histogram of PCE scores calculated from sequence alignments. (a) Three or (b) two sequences were aligned. Green bars
correspond to the score of actual PCEs and yellow bars to the score of spurious PCEs generated by joining upstream regions
with unrelated coding regions. In the yellow bars, the averaged values of five trials are shown with their error bars.
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the 1,884 PCEs of randomly shuffled sequences. Figure 2

shows the histogram of similarity scores used during these

clustering processes. It shows that many false-positive clus-

ters can occur by chance around a cut-off score of 60, but

that they are rare above score 80. Although about half of

detected PCEs might be false positives, such PCEs are

usually short (Figure 1) and the similarity score between

them is relatively low (Figure 2, blue bar). We therefore con-

clude that non-meaningful PCEs are rarely included in our

clustering results, at least in the clusters with higher scores.

Prediction of co-regulated genes
Among the 188 clusters obtained, we excluded 34 because of

the alignment of hypothetical Shine-Dalgarno (SD)

sequences (see below). The remaining clusters, ranked by

the highest similarity score within each cluster, are available

as a table online (see Additional data files). We expect that

many members of each cluster will be co-regulated by a

common factor, especially when their similarity scores are

above 80. We now discuss the clustered genes in terms of

some typical regulons (Table 2).

Clusters 2 and 3: the T-box family
One of the most conspicuous clusters detected in our analy-

sis was the so-called T-box family, which consists of many

aminoacyl-tRNA synthetase operons and some operons

related to amino-acid biosynthesis [22]. It is known that

these operons are regulated by the attenuation mechanism,

where an uncharged tRNA molecule is used as an effector.

The PCE shared in cluster 2 is a part of the attenuation

region where an uncharged tRNA is believed to bind (the

T-box), whereas the PCE in cluster 3 is a region loosely com-

plementary to the T-box. All the members of cluster 3 are

included in cluster 2. In addition to 11 aminoacyl-tRNA syn-

thetases, it makes sense that proB and ilvB were clustered

because their function is related to amino-acid synthesis.

However, three additional members could not be detected;

two of them had less similar or shorter PCEs and the other

did not have an orthologous counterpart.

Cluster 34: the pyr operon
The pyr operon contains at least three genes, each of which

is directly regulated by PyrR, a transcription attenuation

regulator ([23] and Figure 3a). Each leader region of these

genes can form three different RNA secondary structures

(terminator, antiterminator and anti-antiterminator) when

transcribed ([24] and Figure 3b). PyrR then binds to the

anti-antiterminator regions of the mRNAs. Cluster 34 con-

tains pyrR and pyrP, their PCEs corresponding to a part of

each anti-antiterminator. The other gene, pyrB, was,

however, not detected because its PCE was not sufficiently

well conserved to become long enough for clustering.

Clusters 1, 5 and 11: S-box regulon
The S-box regulon is a hypothetical regulon relating to

methionine and/or cysteine biosynthesis. The leader regions

4 Genome Biology Vol 2 No 11 Terai et al.

Table 1

Correspondence between known transcription factor binding
sites and PCEs

Factor Orthologs* Number of Number of sites Number of 
name known sites† to be detected‡ overlaps§

AbrB H S 11 (1) 7 3
AhrC H S 5 (1) 3 2
AraR H 5 (1) 2 1
BirA H S 1 0 -
BltR H 1 1 0
BmrR None 1 0 -
CcpA H S 33 (17) 11 6
CodY H S 2 1 1
ComA None 5 2 0
ComK None 1 0 -
CtsR H S 6 6 4
DegU H S 14 (3) 5 1
DeoR H 1 1 0
LexA H 8 6 3
ExuR S 1 1 0
Fnr H 2 2 1
GerE H S 21 (2) 7 0
GlnR S 6 3 0
GltC H S 3 3 0
GltR None 4 2 0
GntR None 1 0 -
Hpr H 8 (1) 3 0
HrcA H S 2 2 2
IolR None 2 1 0
LevR S 3 0 -
LicT H 1 1 1
LrpC H 1 1 0
Mta H S 3 2 1
MtrB H S 1 1 0
PhoP H S 6 (2) 2 0
PyrR H S 3 3 3
PurR H S 1 0 -
RibC H S 1 0 -
RocR H 4 2 0
SacT None 1 0 -
SacY None 1 0 -
SenS None 1 0 -
SinR H 6 5 5
Spo0A H S 22 (1) 18 10
SpoIIID H S 12 (5) 6 2
TnrA H S 10 6 1
TreR H S 2 2 2
Xre H 4 0 -
XylR H S 1 1 1
MntR H S 2 1 1
Zur H S 2 2 1
Total 232 (34) 122 52

*Name(s) of species having the orthologous gene with the B. subtilis gene.
H: B. halodurans; S: B. stearothermophilus. †Total number of experimentally
verified binding sites of < 50 bp. The number of binding sites in the coding
region is shown in parentheses. ‡Number of known binding sites in the
region analyzed in this work. §Number of analyzed sites overlapping with
PCEs over 5 bp.



of its putative transcriptional units have considerable

sequence similarity and seem to form complex secondary

structures that are similar to those in the pyr operon [25].

Three different PCEs were identified in our analyses, each of

which forms a cluster related to each of the others. The PCEs

correspond to several parts of the hypothetical anti-antitermi-

nator region, where an unidentified binding factor is postu-

lated to stabilize its secondary structure [25]. Of the eleven

putative members of this regulon, seven were included in at

least one of these clusters whereas three could not be detected

because of the lack of orthologous genes. The leader region of

the remaining one, cysH, was very poorly conserved.

Clusters 14 and 20: hypothetical xanthine metabolic regulon
It has been suggested that the expression of the xpt-pbuX

operon in B. subtilis is regulated by a termination-antitermi-

nation control mechanism similar to the mechanism

suggested for the pur biosynthesis operon, purEKBC-

SLQFMNHD [26]. It has been speculated that the regulatory

proteins of these two operons are the same because they seem

to have the same effector - xanthine [26]. Our results support

this hypothesis because xpt and purE were clustered in

cluster 20. xpt also belongs to another cluster, 14, with pbuG.

As the PbuG protein has the characteristic Pfam [27] domain

of the xanthine/uracil permease family, pbuG is very likely to

be a new member of the xanthine metabolism regulon.

Cluster 6: class III heat-shock regulon
This cluster corresponds to a part of the class III heat-shock

regulon, which is regulated by CtsR. Cluster 6 contains two

of the three known genes that have experimentally verified

CtsR-binding sites [28,29]. Interestingly, cluster 6 contains

dnaJ, which belongs to the dnaK operon - hrcA-grpE-dnaK-

dnaJ-yqeT-yqeU-yqeV [30]. As the dnaK operon is involved
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Figure 2
Histogram of similarity scores used during the clustering process. Red bars represent clustering of PCEs within the upstream
regions of orthologous genes, green bars the clustering of PCEs with randomly shuffled sequence, and blue bars the clustering
of PCEs identified when the upstream regions are linked to unrelated coding regions. For the green and blue bars, average
values are shown with their error bars.
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Table 2

Comparison of some typical regulons with our results

Regulon Gene* Cluster information† Sequence of PCE‡

pyr operon (regulator: PyrR) pyrR 34 AGTCCAGAGAGGCTGAGAAGGA-T

pyrP 34 AATCCAGAGAGGTTG

pyrB C CAGAGAGGCTT

S-box regulon (regulator: unknown) metK 1,11
yusC 1
ykrW 1,5,11
yjcI 5,11

metE 5
ykrT 5,11
yitJ 5,11

cysH B
yoaD A
yxjG A
yxjH A

Hypothetical xanthine regulon purE 20
(regulator: unknown) xpt 14,20

pbuG* 14

Aminoacyl-tRNA synthetases serS 2 AGGGTGGCAACGCGAG

(regulator: uncharged tRNA) valS 2 AAAAAAGGTGGTACCGCGA

thrS 2 GAAAAAAGGGTGGAACCACGA

tyrS 2 TTAGTAGGGTGGTACCGCGA

leuS 2 AGGGTGGTACCGCGGG

tyrZ 2 AGGGTGGTACCGCGTG

ilvB 2 AGGGTGGTACCGCGGAAAG

pheS 2 AATAAGGGTGGTACCGCG

hisS 2 AACTAGGGTGGCACCACGGGTAT..

glyQ 2 GCAACTAGGGTGGAACCGCGGG

alaS 2 AGGGTGGTACCGCGAG-A

ileS 2 AGGGTGGTACCGCGAGA

proB 2 AAGGTGGTACCACGGA

cysE D C-AAACAGAGTGGAACCGCG

trpS C AGGGTGG

thrZ A

Heat-shock regulon ctsR 6 GTCAAATATAGTCAAAGTCA

(regulator: CtsR) clpE 6 GGTCAAAGATAGTCAAA

dnaJ* 6 GAAAGTCAAAGTCAGGCAT

clpP B

CcpA regulon§ bglS 47 TAGAAAACGCTTTCAA

(regulator: CcpA) msmX 47 GTAAACGCTTTCTT

yvfK 47 ..TCTT-TAAAGCGCTTTCAT

mfd 47 GACCAAAGCGTTTTT

bglP 59 AAATGAAAGCGTTGACA

sucC 59 TATAGAATGAAAGCGC

mmgA D ATTGTAAGCGCT

hutP D AGTTAATAGTTATCAGA

rbsR D GTAAACGGTTACATAAACA

yxjC B
ackA B
licB B

acuA B
acsA E
xylA E (continued on the next page)



in the class I heat-shock regulon (which corresponds to

cluster 13) and as there is an internal promoter between

dnaK and dnaJ [30], there is likely to be regulatory overlap

between the class I and the class III heat-shock regulons.

Clusters 12, 47, 52 and 59: genes under glucose repression
The largest genetic network identified so far in B. subtilis is

the regulatory system that is stimulated by glucose repres-

sion, in which the transcription factor CcpA has a central

role [6]. In our analysis, not many known CcpA-dependent

genes were clustered and they were even split into three sub-

groups (clusters 47, 52 and 59). Two members of cluster 47

have PCEs overlapping with the CcpA-binding site, and

another member, yvfK, was recently shown in a microarray

experiment to be under glucose repression [31]. In cluster

52, araA was also shown to be under glucose repression. It

seems very likely that CcpA regulates all members of this

cluster because their PCEs are similar to the CcpA-binding

site and their functions are consistent with this hypothesis.

As for cluster 59, both of its two members, bglP and sucC,

were shown to be under glucose repression [31]. Many other

known genes are regulated by CcpA. As shown in Table 2,

their CcpA-binding sites reside within their coding regions

in most cases, whereas these sites can be less conserved in

other cases. As noted above, many of the known binding

sites overlap with PCEs. Therefore, it seems possible that the

split into subgroups has some biological meaning.

There are also co-expressed genes that are subject to CcpA-

independent glucose repression. All three members of

cluster 12 were shown to be under glucose repression, two of

which, gapB and pckA, were shown to be CcpA-independent

in a recent systematic experiment [31]. Our results support

this because PCEs in cluster 12 are not similar to the CcpA-

binding site.

Potentially new regulons/members
As described above, we found several potentially new

members of known regulons: for example, dnaJ in cluster 6,

pbuG in cluster 14, kduI and odhA in cluster 52 (see table in

Additional data files for more examples). In addition, topA in

cluster 15 is likely to belong to the Spo0A regulon because

PCEs of this cluster is very similar to the Spo0A-binding site

and its functions are related to sporulation. There are,

however, potential regulons not reported so far. For example,

aroA and aroF in cluster 29 seem to constitute a regulon

related to the metabolism of aromatic amino acids. In this

regard, clusters 24 and 16 are especially interesting. Cluster 24

contains two genes (dnaA and dnaN) related to DNA replica-

tion and its PCEs are very similar to the DnaA-binding site

(DnaA-box:TTATCCACA). yqeG, another member of cluster

24, has two DnaA-like PCEs in its upstream region. It is

known that DnaA box is often found in multiple copies. More-

over, cluster 16 contains yqeG and dnaA, its PCEs being very

similar to the Spo0A-binding site. Thus, it is likely that both

DnaA and Spo0A bind to the upstream regions of yqeG and

dnaA, suggesting a new crosstalk of regulatory networks

between DNA replication and sporulation. yqeG, whose

function cannot be inferred by sequence similarity, may be

involved in DNA replication and/or sporulation. As there are

many additional cases where functionally related genes are

included in the same cluster (see Additional data files), we
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Table 2 (continued)

Regulon Gene* Cluster information† Sequence of PCE‡

iolB E
galT E
uxaC E
ydhO E
acoA E
araB E
lcfA E
dra E

kdgA E
yobO E
treP E
yxkJ A

amyE A
gntR A
xynP A
levD A
dctP A
citM A

*Probable new members identified by our analysis are shown with an asterisk. †Cluster number(s) are shown when available, otherwise, one of the
situation codes is shown: A, orthologous genes not found; B, no overlaps between known binding site and PCE; C, PCE overlaps with known site but is
too short; D, PCE overlaps with known site but is slightly different; E, binding site exists within the coding region. ‡PCE sequence in B. subtilis. The region
overlapping with a known binding site is shown in bold. §CcpA-dependent genes identified by a systematic experiment [31] are not included.



expect that future experiments will prove that at least some of

them are co-regulated.

On the possibility of misclustering due to general
patterns
In our method, there is a concern that a set of functionally

unrelated genes can be clustered from general motifs such as

the -35/-10 boxes and the SD sequence. Thus, we investi-

gated the occurrences of these motifs in the clusters.

As the SD sequence is located at some relatively definite dis-

tances from the translation start site, which is known at least

in principle, it is relatively easy to detect the SD sequence.

With the criterion described in Materials and methods, we

excluded 34 clusters, all members of which contain an SD-like

PCE (Table 3). Apparently, many of these genes are transla-

tion related (that is, ribosomal proteins and elongation

factors). Possibly their SD sequence has been highly conserved

to maximize their translation efficiency. Another possibility is

that there are some factors that recognize such SD-like PCEs

and that these clusters are co-regulated by them.

It is more difficult to detect the -35/-10 boxes than the SD

sequence because the distance between the start sites of

transcription and translation is rather variable. We investi-

gated the number of known -35/-10 boxes overlapping with

the PCEs using the DBTBS database [19,20]. As shown in

Table 4, 19% of them overlap with the PCEs on average. It is

possible that the presence of the -35/-10 boxes might have

affected the clustering of clusters 7, 22, 42, 53, 122, 129, 134

and 144. However, we do not regard this as a serious

problem because the conservation of these boxes is relatively

weak and because it is natural that many regulatory

elements overlap with the -35/-10 boxes. Namely, if a PCE

overlaps with the -35/-10 box in a cluster, it does not directly

mean that the clustering is a mistake. On the other hand, it

could be also problematic if no -35/-10 like elements were

found around PCEs because it may not be a promoter region

but an intergenic region within an operon. However, consid-

ering that it is still difficult to predict the position of promot-

ers in bacterial genomes exactly, we did not use information

of promoter existence in our scheme. In future, it seems to

be reasonable to include the prediction of operon structure

in our method [32-34].

Conclusions
In this work, we aligned the upstream regions of orthologous

genes between three closely related species and identified

the PCEs within them. Genes of B. subtilis were then clus-

tered according to the similarity of the PCEs in their

upstream region. Most parameters in our method were

determined such that as many known co-regulated genes are

clustered together and the nature of the clustered genes was

thoroughly investigated. In this sense, the use of closely

related species, one of which has a long history of experi-

mental research, was essential in our work.

There are several potential difficulties in our approach. One

is that the regulatory system of co-regulated genes must be

conserved in a pair of species at least. In fact, even in the

close relatives compared, only a proportion of genes had

orthologous counterparts. However, this situation will be

improved as the number of sequenced bacterial genomes

increases. Another is that it is difficult to cluster genes

harboring relatively short and/or variable elements. For

8 Genome Biology Vol 2 No 11 Terai et al.

Figure 3
Post-transcriptional regulation of the pyr operon. (a) The three attenuation regions in the operon. (b) Two alternative
secondary structures of the transcript of each attenuation region. In the presence of high UMP concentration, PyrR binds to
the anti-antiterminator and stabilizes the formation of the terminator structure, while preventing the formation of the
antiterminator.
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example, although many of the known binding sites for

CcpA, AbrB, Spo0A and LexA overlap with PCEs, genes reg-

ulated by them were not clustered well with a reasonable

value of the cut-off score. Currently, it is rather difficult to

detect elements of about 6 bp long. It seems biologically rea-

sonable, however, that in some large regulons, such as one

regulated by CcpA, its binding affinity is modulated for each

element. Thus, that all members of a known large regulon

are not clustered is not always a failure of our approach. The
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Table 3

Clusters having SD-like PCEs

Gene Functional classification*

atpG Membrane bioenergetics
spoVG Sporulation
yyaA Sporulation

rpsS Ribosomal proteins
rpoC Elongation
rpsL Ribosomal proteins

rpoB Elongation
ydaO None

ydcD None
secG None
sspE Sporulation

rplK Ribosomal proteins
sspA Sporulation
rpsF Ribosomal proteins
rplJ Ribosomal proteins
rplU Ribosomal proteins
ftsA Cell division

rpmE Ribosomal proteins
fusA Elongation

cysE Metabolism of amino acids and related molecules
yeeI None

rpoA Elongation
gerE Regulation
sigA Initiation

gerM Germination
asnS Aminoacyl-tRNA synthetases
nusG Termination
ypjB None
yjcI Metabolism of amino acids and related molecules
sigG Initiation

acpA Metabolism of lipids
prfA Termination
thdF Detoxification
minC Cell division
cwlJ Cell wall

hag Mobility and chemotaxis
aprX Metabolism of amino acids and related molecules
tsf Elongation
yvgY Transport/binding proteins and lipoproteins
yabR Metabolism of nucleotides and nucleic acids

yqfC None
ileS Aminoacyl-tRNA synthetases

yocD Detoxification
gcvH Metabolism of amino acids and related molecules

rpsJ Ribosomal proteins
rplQ Ribosomal proteins
dnaA DNA replication

thrS Aminoacyl-tRNA synthetases
ysgA RNA modification
yjzC None

ytdA Specific pathways
ywrD Metabolism of amino acids and related molecules

Table 3 (continued)

Gene Functional classification*

spoVT Regulation
dxs Specific pathways

pyrP Transport/binding proteins and lipoproteins
leuS Aminoacyl-tRNA synthetases

ykkC Protein folding
ylaN None

yslB None
thrS Aminoacyl-tRNA synthetases

rpsD Ribosomal proteins
yvdF Specific pathways
citG TCA cycle

ykoY Detoxification
ripX Phage-related functions

trpE Metabolism of amino acids and related molecules
lepA Elongation
greA Elongation

ytaG None
citZ TCA cycle
ykzG None

yocC None
ybyB None

pgk Main glycolytic pathways
pheS Aminoacyl-tRNA synthetases

pbpX Cell wall
rpsB Ribosomal proteins

ybxF Ribosomal proteins
gcaD Cell wall

yrrK None
zur Regulation

yjbK None
pdhA Main glycolytic pathways

yneF None
fbaA Main glycolytic pathways

rocD Metabolism of amino acids and related molecules
cah Detoxification

appA Transport/binding proteins and lipoproteins
appA Transport/binding proteins and lipoproteins

yobV None
spoIVA Sporulation

*Functional classification is obtained from the SubtiList website [42,43].
Genes belonging to the same cluster are grouped together



third difficulty is related to the operon structure of bacterial

genes. In some operons, the order of constituent genes is not

conserved across species. Our method could not deal with

cases when the position of the first gene was changed. As

noted above, future incorporation of operon prediction may

be useful. In fact, there is already research combining the

predictions of transcription units and transcription factor

binding sites [8].

On the other hand, our method could detect not only the

DNA-binding sites for transcription factors but also some

binding sites in RNA or conserved RNA secondary structure

elements. This seems to reflect the fact that B. subtilis

heavily exploits the antitermination mechanism to control

gene expression [22]. Thus, our method could grasp a global

feature of the gene regulatory mechanism in B. subtilis,

without any a priori knowledge about it.

In conclusion, although it is difficult to detect the entire set

of co-regulated genes with our method, it can be used as a

powerful tool to explore them. In addition, our results can be

used as criteria for comparing results from other methods,

and are useful for developing a more elaborate method.

Thus, our approach is a model for further studies.

Materials and methods
Genome sequence data
Genome sequences of B. subtilis [17] and B. halodurans

[18] with the annotation information were obtained from

GenBank [35] (accession numbers: AL009126 and

BA000004, respectively). Unfinished genome sequence of

B. stearothermophilus was downloaded from the website of

the B. stearothermophilus genome-sequencing project at the

University of Oklahoma [36].

Identification of orthologous genes
Genes orthologous between B. subtilis and B. halodurans

were obtained by finding the best match counterpart of

amino-acid sequence from each genome with BLASTP [37]. As

the annotation in the genome of B. stearothermophilus was

not given, orthologs between B. subtilis and B. stearother-

mophilus were obtained as follows: a TBLASTN search was

done against the contig sequences of B. stearothermophilus

for each amino-acid sequence of B. subtilis. If the best-hit

alignment started before the tenth residue of the query, this

translated counterpart was used as a BLASTP query against all

B. subtilis sequences. If its best hit was identical with the

initial query, they were regarded as orthologous.

Alignment of upstream regions
Although binding sites for transcription factors can some-

times exist in coding regions, we excluded B. subtilis genes

with upstream intergenic regions of less than 50 bp from

further analyses, in order to reduce potential noise. Next, the

upstream 300 bp region of each B. subtilis gene and that of

an orthologous gene, if any, were aligned with a local pair-

wise alignment program LALIGN [38,39]. The open gap

penalty was set to 20, which is higher than the default value.

Locally conserved regions in an upstream region of 300 bp

from closely related species were realigned with the entire

upstream region of B. subtilis without overlap. The most

conserved element of either B. halodurans or B. stearother-

mophilus was first aligned with the upstream 300 bp

sequence of B. subtilis. Next, the second most conserved

element is aligned, unless this element overlaps with the

previous alignment. This procedure was repeated for all

detected elements. The final alignments are shown in

DBTBS [19,20].

Identification of phylogenetically conserved elements
(PCEs)
On the basis of the alignments described above, we defined

PCEs within the upstream noncoding region as follows: first,

3 bp segments where all of the nucleotides were conserved

for three species were sought. Then, each segment was

extended until a consecutive unconserved site appeared for

each direction. Unless its score was less than 10, the

sequence was designated a PCE (for the scoring of PCEs, see

below). To increase the number of PCEs, we also identified

PCEs even when they were conserved in only two species

under a more stringent condition: segments of 6 bp where

the nucleotides were conserved at all positions were first

sought. Then, each sequence was extended in each direction

until it faced a 3 bp segment in which two of the positions

were unconserved. Unless its score was less than 20, it was

assigned as a PCE (the cut-off score was chosen by observing

the number of spurious PCEs detected when the upstream
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Table 4

Number of -35/-10 boxes that overlap with PCEs for each sigma
factor

Sigma factor Number Number of Number of 
of sites* -35 boxes† -10 boxes‡

SigA 62 9 14

SigB 9 0 0

SigD 5 0 2

SigE 19 3 7

SigF 7 2 1

SigG 14 3 2

SigH 8 0 2

SigK 13 3 2

SigL 1 0 1

SigW 9 4 2

SigX 2 0 0

-35/-10 boxes that overlap with a PCE by 5 bp or more were counted. If
the box is shorter than 5 bp, those fully overlapping with PCE were
counted. *Number of known -35/-10 boxes that exist in the regions
analyzed in our work. †Number of -35 boxes that overlap with PCE.
§Number of -10 boxes that overlap with PCE.



regions are joined to unrelated coding sequences). Thus, a

PCE is an alignment of three or two conserved fragments

from different species.

Scoring PCEs 
Suppose a PCE, denoted by M, consists of a set of fragments

of (two or three) species, S. The score of M was defined by

Score(M) = -log2[<�xFxi
Nx >] ( i � S, x � A, T, G, C),

where the brackets (< >) denote an average over S, Fxi

denotes the fraction of nucleotide x in the 300 bp upstream

sequence of species i, and Nx is the number of positions at

which nucleotide x is conserved over S in M. Thus, the

score of PCEs becomes low if they are short and rich in

frequent nucleotides.

Clustering genes
Genes were clustered according to the similarity of PCEs in

their upstream region. A similarity measure (sMN) between

two PCEs, M and N, was defined by the sum of all pairwise

alignment scores between any constituent sequences from

both PCEs:

sMN = �mnLmn (m � sequences in M, n � sequences in N)

Lmn = max[ lmn, d•lmn�],

where lmn denotes the score of the Smith-Waterman local

alignment algorithm [40] between constituent sequences m

and n (the match score, the mismatch cost and the gap cost

were set to 1, 2 and 3, respectively); n� denotes the reverse

complement of n; and d is an empirical cost for selecting n�

(we set d = 0.9). As sMN becomes larger as the number of

constituent sequences of M and N is larger, sMN was further

normalized as follows:

SMN = sMN • 9b / (km•kn),

where km and kn denote the number of constituent

sequences of M and N, respectively; b is again an empirical

cost for smaller values of km or kn:

b = 1.0   if both km and kn are 3

b = 0.9   if either km or kn is 2

b = 0.8   if both km and kn are 2

We used a simple algorithm UPGMA [41] to cluster genes.

The UPGMA algorithm was continued until no pairs of PCEs

have a normalized similarity value of more than 60. We

chose all of the above-mentioned empirical parameters by

observing the results for known co-regulated genes.

Discarding clusters with SD-like PCEs
We discarded clusters when all of their members contain the

SD sequence-like elements. More specifically, a member is

considered to have an SD-like element if the B. subtilis

sequence of its PCE contains a 5 bp segment where there are

at least two Gs and one A but no Cs, and if this segment lies

within the region 20 bp upstream from the translation initia-

tion site. Subsequently, the cluster was discarded if all of the

other members also have its corresponding regions.

Additional data files 
A table showing all clusters ranked by the highest similarity

score within each cluster is available as an Excel file with the

online version of this paper. 
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