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Abstract

Visual processing of color starts at the cones in the retina and continues through ventral stream visual areas, called the
parvocellular pathway. Motion processing also starts in the retina but continues through dorsal stream visual areas, called
the magnocellular system. Color and motion processing are functionally and anatomically discrete. Previously, motion
processing areas MT and MST have been shown to have no color selectivity to a moving stimulus; the neurons were
colorblind whenever color was presented along with motion. This occurs when the stimuli are luminance-defined versus the
background and is considered achromatic motion processing. Is motion processing independent of color processing? We
find that motion processing is intrinsically modulated by color. Color modulated smooth pursuit eye movements produced
upon saccading to an aperture containing a surface of coherently moving dots upon a black background. Furthermore,
when two surfaces that differed in color were present, one surface was automatically selected based upon a color hierarchy.
The strength of that selection depended upon the distance between the two colors in color space. A quantifiable color
hierarchy for automatic target selection has wide-ranging implications from sports to advertising to human-computer
interfaces.
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Introduction

In sports competitions the outcome of the match is thought to

rely on the abilities of the players not the color of the uniforms.

When referees monitor the match, do they pay attention to each

team equally? In life red is often used for stop or danger, whereas

green is used for go or safe. We may pay more attention to red

than green because of their meanings. Does one football team

draw more penalties because their red uniforms are more salient to

the referees? Is a baseball player sliding in to the plate more likely

to be called safe rather than out, if the color of his uniform

captures the umpire’s attention? If this color bias occurs

automatically, then it could impact our perception and judgments

without us being aware of it.

Visual processing of color is well understood from cones in the

retina through ventral stream color selectivity via the parvocellular

pathway [1]. Color processing has been distinct from motion

processing [1–3] which is mediated by the magnocellular system

[4]. However, it is possible to perceive motion that is only defined

by color [5,6]. In chromatic motion processing, the border

between 2 isoluminant colors moves, e.g. a red-green grating.

Behavioral and neuronal responses to this motion are attenuat-

ed[7–10] compared to most of the motion we see around us that is

defined by achromatic, or luminance-based, motion processing

[11]. Neurons in motion processing areas MT and MST have

been shown to have no color selectivity. The neurons did not

respond differently to a moving bar as its color was changed [12].

Chromatic properties have been shown to provide no real benefit

to luminance defined motion processing [10]. Yet color differences

can be used to filter out distractors from targets in a motion

discrimination task, both behaviorally in humans [13] and in the

behavior and MT neuronal responses in primates [14]. In these

latter studies, color filtering was part of the task demand for top-

down selection of the target and suppression of the distractors.

We tested whether color could automatically bias selection, as

has been shown previously with contrast [15]. Our results show

that achromatic motion processing is intrinsically modulated by

color. We measured smooth pursuit eye movements automatically

produced upon saccading to an aperture containing coherently

moving dots. Color modulated smooth pursuit both when there

was only a single surface of dots or two surfaces that differed in

color. Furthermore, selection between colors followed a color

hierarchy and the strength of the motion modulation was related

to the distance between the two colors in color space.

Results

As shown in Figure 1, when a subject fixated on a central cross,

a static aperture containing a single colored moving surface

appeared. When the cross disappeared, subjects had to saccade to

the aperture. It is important to note that making an accurate

saccade was the subject’s only task demand. As a result of selecting

the surface as the saccade target, subjects automatically pursued

the moving surface. This likely occurs due to the overlap in neural

circuitry controlling saccadic and pursuit eye movements [16].

Smooth pursuit was analyzed from 50–200 ms post-saccade.

The results for Experiment 1 revealed that smooth pursuit was

modulated by the color of the surface pursued (Figure 2). Even

though the colors were equiluminant with each other, changing

the color of the surface while maintaining the same velocity and

luminance resulted in changes in pursuit velocity. This result

indicates that color modulates motion processing which drives the
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pursuit system. This may have differed from the prior negative

result [12] that used a single moving bar and thus local motion

processing, whereas our stimulus required global integration of the

dot field motion. Global motion integration may involve binding

irrelevant features, such as color, in addition to the motion of the

individual dots. A key factor is that the stimuli in both of these

experiments were also defined by a strong luminance contrast

compared to other studies that used isoluminant colored gratings,

with no luminance contrast to show weak motion processing of

color contrast-defined stimuli [5,6]. Furthermore, color contrast-

defined motion has been shown to have little to no effect when the

grating is also luminance-defined [10]. In contrast to this, our

results show color modulation of motion processing of luminance

contrast defined targets, the more natural occurrence.

Next we investigated whether the effects of color were specific to

motion processing or if color differences generalized to stimulus-

driven salience and thus would affect automatic target selection.

We used the same paradigm except that the aperture consisted of

two superimposed colored surfaces moving in opposite directions.

We lowered the contrast of the individual dots as we increased the

number of dots in the aperture by adding the second surface.

Without a task demand to pursue, subjects should select neither of

the two surfaces equal in luminance and speed [17]. However,

subjects did pursue one of the two superimposed surfaces. These

results showed that color differences alone drove target selection.

Subjects showed a preference for pursuing red over the other

colors, a preference for green over yellow and blue, and a

preference for yellow over blue (Figure 3A).

We further investigated the nature of this automatic color-based

salience by computing the distance in CIExyY color space for each

pair of surfaces (Figure 3B). A regression analysis revealed a

significant and strong relationship between the distance in color

space of the two surfaces and pursuit (R2 = 0.9428, F = 65.96,

p = 0.0013). As the color space distance of the two competing

superimposed surfaces increased, the amount of pursuit elicited by

the selected surface increased as well. Thus there is a color

hierarchy for stimulus-driven selection and the strength of

selection is dependent upon the distance in color space between

the more salient and less salient colors. Isoluminant color, which

was irrelevant to the saccade task, drove target selection.

Discussion

We have found that when all other factors are equal color drives

target selection. As color was an irrelevant feature of the surfaces,

and there was no task demand to select or pursue either surface,

selection by color occurred automatically. The distance between

the 2 colors in color space determined the strength of selection.

Which surface was selected followed a color hierarchy: red

(strongest) to green to yellow to blue (weakest). The red.

green.blue hierarchy may arise from the correspondingly ordered

cone proportions in the retina [18]. Alternatively, the hierarchy

may be due to contextual salience either evolutionary or

experiential in nature: red is the color of blood, poisonous berries

and stop signals, whereas blue is the color of the sky and thus

background in figure-ground segmentation.

Previous studies have shown that motion processing area MT does

receive some chromatic input [7–10]. However, these color responses

have been much weaker than the responses to luminance-defined

Figure 1. Experimental paradigm. Subjects fixated (eye position –
black dot) on the white fixation cross (0.5u) at which point a 5u aperture
appeared at 7u eccentricity in either the lower right or lower left
quadrants. After a random period of time (500–1500 ms) the cross
disappeared which was the signal to saccade to the aperture. The
surface(s) in the aperture continued to move. Smooth eye movements
were measured from 50–200 ms post-saccade. In Experiment 1, the
aperture contained a single surface moving at either left or right
(shown) and was 1 of 4 possible isoluminant colors (red, blue, green, or
yellow). In Experiment 2, the aperture contained two superimposed
surfaces moving in opposite directions. The surfaces were comprised of
1 of 6 possible color combinations: red-green, red-blue, red-yellow,
green-blue, green-yellow and blue-yellow.
doi:10.1371/journal.pone.0009338.g001

Figure 2. Intrinsic color modulation of pursuit to a single
surface. Each subject’s data was normalized to the maximum pursuit
produced to any color by that subject, to control for between subject
variability. The error bars depict SEMs. Subjects exhibited different
pursuit levels for different isoluminant colors. A one-way repeated
measures analysis of variance showed a significant main effect of color
on pursuit. (F(3,12) = 4.83, p = 0.0198). This result indicates that colors
modulate motion processing which drives the pursuit system.
doi:10.1371/journal.pone.0009338.g002

Automatic Color Hierarchy
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motion [7–10], and color had little to no effect when the stimulus was

also defined by luminance [10]. Yet, it has been demonstrated that

color differences can be used to filter out distractors from targets in a

motion discrimination task [13,14]. In the latter case, color filtering

was part of the task demand for top-down suppression of the

distractors. In our paradigm, there were no task demands to select or

pursue a given colored surface or even to discriminate motion speed

or direction. Aside from color, the surfaces were identical, thus the

selection of a surface to pursue and the modulations seen in pursuit

speed are not top-down but solely stimulus driven, i.e. a result of the

color of the surface.

Our results are consistent with previous results suggesting that

basic features, such as binocular disparity and amodal completion,

are first bound together into a surface representation which then

feeds into motion processing[19,20]. Our results now suggest a

similar mechanism for color selectivity, wherein color and motion

are bound at or before the level of areas MT and MST which

drive the pursuit system. Pursuit speed was dependent on the

distance in color space and such a computation is not associated

with motion processing. It is therefore likely that a color sensitive

area determines the strength of selection between the 2 surfaces.

Binding color into a surface representation that is then fed into the

motion processing system would allow for the color hierarchy to

bias both target selection and pursuit speed.

High contrast regions automatically capture attention and are

included in salience models[21]. Yet we do not live in a black and

white world, but one full of color. Current attention and salience

models[21,22] can be extended to include a stimulus-driven color

salience module. This color hierarchy for automatic selection

impacts a wide range of fields, such as advertising wherein capturing

attention is paramount, interface design for efficient data visuali-

zation, or even sporting events. For example, a recent study [23]

has shown that the color of taekwondo uniforms affected judges’

scoring. They took video clips of matches of red and blue uniformed

competitors, and digitally altered them so that the uniform colors

were reversed. They found that when the competitors had red

uniforms, they scored 13% more points than when their uniforms

were blue. Our study provides a possible explanation: when red and

blue movements occur simultaneously, the red movement is selected

over the blue and pursued at a faster speed due to distance between

red and blue in color space. Thus when both strikes occur

simultaneously, the judges see the red strike first making uniform

color the deciding factor. In another example, in gymnastics and in

figure skating, the color of the outfit worn would affect the judges’

speed of pursuit as they watch the routine which could affect the

scoring. This has implications for many sporting events including

the Olympics.

Materials and Methods

Subjects (2 male and 3 female, ages 21–25, 4 naı̈ve) with normal

or corrected-to-normal vision and without color blindness

(Ishihara Color Plates) participated in the experiments. All partici-

pants provided written and informed consent and the research was

approved by York University’s Human Participants Review

Committee. Each participant was fitted with an infrared eye-

tracker (Eyelink II, SR Research, 500 Hz) to measure eye

movements and a bite-bar, for stability, and was placed 57 cm

from a 210 CRT monitor (ViewSonic G225f, 1280x1024, 120 Hz).

For every color used, CIExyY color space coordinates were

measured with a photometer (SpectraScan PR 655, Optikon

Corp). Movies of surfaces comprised of moving coherent dot fields

(dot size: 0.04u; dot density: 1.54 dots/deg2) were created in

Matlab (version R2007a, The Mathworks Corp.) and experimen-

tal control was maintained via Presentation (Version 11.0,

Neurobehavioral Systems). As shown in Figure 1, when a subject

Figure 3. Preferential selection between superimposed surfaces due to color differences. A. Open circles represent mean normalized
pursuit (bars: SEM) for each distance between the two colors of each of the six color pairs tested. For each color pair, there was a dominant, selected
color. The pattern of results suggests a color hierarchy for selection going from blue (weakest) to yellow to green to red (strongest). B. Pursuit
increases as the color space distance for the color pair increases (order of pairs same as in A). A regression analysis revealed a significant and strong
relationship between the distance in color space of the two surfaces and pursuit (R2 = 0.9428, F = 65.96, p = 0.0013). The equation for the regression
line is: y = 1.78(x) – 0.079.
doi:10.1371/journal.pone.0009338.g003
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fixated on a central cross (0.5u), a 5u aperture containing a single

colored surfaces appeared centered at 7u eccentricity in the lower

left or right quadrants and moved either left or right at 6u/s. After

a random period of time (500–1500 ms) the fixation cross

disappeared which was the signal to saccade to the aperture.

The subject’s only task was to saccade to the aperture. However,

the surface in the aperture continued to move. Smooth eye

movements were measured from 50–200 ms post-saccade, dis-

carding trials with saccades during the analysis window (13%

across all subjects). We computed the pursuit speed during this

window and then normalized the pursuit speed for each color by

the maximum speed across all 4 colors to control for between

subject variability.

In Experiment 1, the aperture contained a single surface moving

either to the left or right. The surface was one of four isoluminant

(13.5 cd/m2) colors on a black background: red (x = 0.6271,

y = 0.3298), green (x = 0.2953, y = 0.5896), blue (x = 0.1511,

y = 0.0674), or yellow (x = 0.4014, y = 0.5060). The design was 4

(color) X 2 (direction: left or right) X 2 (hemifield). Subjects

completed 30 trials of each condition. In Experiment 2, the

aperture contained two superimposed surfaces moving in opposite

directions. The surfaces were comprised of 1 of 6 possible color

combinations: red-green, red-blue, red-yellow, green-blue, green-

yellow and blue-yellow (isoluminant 4.2 cd/m2; red: x = 0.6102,

y = 0.3272; green: x = 0.2935, y = 0.5640; blue: x = 0.1512,

y = 0.0687; yellow: x = 0.3911, y = 0.4886). The design was 6

(color pairs) X 2 (direction of motion) X 2 (hemifield). Subjects

completed 30 trials of each condition.
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